第二章相交线与平行线全章复习
- 格式:doc
- 大小:1.30 MB
- 文档页数:5
北师大版数学七下第二章相交线与平行线复习题---解答题一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠=180°(邻补角的意义)所以∠1=∠()5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴.()∴∠1=∠3.()又∵∠1=∠2,(已知)∴.()∴EF∥DB.()18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC()∴∠DEF=()∵EF∥AB∴=∠ABC()∴∠DEF=∠ABC()∵∠ABC=65°∴∠DEF=应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为(用含β的代数式表示).22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?北师大版数学七下第二章相交线与平行线复习题---解答题参考答案与试题解析一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.【分析】(1)根据题意画出图形即可;(2)设∠EOD=3x,∠AOC=4x,根据对顶角的性质得到∠BOD=4x,根据平角的定义列方程即可得到结论.【解答】解:(1)如图所示,直线CD,射线OE即为所求;(2)∵∠EOD:∠AOC=3:4,∴设∠EOD=3x,∠AOC=4x,∵∠BOD=∠AOC,∴∠BOD=4x,∵∠AOB=180°,∴40°+3x+4x=180°,∴x=20°,∴∠AOC=4x=80°.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.【分析】直接利用已知结合邻补角的定义分析得出答案.【解答】解:∵∠2=2∠1,∴∠1=∠2,∵∠3=3∠2,∴∠1+∠2+∠3=∠2+∠2+3∠2=180°,解得:∠2=40°,∴∠3=3∠2=120°,∴∠DOE=∠3=120°.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有2对对顶角.(2)如图b,图中共有6对对顶角.(3)如图c,图中共有12对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?【分析】(1)根据对顶角的定义找出即可;(2)根据对顶角的定义找出即可;(3)根据对顶角的定义找出即可;(4)根据求出的结果得出规律,即可得出答案;(5)把n=2000代入n(n﹣1),求出即可.【解答】解:(1)如图a,图中共有2对对顶角,故答案为:2;(2)如图b,图中共有6对对顶角.故答案为:6;(3)如图c,图中共有12对对顶角;故答案为;12;(4)2=2×1,3×(3﹣1)=6,4×(4﹣1)=12,所以若有n条直线相交于一点,则可形成n(n﹣1)对对顶角;(5)2000×(2000﹣1)=3998000,若有2000条直线相交于一点,则可形成3998000对对顶角.4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换)【分析】根据平行线的判定方法和平行线的性质填空即可.【解答】解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换),所以AB∥EF(内错角相等,两直线平行),所以∠3=∠ADE(两直线平行,内错角相等)因为∠3=∠B(已知)所以∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行)∴∠AED=∠C(两直线平行,同位角相等).故答案为DFE,DFE,等量代换.5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为15°.(2)若∠COF=x°,求∠BOC的度数.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.【分析】(1)根据对顶角概念,延长DA、BA即可得;(2)根据同位角定义可得;(3)根据同旁内角定义求解可得;(4)由∠1=∠C知AE∥BC,据此可得∠DAB+∠B=180°,进一步求解可得.【解答】解:(1)如图,∠GAH即为所求;(2)∠1的同位角是∠DAB;(3)∠C的同旁内角是∠B和∠ADC;(4)因为∠1=∠C,所以AE∥BC.所以∠DAB+∠B=180°,又因为∠DAB=65°,所以∠B=115°.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=45°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.【分析】先利用角平分线定义得到∠3=∠ADC,∠2=∠ABC,而∠ABC=∠ADC,则∠3=∠2,加上∠1=∠2,则∠1=∠3,于是可根据平行线的判定得到DC∥AB.【解答】证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.【分析】证明△CBA≌△FED,根据全等三角形的性质得到∠B=∠FED,根据平行线的判定定理证明.【解答】证明:∵AD=BE,∴AD+AE=BE+AE,即BA=ED,在△CBA和△FED中,,∴△CBA≌△FED(SSS),∴∠B=∠FED,∴BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.【分析】(1)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(2)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(3)根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;【解答】解:(1)AB∥CD,理由:延长EG交CD于H,∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°,∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD;(2)∠BEG+∠MFD=90°,理由:延长EG交CD于H,∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=2∠DFG,∴∠BEG+∠MFD=90°;(3)∠BEG+()∠MFD=90°,理由:∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=n∠DFG,∴∠BEG+∠MFG=∠BEG+()∠MFD=90°.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.【分析】(1)利用基本作图(作已知角的平分线)作∠BDC的平分线DE;(2)先根据角平分线的定义得到∠BDE=∠CDE,再利用三角形外角性质得∠BDC=∠A+∠ACD,加上∠ACD=∠A,则∠BDE=∠A,然后根据平行线的判定方法可判断DE∥BC.【解答】解:(1)如图,DE为所作;(2)DE∥AC.理由如下:∵DE平分∠BDC,∴∠BDE=∠CDE,而∠BDC=∠A+∠ACD,即∠BDE+∠CDE=∠A+∠ACD,∵∠ACD=∠A,∴∠BDE=∠A,∴DE∥BC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【分析】推出DG∥AC,根据平行线性质得出∠2=∠ACD,求出∠1=∠DCA,根据平行线判定推出即可.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.【分析】由∠E=∠F,根据内错角相等,两直线平行得AE∥CF,根据平行线的性质得∠A=∠ADF,利用等量代换得到∠ADF=∠C,然后根据同位角相等,两直线平行可判定AD∥BC.【解答】证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【分析】(1)根据两直线平行,同旁内角互补,即可得出∠C的度数;(2)根据AC∥DE,∠C=∠E,即可得出∠C=∠ABE,进而判定BE∥CD.【解答】解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:BD∥CE,理由是:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,【分析】依据PG平分∠BPQ,QH平分∠CQP,即可得到∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,依据∠1=∠2,可得∠GPQ=∠HQP,∠BPQ=∠CQP,进而得出QH∥PG,AB∥CD.【解答】解:AB∥CD,QH∥PG.理由:∵PG平分∠BPQ,QH平分∠CQP,∴∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,∵∠1=∠2,∴∠GPQ=∠HQP,∠BPQ=∠CQP,∴QH∥PG,AB∥CD.17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB.(同旁内角互补,两直线平行.)∴∠1=∠3.(两直线平行,内错角相等.)又∵∠1=∠2,(已知)∴∠2=∠3.(等量代换)∴EF∥DB.(同位角相等,两直线平行.)【分析】由已知的一对同旁内角互补,利用同旁内角互补,两直线平行得出DG与AB平行,再由两直线平行内错角相等得到∠1=∠3,而∠1=∠2,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到EF与DB平行.【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【分析】直接利用平行线的性质得出∠3的度数,再利用角平分线的定义结合平角的定义得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠3∵∠1=54°,∴∠3=54°∵BC平分∠ABD,∴∠ABD=2∠3=108°,∵AB∥CD,∴∠BDC=180°﹣∠ABD=72°,∴∠2=∠BDC=72°.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为180°﹣β(用含β的代数式表示).【分析】探究:依据两直线平行,内错角相等以及两直线平行,同位角相等,即可得到∠DEF=∠ABC,进而得出∠DEF的度数.应用:依据两直线平行,同位角相等以及两直线平行,同旁内角互补,即可得到∠DEF的度数.【解答】解:探究:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°故答案为:已知;∠CFE;两直线平行,内错角相等;∠CFE;两直线平行,同位角相等;等量代换;65°.应用:∵DE∥BC∴∠ABC=∠D=β∵EF∥AB∴∠D+∠DEF=180°∴∠DEF=180°﹣∠D=180°﹣β,故答案为:180°﹣β.22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【解答】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.【分析】依据平行线的性质,即可得到∠ADB=∠DBC,再根据∠C=∠AED=90°,DB=DA,即可得到△AED≌△DCB,进而得到AE=CD.【解答】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【分析】(1)依据平行线的性质,即可得到∠ACD的度数,再根据角平分线,即可得出∠ECF的度数;(2)依据平行线的性质,以及角平分线,即可得到∠APC=2∠AFC;(3)依据平行线的性质可得∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,进而得出∠ACE=∠DCF,依据∠PCD=∠ACD=70°,即可得出∠APC=70°.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.【分析】依据折叠以及平行线的性质,即可得出∠1=∠2,再根据三角形外角性质,即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=∠EFC=40°.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠1+∠2=(∠ABD+∠BDC),进而得出结论;(2)依据角平分线定义以及(1)中的结论,即可得出∠1=54°,再根据平行线的性质,即可得到∠BFC的度数.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)∵DE平分∠BDC,∴∠2=∠EDF=36°,又∵∠1+∠2=90°,∴∠1=54°,又∵AB∥CD,∴∠BFC=180°﹣∠1=180°﹣54°=126°.27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.【分析】(1)延长BE与l1交于F,根据角平分线的定义得到∠BAE=∠F AE=∠BAD,∠ABE=ABC,根据全等三角形的性质得到BE=FE,AB=AF,根据全等三角形的性质得到BC=FD,于是得到AD+BC=AB;(2)方法同(1).【解答】(1)证明:延长BE与l1交于F,∵AE平分∠F AB,EB平分∠ABC,∴∠BAE=∠F AE=∠BAD,∠ABE=ABC,∵l1∥l2,∴∠BAD+∠ABC=180°,∴∠BAE+∠ABE=(BAD+∠ABC+=90°,∴∠AEB=90°,∴∠AEB=∠AEF=90°,在△AEB与△AEF中,∴△AEB≌△AEF,(ASA),∴BE=FE,AB=AF,即AD+FD=AB,∵l1∥l2,∴∠CBE=∠DFE,在△CBE与△DFE中,,∴△CBE≌△DFE(ASA),∴BC=FD,∴AD+BC=AB;(2)如备用图1,BC﹣AD=AB;如备用图2,AD﹣BC=AB.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.【分析】依据平行线的性质,即可得到∠C=∠CEF,依据∠CEF=∠D,即可得到BD∥CE,进而得出∠3=∠4,再根据对顶角相等,即可得到∠2=∠1.【解答】证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.【分析】首先求出∠MGN,再根据角平分线的定义可得∠MGH.【解答】解:∵MG⊥EF,∴∠GME=90°,∴∠BMG=90°﹣∠EMB=50°,∵AB∥CD,∴∠BMG=∠MGN=50°,∴∠MGD=130°,∵GH平分∠MGD,∴∠MGH=∠MGD=65°.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAE.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解答】解:(1)∵ED∥BC,∴∠C=∠DAE,故答案为:∠DAE;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=50°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.【分析】(1)根据平行线的性质即可得到结论;(2)过点P作PG∥AB,根据平行线的性质即可得到结论;(3)过点P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)∵AB∥CD,∴∠α=50°,故答案为:50;(2)∠α=∠1+∠2,证明:过点P作PG∥∵AB∥CD,∴PG∥CD,∴∠2=∠3,∠1=∠4,∴∠α=∠3+∠4=∠1+∠2;(3)∠α=∠2﹣∠1,证明:过点P作PG∥CD,∵AB∥CD,∴PG∥AB,∴∠2=∠EPG,∠1=∠3,∴∠α=∠EPG﹣∠3=∠2﹣∠1.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.【分析】(1)①过点作BG∥AM,则AM∥CN∥BG,依据平行线的性质,即可得到∠ABG+∠BAM =180°,∠CBG+∠BCN=180°,即可得到∠MAB+∠ABC+∠BCN=360°;②过E作EP∥AM,过F作FQ∥CN,依据平行线的性质,即可得到∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°,即可得到∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)过n个点作AM的平行线,则这些直线互相平行且与CN平行,即可得出所有角的和为(n+1)•180°.【解答】解:(1)①证明:如图1,过点作BG∥AM,则AM∥CN∥BG∴∠ABG+∠BAM=180°,∠CBG+∠BCN=180°∴∠ABG+∠BAM+∠CBG+∠BCN=360°∴∠MAB+∠ABC+∠BCN=360°②如图,过E作EP∥AM,过F作FQ∥CN,∵AM∥CN,∴EP∥FQ,∴∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°∴∠MAE+∠AEF+∠EFC+∠FCN=180°×3=540°;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°.证明:如图2,过n个点作AM的平行线,则这些直线互相平行且与CN平行,∴所有角的和为(n+1)•180°.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED =∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?【分析】(1)根据平行线的判定证明即可;(2)根据平行线的性质解答即可;(3)根据平行线的性质和角平分线的性质解答即可.【解答】解:(1)AB∥CD,∵AD∥BC,∴∠A+∠ABC=180°,∵∠A=50°,∴∠ABC=130°,∵∠C=50°,∴∠C+∠ABC=180°,∴AB∥CD;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3.(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.中小学教育资源及组卷应用平台21世纪教育网。
第二章平行线与相交线姓名:知识要点一.余角、补角、对顶角1,余角:如果两个角的和是直角,那么称这两个角互为余角.2,补角:如果两个角的和是平角,那么称这两个角互为补角.3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.(同角的余角相等);如果∠l十∠2=90°,∠3+∠4=90°,且有∠1=∠3,则∠2=∠4(等角的余角相等)。
5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.(同角的补角相等);如果∠A+∠B=180°,∠C+∠D=180°,且∠A=∠C,则∠B=∠D.(同角的补角相等).6,对顶角的性质:对顶角相等.二.同位角、内错角、同旁内角的认识及平行线的性质7,同一平面内两条直线的位置关系是:相交或平行.8,“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”. 三.平行线的性质与判定9,平行线的定义:在同一平面内,不相交的两条直线是平行线.10,平行线的性质⑴两条平行直线被第三条直线所截,同位角相等.简单说成:.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________11,过直线外一点有且只有一条直线和已知直线平行.12,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.13,如果两条直线都与第三条直线平行,那么这两条直线互相平行.14,平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成_________________________⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:_________________________⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:15,常见的几种两条直线平行的结论:(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.四.尺规作图16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.考点例析:题型一互余与互补例1(内江市)一个角的余角比它的补角的一半少20°.则这个角为()A.30° B.40° C.60° D.75°分析若设这个角为x,则这个角的余角是90°-x,补角是180°-x,于是构造出方程即可求解. 解设这个角为x,则这个角的余角是90°-x,补角是180°-x.则根据题意,得12(180°-x)-(90°-x)=20°.解得:x=40°.故应选B.说明处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解. 题型二平行线的性质与判定例2(盐城市)已知:如图1,l 1∥l 2,∠1=50°,则∠2的度数是( )A.135° B.130° C.50° D.40 分析 要求∠2的度数,由l 1∥l 2可知∠1+∠2=180°,于是由∠1=50°,即可求解. 解 因为l 1∥l 2,所以∠1+∠2=180°,又因为∠1=50°,所以∠2=180°-∠1=180°-50°=130°.故应选B .说明 本题是运用两条直线平行,同旁内角互补求解. 例3(重庆市)如图2,已知直线l 1∥l 2,∠1=40°,那么∠2= 度.分析 如图2,要求∠2的大小,只要能求出∠3,此时由直线l 1∥l 2,得∠3=∠1即可求解. 解 因为l 1∥l 2,∠1=40°,所以∠1=∠3=40°.又因为∠2=∠3,所以∠2=40°.故应填上40°.说明 本题在求解过程中运用了两条直线平行,同位角相等求解.例4(烟台市)如图3,已知AB ∥CD ,∠1=30°,∠2=90°,则∠3等于( )A.60°B.50°C.40°D.30°分析 要求∠3的大小,为了能充分运用已知条件,可以过∠2的顶点作EF ∥AB ,由有∠1=∠AEF ,∠3=∠CEF ,再由∠1=30°,∠2=90°求解. 解 如图3,过∠2的顶点作EF ∥AB .所以∠1=∠AEF ,又因为AB ∥CD ,所以EF ∥CD ,所以∠3=∠CEF ,而∠1=30°,∠2=90°,所以∠3=90°-30°=60°.故应选A .说明 本题在求解时连续两次运用了两条直线平行,内错角相等求解. 例5(南通市)如图4,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于( )A.36° B.54° C.72° D.108°分析 要求∠EGF 的大小,由于AB ∥CD ,则有∠BEF +∠EFG =180°,∠EGF =∠BEG ,而EG 平分∠BEF ,∠EFG =72°,所以可以求得∠EGF =54°. 解 因为AB ∥CD ,所以∠BEF +∠EFG =180°,∠EGF =∠BEG ,又因为EG 平分∠BEF ,∠EFG =72°,所以∠BEG =∠FEG =54°.故应选B .说明 求解有关平行线中的角度问题,只要能熟练掌握平行线的有关知识,灵活运用对顶角、角平分线等知识就能简洁获解. 题型三 尺规作图例6(杭州市)已知角α和线段c 如图5所示,求作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,要求仅用直尺和圆规作图,写出作法,并保留作图痕迹.分析 要作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,可以先作出底角∠B =α,再在底角的一边截取BA =c ,然后以点A 为圆心,线段c 为半径作弧交BP 于点C ,即得.作法(1)作射线BP ,再作∠PBQ =∠α;(2)在射线BQ 上截取BA =c ;(3)以点A 为圆心,线段c 为半径作弧交BP 于点C ;(4)连接AC .则△ABC 为所求.如图6.例7(长沙市)如图7,已知∠AOB 和射线O ′B ′,用尺规作图法作∠A ′O ′B ′=∠AOB (要求保留作图痕迹).分析 只要再过点O ′作一条射线O ′A ′,使得∠A ′O ′B ′=∠AOB 即可.作法(1)以O 为圆心,任意长为半径,画弧,交OA 、OB 于点C 、D ;(2)以O ′为圆心,同样长为半径画弧,交O ′B ′于点D ′;(3)以D ′为圆心,CD 长为半径画弧与前弧交于点C ′;(4)过点O ′C ′作一条射线O ′A ′.如图7中的∠A ′O ′B ′即为所求作.说明 在实际答题时,根据题目的要求只要保留作图的痕迹即可了.C AAOB图7DC图5cαA 图6cαcBC P图2图1 FF E相交线与平行线测试题一、选择题(本大题共12小题,每小题3分,共36分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线;B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1;C.相等的角是对顶角; D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°,则∠2等于() A.40° B.140° C.40°或140° D.不确定4.如图,哪一个选项的右边图形可由左边图形平移得到()5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c; B.a⊥b,b⊥c; C.a⊥c,b∥c; D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是() A.(1)、(2) B.(1)、(3) C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8; C.∠2与∠6,∠3与∠7; D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为() A.30° B.70° C.30°或70° D.100°二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥______,(_______________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(________________________________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.(7) (8) (9)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度.19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.20.如图,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.三、解答题(本大题共6小题,共40分,解答应写出文字说明,•证明过程或演算步骤)22.(7分)如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.(6分)如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.(6分)如图,AB ∥CD ,∠1:∠2:∠3=1:2:3,说明BA 平分∠EBF 的道理.25.(7分)如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,•∠3=80°.求∠BCA 的度数.26.(8分)如图,EF ⊥GF 于F .∠AEF=150°,∠DGF=60°,试判断AB 和CD 的位置关系,并说明理由.答案:1.D 2.D 点拨:图中的邻补角分别是:∠AOC 与∠BOC ,∠AOC 与∠AOD ,∠COE 与∠DOE ,∠BOE 与∠AOE ,∠BOD 与∠BOC ,∠AOD 与∠BOD ,共6对,故选D . 3.D 4.C 5.C 6.A7.C 点拨:本题的题设是AB ∥CD ,解答过程中不能误用AD ∥BC 这个条件. 8.B 点拨:∵AB ∥CD ,∠1=72°,∴∠BEF=180°-∠1=108°. ∵ED 平分∠BEF , ∴∠BED=12∠BEF=54°.∵AB ∥CD ,∴∠2=∠BED=54°.故选B .9.C 点拨:如答图,L 1,L 2两种情况容易考虑到,但受习惯性思维的影响,L 3这种情况容易被忽略. 10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.故选D .12.C 点拨:由题意,知,230A B A B ∠=∠⎧⎨∠=∠-︒⎩或180,230A B A B ∠+∠=︒⎧⎨∠=∠-︒⎩解之得∠B=30°或70°.故选C . 13.120°14.(1)BC ;同位角相等,两直线平行(2)CD ;内错角相等,两直线平行(3)AB ;CD ;同旁内角互补,两直线平行15.(2),(3),(5)16.115;65点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°.17.145° 18.102 19.133点拨:如答图,延长A B交L2于点F.∵L1∥L2,AB⊥L1,∴∠BFE=90°.∴∠FBE=90°-∠1=90°-43°=47°.∴∠2=180°-∠FBE=133°.20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°.∵OD,OE分别是∠AOB,∠BOC的平分线,∴∠DOB=12∠AOB=40°,∠BOE=12∠BOC=50°.∴∠DOE=∠DOB+∠BOE=40°+50°=90°.22.解:相等理由∵AB∥A′B′,BC∥B′C′,∴∠B=∠A′DC,∠A′DC=∠B′,∴∠B=∠B′.23.CF∥BE或CF、BE分别为∠BCD、∠CBA的平分线等.24.解:设∠1、∠2、∠3分别为x°、2x°、3x°.∵AB∥CD.∴由同旁内角互补,得2x+3x=180,解得x=36.∴∠1=36°,∠2=72°.∵∠EBG=180°,∴∠EBA=180°-(∠1+∠2)=72°.∴∠2=∠EBA.∴BA平分∠EBF.25.解:CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠FCD.∵∠1=∠2,∴∠1=∠FCD.∴DG∥BC.∴∠BCA=∠3=80°.26.解:AB∥CD.理由:如答图,过点F作FH∥AB,则∠AEF+∠EFH=180°.∵∠AEF=150°,∴∠EFH=30°.又∵EF⊥GF,∴∠HFG=90°-30°=60°.又∵∠DGF=60°,∴∠HFG=∠DGF.∴HF∥CD,从而可得AB∥CD.。
相交线与平行线第二章知识点一、余角与补角:,称这两个角互为余角.1、如果两个角的和是,称这两个角互为补角.2、如果两个角的和是典型考题:ABOC垂直于例1:如图所示,点A、O、B在一条直线上, 1=∠2,则图互余、互补的角有哪些?垂足是O,若∠5例2:已知一个角的余角比它的补角的°求这个角。
还少413的余角相等;(2)同角或等角的角相等。
3、性质:(1)C:例321,∠1+∠2=90°(已知)A(1)如右图,∵∠1+∠=90°,ABD;________∴∠____=∠(________________________________)∠B=90°,1+∠2=90°(已知),2()如右图,∵∠2+∠____=∠________(________________________________);∠∴,4、两个角有公共顶点,且它们的两边互为反向延长线,这样的两个角叫做。
对顶角的性质:对顶角)与∠2例4:下面四个图形中,∠1是对顶角的图形的个数是(221121213 .1 C.2 D. A.0 B3AOF=,∠CD、EF相交于点O:如图所示,三条直线例5AB、的度数。
,求∠EOC°∠FOB,∠AOC=90课堂练习:一、填空题3=_________. ,∠2=_________与l1.如图,直线l°,则∠1=50相交,∠21.2.如图,若AO⊥CO,BO⊥DO,∠BOC=150°,则∠DOC=________,∠AOD=________.3.如图,直线AB与CD相交于O,∠EOD=90°,正确填写下列两角关系的名称.∠1与∠2:_________________;∠2与∠3:_____________________∠2与∠4:_________________;∠1与∠4:_____________________三、选择题1.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对2.下面说法正确的个数为()①对顶角相等②相等的角是对顶角③若两个角不相等,则这两个角一定不是对顶角④若两个角不是对顶角,则这两个角不相等A.1个B.2个C.3个D.4个3.若∠1和∠2互余,∠2与∠3互余,∠1=40°,则∠3等于()A.40°B.130°C.50°D.140°四、解答题. 的度数BO1.如图,AO⊥,直线CD经过点O,∠AOC=30°,求∠BOD考点二、探索直线平行的条件:如图,写出图中的同位角、内错角和同旁内角。
1 / 4图4 第二章 相交线与平行线 复习##_____________学号_______ [基础知识]一、余角、补角、对顶角1、余角:如果∠1+∠2=,则称∠1与∠2, 补角:如果∠1+∠2=,则称∠1与∠2,∠α的余角可表示为___________,补角可表示为_________. 2、如图1,直线1l 与直线2l 相交于点O ,OM ⊥1l ,若∠α=44°,则∠ =. 3、如图2,AB ∥CD ,则图中与∠1互补的角有个.图1 图2二、垂直4、垂直的定义:5、垂线的性质:平面内,过一点与已知直线垂直.直线外一点与直线上各点连接的所有线段中,最短.6、平面内直线l 的同侧有A 、B 、C 三点,如果直线AB 与直线BC 都与直线l 垂直, 则A 、B 、C 三点的位置关系是,其理由7、如图4,OC ⊥OA ,OB ⊥OD ,O 为垂足,若∠BOC =35°,则∠AOD=. 三、平行线8、平行线的定义:9、AB //CD ,AB //EF ,则CD 与EF 的位置关系是,理由是.10、如图5,AB //DE ,AC // DE ,所以A 、B 、C 在一条直线上,根据:四、平行线的判定 11、如下图,∠1与∠2是同位角的有12、如图6所示,BE 是AB 的延长线,量得∠CBE =∠A =∠C .<1>由∠CBE =∠A 可以判断______∥______,根据是_____________________________.<2>由∠CBE =∠C 可以判断______∥______,根据是_____________________________. 13、如图7,直线a 、b 都与直线c 相交,由下列条件能推出a ∥b 的是①∠1=∠2②∠3=∠6 ③∠1=∠8 ④∠5+∠8=180°E D 图52 / 4ED CB A DC MBA14、如图8,∠C =80°,∠CAD =60°,当∠BAD 的度数等于时,AB ∥CD. 五、平行线的性质 15、如图,<1>由AB ∥CD 可以判断∠B =_____,根据是_____________________________. <2>由AB ∥CD 可以判断∠ 3=_____,根据是_____________________________.<3>由AD ∥BD 可以判断∠ABC +_____=180°,根据是. 16、如图9,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于〔 〕 A .35°B .40°C .45°D . 50°17、如图10, BD 平分∠ABC ,点E 在BC 上,EF ∥AB ,若∠CEF=100°,则∠ABD=图9 图10 图1118、如图11,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.19、如图,AB ∥CD ,∠ABM=140°,∠CDM =160°,则∠M 等于多少度?五、综合应用20、如图,已知B ∠180D +∠=,求证21∠∠=.ED C B A 图6 图7 图8HG 21FEDCBA2143E DA3 / 4DBCA4321(8)DCF AE B第二章 相交线与平行线 达标检测##_____________学号_______ 1、若∠1与∠2互补,∠2与∠3互补,则∠1与∠3的大小关系是< >A. ∠1>∠3B. ∠1=∠3C. ∠1<∠3D.无法确定 2、如图1,直线a ∥b, AC ⊥AB,AC 交直线b 于点C,∠1=65°,则∠2的度数是〔 〕A. 65°B. 50°C. 35°D. 25°2、如图2,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的大小为〔 〕A .70° B. 80° C. 90° D. 100°图1 图2 图3 图44、下列说法中,正确的有〔 〕①同位角相等;②平面内,过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤已知三条直线a 、b 、c,若a ∥b ,b ∥c ,则 a ∥c .A.1个B.2个C.3个D.4个 5、如图3,能推断AB//CD 的是〔〕.A 、35∠=∠B 、123∠=∠+∠C 、24∠=∠D 、∠D +∠4+∠5=180° 6、如图4,AB ∥CD ,AD ∥BC ,∠A=50°,则∠C=. 7、一个角的余角等于这个角的补角的13,求这个角.8、如图,AB ∥CD ,∠B =61°,∠D =35°,求∠1和∠A 的度数〔写出过程〕9、已知AD ∥BC,∠1=∠2,证明BE ∥DF .AB C D1 2 34 5 E4 / 4C F ED B A 10、已知:如图,AB //CD ,∠ABE =∠DCF ,求证:∠E=∠F.11、如图,∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF . 〔1〕AE 与FC 会平行吗?说明理由.〔2〕AD 与BC 的位置关系如何?为什么? 〔3〕BC 平分∠DBE 吗?为什么?。
第二章平行线与相交线一、角1.互为余角和互为补角:如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
性质:同角或等角的余角相等;同角或等角的补角相等。
2、对顶角(1)两条直线相交成四个角,其中不相邻的两个角是对顶角。
(2)一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
(3)对顶角的性质:对顶角相等。
3、同位角、内错角、同旁内角两条直线被第三条直线所截,形成了8个角。
同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。
内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。
同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。
二.探索直线平行的条件1、两条直线互相平行的条件①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
2、平行线的性质①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
④平行于同一直线的两直线平行⑤垂直于同一直线的两直线平行四.用尺规作线段和角1.关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。
2.关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第二章《平行线与相交线》单元经典练习一、填空题1、若35=∠α° ,则它的余角是_________,它的补角是________.2、若∠α与∠β是对顶角,且∠α+∠β=120° ,则∠α= ,∠β=3、如图,1l 、2l 和相交,∠1和∠2是______角, ∠1和∠3是______角,∠2和∠3是______角,∠2和∠4是______角.(第3题) (第4题) (第5题)4、如图:已知:b a ∥,∠1=80° ,则∠2=5、如图:已知:∠1=82°,∠2=98°,∠3=110°,则∠4=6、如图,AC∥BD,∠A=60°,∠C=62°,则∠1= ,∠2= ,∠3= .(第6题) (第7题)7、如图,已知∠AOB、∠BOC、∠COD 的顶点是一条直线上同一点,且∠AOB=65°15′,∠BOC=78°30′,则∠COD=8、一个角的补角等于这个角的余角的4倍,这个角是________.一个角的补角与这个角的余角的度数比是3∶1,则这个角是 度. 二、选择题9、两条直线被第三条直线所截,则( ). A .同位角必相等 B .内错角必相等 C .同旁内角必互补 D .同位角不一定相等 10、如图,∠1与∠2是对顶角的为( )CBADO11、如图,直线a,b都与c相交,由下列条件能推出a∥b的是()①∠1=∠2②∠3=∠6 ③∠1=∠8 ④∠5+∠8=180°A.① B.①② C.①②③ D.①②③④(第11题)(第12题)12、如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACE B.∠B=∠ACBC.∠A=∠ECD D.∠A=∠ACE13、如图,AB∥CD,EF∥GH,∠1=55°,则下列结论中,错误的是()(第13题)(第14题)A.∠2=125° B.∠3=55°C.∠4=125° D.∠5=55°14、如图,下列推理中正确的是()A. ∠B=∠D ∴AB∥CDB. ∠BAC=∠ACB ∴AD∥BCC. ∠B+∠BAC=180° ∴AB∥ADD. ∠B+∠BCD=180° ∴AB∥CD15、如图,由已知条件推出的结论,正确的是().A.由∠1=∠5,可推出AB∥CD B.由∠3=∠7,可推出AD∥BCC.由∠2=∠6,可推出AD∥BC D.由∠4=∠8,可推出AD∥BC16、下列角的平分线中,互相垂直的是()A.平行线的同旁内角的平分线B.平行线的同位角的平分线C.平行线的内错角的平分线 D.对顶角的平分线三、解答题1、如图,AB∥CD,∠C=60°,∠BAE=70°,求∠x的度数.2、作图题:如图,已知∠α,∠β,求作一个角使它等于∠α+∠β3、如图,已知DE∥AB,∠EAD =∠ADE,试问AD 是∠BAC 的平分线吗?为什么?4、如图:已知:∠1=82°,∠2=98°,∠3=110°,求 ∠4的度数四、解答题1、如图:∠1=∠4,∠2=∠4,∠1+∠3=180°,找出互相平行的直线,并说明理由.2、如图,已知AB∥CD,∠A =1000,CB 平分∠ACD.回答下列问题: (1)∠ACD 等于多少度?为什么?(2)∠ACB、∠BCD 各等于多少度?为什么? (3)∠ABC 等于多少度?为什么?CBADE3、如图:已知AB∥CD,∠α =450,∠D=∠C.你能求出∠D、∠C和∠B的度数吗?4、如图,完成下列推理过程已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO证明:CF∥DO证明: DE⊥AO,BO⊥AO(已知)∴∠DEA=∠BOA=90°()DE∥BO ()∴∠EDO=∠DOF ()又 ∠EDO=∠DOF ( )∴∠DOF=∠CFB ()∴CF∥DO ()五、解答题1、DE∥BC,CD是∠ACB的平分线,∠B =80,∠ACB=500 ,求∠EDC,∠CDB2、如图,AB∥EF,∠B =1350,∠C=670,则求∠1的度数.EB ADC3、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
相交线与平行线的单元复习学生/课程年级初一学科数学授课教师日期时段核心内容平行线的性质和判定课型教学目标1.通过对知识的梳理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形。
2. 使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行的性质。
重、难点重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用。
难点:垂直、平行的性质和判定的综合应用。
知识导图导学一:相交线知识点讲解 1例 1. [单选题] 如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°例 2. [单选题] 如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的数学根据是()A.两点之间,线段最短B.两条平行线之间的距离处处相等C.经过直线上或直线外一点,有且只有一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短我爱展示1.[单选题] 如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α-90°;②∠EOB=180°-α;③∠AOF=360°-2α,其中正确的是()A.①②B.①③C.②③D.①②③2.[单选题] 下列图形中,线段AD的长表示点A到直线BC距离的是()B.C.D.A.导学二:平行线的性质与判定知识点讲解 1:平行线的性质例 1. [单选题] 直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°例 2. [单选题] 如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°例 3. [单选题] 如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°例 4. 已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.我爱展示1.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.2.[单选题] 已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°3.[单选题] 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K-∠H=27°,则∠K=()A.76°B.78°C.80°D.82°4.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.知识点讲解 2:平行线的判定例 1. [单选题] 下面说法正确的个数为()(1)过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个例 2. [单选题] 如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个例 3. 如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.例 4. 如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.我爱展示1.[单选题] 如图,由已知条件推出的结论,正确的是()A.由∠1=∠5,可以推出AD∥CB B.由∠4=∠8,可以推出AD∥BC C.由∠2=∠6,可以推出AD∥BC D.由∠3=∠7,可以推出AB∥DC2.[单选题] 同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥d B.b⊥d C.a⊥d D.b∥c3.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,()∴∠BAC+∠ACD=180°.()∵PM∥AB,∴∠1=∠,()且PM∥.()∴∠3=∠.()∵AP平分∠BAC,CP平分∠ACD,()∴∠1= ∠BAC,∠4= ACD.∴∠1+∠4= ∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线.4.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.知识点讲解 3:综合应用例 1. [单选题] 如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=()A.35°B.40°C.45°D.50°例 2. 已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴AB∥()∴∠BAE=()又∵∠1=∠2∴∠BAE-∠1=∠AEC-∠2即∠MAE=∴∥NE()∴∠M=∠N().例 3. 已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠4=∠C.我爱展示1. [单选题] 直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°导学三:命题与证明知识点讲解 1:例 1. 命题:“如果m是整数,那么它是有理数”,则它的逆命题为:例 2. [单选题] 对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=3我爱展示1.命题“相等的角不一定是对顶角”是命题(从“真”或“假”中选择)2.[单选题] 下列命题是真命题的是()A.相等的角是对顶角B.若实数a,b满足a2=b2,则a=bC.若实数a,b满足a<0,b<0,则ab<0 D. 两直线平行,同位角相等限时考场模拟:_____ 分钟完成1. [单选题] 如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④2.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为3.[单选题] 在直线MN上取一点P,过点P作射线PA,PB,使PA⊥PB,当∠MPA=40°,则∠NPB的度数是()A.50°B.60°C.40°或140°D.50°或130°4.[单选题] 如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α-β,③β-α,④360°-α-β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.[单选题] 如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A.36°B.44°C.46°D.54°6.把命题“对顶角相等”改写成“如果…那么…”的形式:7. (1)①如图1,已知AB∥CD,∠ABC=60°,根据,可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.8. 将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.(1)若∠DCE=45°,则∠ACB的度数为;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;(4)当∠ACE<90°且点E在直线AC的上方时,这两块三角尺是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由。
第二章 相交线与平行线全章复习
一、考点突破
1. 理解对顶角、邻补角的性质,并会利用性质解决实际问题;
2. 理解并掌握平行线的判定定理及平行线的性质定理,会灵活运用定理解决与平行线有关的几何问题;
3. 初步了解推理论证的方法,逐步培养逻辑推理能力
二、重难点提示:
重点:对基本概念的理解;平行线的判定和性质。
难点:辨识复杂图形及添加辅助线;平行线的判定与性质的综合运用。
知识脉络图:
知识点一:相交线
两条直线相交形成四个角,每两个角组合可以配成六对。
其中有两对是对顶角,它们大小相等;另外四对是相邻的互补关系,称为邻补角。
垂直是相交的一种特殊情况,当两直线相交,夹角为︒90时,这两条直线互相垂直的。
例题1 观察下列图形,回答下列问题:
(1)图①中有多少对对顶角? (2)图②中有多少对对顶角? (3)图③中有多少对对顶角?
(4)仔细分析图①、②、③,思考直线的条数与对顶角的对数之间的关系,n 条直线)2(≥n 相交于一点时,
会有多少对对顶角?
例题2 如图所示,直线MN PQ ⊥,垂足为O ,AB 是过点O 的直线,︒=∠501,求2∠的度数。
知识点二:平行线的判定
判定两条直线平行的方法:①平行的定义 ②平行公理的推论
③同位角相等,两直线平行 ④内错角相等,两直线平行 ⑤同旁内角互补,两直线平行 直线平行的三个判定定理,是通过角之间的数量关系判定直线之间的位置关系,最常用。
例题 如图所示,EF CD //,ABC ∠=∠+∠21,求证:GF AB //。
知识点三:平行线的性质
两条直线平行,①同位角相等②内错角相等③同旁内角互补,因此平行线性质最直接的应用就是已知两直线平行可以推断出角相等或互补,平行线性质是证明两个角相等的常用工具。
例题 如图,直线BD AC //,连接AB ,直线AC ,BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分。
当动点P 落在某个部分时,连接PA ,PB ,构成PAC ∠,APB ∠,PBD ∠三个角。
(提示:有公共端点的两条重合的射线所组成的角是︒0角)
(1)当动点P 落在第①部分时,求证:PBD PAC APB ∠+∠=∠;
(2)当动点P 落在第②部分时,PBD PAC APB ∠+∠=∠是否成立?(直接回答成立或不成立)
(3)当动点P 落在第③部分时,全面探究PAC ∠,APB ∠,PBD ∠之间的关系,并写出动点P 的具体位置和相应的结论。
选择其中一种结论加以证明。
例题1 如图,已知EF 为直线,︒=∠631,︒=∠272,且︒=∠+∠+∠360D BMD B ,试问:CD EF ⊥吗?为什么?
例题2 如图,已知CD AB //,BN ,DN 分别平分ABM ∠,CDM ∠,则BMD ∠与N ∠之间的数量关系如何?请说明理由。
提分技巧:1. 判断两个角是不是对顶角要把握好对顶角的三个特征:
(1)由两条相交直线形成 (2)有公共顶点 (3)没有公共边 2. 垂直定义的两种应用格式:直线AB 交CD 于点O (1)∵CD AB ⊥(已知)
(2)∵︒=∠90AOC (已知) ∴︒=∠90AOC (垂直的定义)
∴CD AB ⊥(垂直的定义)
3. 点到直线的距离是指直线外一点到这条直线的垂线段的长度(数量),不是垂线段本身(图形)。
4. 识别同位角、内错角和同旁内角的关键是弄清哪两条直线被哪条直线所截。
5. 平行线(垂线)所指的都是直线,而不是射线或线段;两条射线或线段互相平行(垂直)指的是射线或线段所在的直线互相平行(垂直)。
6. 判定直线平行的方法:
(1)平行的定义(用定义判定平行比较困难,不常用); (2)平行公理的推论(需要借助第三条直线,常用);
(3)判定定理(需要借助第三条直线作为截线,通过角的关系判定平行,常用)。
7. 证明角相等的基本方法:
(1)同角(或等角)的余角相等; (2)同角(或等角)的补角相等; (3)对顶角相等;
(4)两直线平行,同位角(内错角)相等。
同步练习:(答题时间:80分钟)
一、选择题
1. 下列各图中,1∠与2∠是对顶角的是( )
2. 下列语句正确的是( ) A. 画直线10=AB 厘米 B. 画直线l 的中点
C. 画射线3=OB 厘米
D. 延长线段AB 到点C ,使得AB BC = *3. 同一平面内的四条直线满足b a ⊥,c b ⊥,d c ⊥,则下列式子成立的是( )
A. b a //
B. d b ⊥
C. d a ⊥
D. c b //
*4. 如图,属于内错角的是( )
A. 1∠和2∠
B. 2∠和3∠
C.
1
∠和4∠ D. 3∠和4∠
*5. 如图,在四边形ABCD 中,BC AD //,AB CE ⊥,E 为垂足,如果︒=∠125A ,则=∠BCE ( )
A. ︒55
B. ︒35
C. ︒30
D. ︒25
*6. 已知,如图,︒=∠90AOB ,直线CD 经过点O ,︒=∠130AOC ,则=∠BOD ( )
A. ︒50
B. ︒40
C. ︒35
D. ︒30
*7. 如图,如果CD AB //,那么下列说法错误的是( )
A. 84∠=∠
B. 62∠=∠
C. 73∠=∠
D. ︒=∠+∠+∠+∠1806543
*8. 如图,在下列四组条件中,能判定CD AB //的是( )
A. 21∠=∠
B. 43∠=∠
C. BCD BAD ∠=∠
D. ︒=∠+∠180ADC BAD **9. 如图,DE AB //,︒=∠65E ,则=∠+∠C B ( )
A. ︒130
B. ︒100
C. ︒65
D. ︒35
**10. 两直线相交所成的四个角满足下列条件之一,其中不能判定两直线垂直的条件是( ) A. 两对对顶角分别相等 B. 有一对对顶角互补
C. 有一对邻补角相等
D. 有三个角相等
二、填空题
11. +︒"5'3282 ︒=180。
12. 如图,当剪子口AOB ∠增大︒15时,COD ∠增大 ︒。
13. 把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为 。
*14. 如图,AB 和CD 相交于点O ,AB OE ⊥,O 为垂足,若︒=∠38EOD ,则=∠AO C 。
**15. 如图,把一张长方形纸条折叠,EF 是折痕,若︒=∠118AEG ,则=∠GEF ︒,=∠DGF ︒。
**16. 已知A ∠的两条边和B ∠的两条边分别平行,且A ∠比B ∠的3倍少︒20,则=∠B 。
三、画图题
17. 读下列语句,并画出图形。
已知A ,B ,C 三点, (1)画出直线AB ; (2)连接线段BC ;
(3)在直线AB 外找一点D ,画出射线AD 交线段BC 的延长线于点E ; (4)过点E 作直线AB 的垂线,垂足为点F 。
四、解答题
18. 完成下面的推理过程。
已知:如图,CD AB //,︒=∠42B ,︒=∠351,求A ∠,2∠,BCD ∠的度数。
解:∵CD AB //,︒=∠351(已知)
∴∠=∠A = ︒( ) ∵︒=∠42B (已知)
∴∠=∠2 = ︒( )
∴∠-︒=∠180BCD = ︒( )
*19. 已知四边形ABCD ,对角线AC ,BD 交于点O ,判断下面两个命题正确与否,若正确,请给出证明;若不正确,请画图举出一个反例说明。
(1)如果BD AC ⊥,BAC ∠与BDC ∠互余,那么DC AB // (2)如果BC AD //,BD AC ⊥,那么DC AB //
20. 如图,已知直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,︒=∠34COF ,求BOD ∠的度数。
*21. 已知:如图,E D B ∠+∠=∠,证明:CD AB //。
**22. 如图所示,已知EF AB //,︒=∠90C ,求证:︒=-+90z y x 。
**23. 如图1,把一个长方形纸片ABCD 的一角折起来,折痕为AE ,使AD B EAB ''∠=∠。
(1)求EAD ∠;
(2)如图2,再沿AC 对折长方形ABCD ,使B 点落在F 点上,若︒=∠110EAF ,求AC B '∠。
**24. 如图所示,M ,N 分别是位于两条平行线段AB ,CD 上的两点,点E 位于两平行线之间,试说明AM E ∠与
CNE ∠和MEN ∠之间有何关系。