⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的
关系,猜测:若有n条直线相交于一点,则可形成
n(n-1)对对顶角;
⑸ 若有10条直线相交于一点,则可形成 90 对对顶角.
如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x °
根据邻补角的定义,得
a
2x+7x=180 x=20
如图,直线AB、CD、EF相交,若∠1 +∠5=180°, 找出图中与∠1 相等的角.
解:∵ ∠1= ∠3(对顶角相等)
∠5+∠8=180 °且∠1 +∠5=180°
∴∠8= ∠1 ∵ ∠8= ∠6(对顶角相等)A
∴∠6= ∠1.
C
2 13
4 56
87
F
如图,直线AB,CD相交于点O, ∠EOC=70°, OA平分∠EOC,求∠BOD的度数.
(1)两条直线相交,形成了几个角?
A
D
O
C
B
(2)将这些角两两配对,共能组成几对角,
各对角存在怎样的位置关系?根据这种位置关系
将它们分类.
邻补角
A
2
D
1
3
O4
C
B
如图,∠1与∠2有一条公共边OA,它们
的另一边互为反向延长线,具有这种关系的两
个角,互为邻补角.
一、邻补角的概念 邻补角:如果两个角有一条公共边,它们的另 一边互为_反__向__延__长__线___,那么这两个角互为邻 补角.图中∠1的邻补角有__∠__2_,_∠__3___.
解:∵OA平分∠EOC,
E
D
∴∠AOC= Leabharlann ∠EOC=35°,2A