(完整版)实变函数论主要知识点
- 格式:doc
- 大小:117.18 KB
- 文档页数:5
实变函数理论是数学分析中的一个分支领域,也是数学中非常重要的一些工具性理论之一。
它主要研究实变函数的性质、连续性、可微性、可积性、收敛性,以及它们在应用数学中的一些应用。
实变函数是定义在实数域上的函数,它们是一个非常重要的研究对象,在数学、物理、工程等各个领域的研究中都有着广泛的应用。
的建立也是为了更好地研究和应用这些函数。
在中,最基本的概念就是连续性。
一个函数在某个点上是连续的,当且仅当其极限在该点存在,并且与该点处的函数值相等。
通过定义连续函数,可以进一步定义可积函数、可微函数等一系列概念。
对于实变函数,在其定义域上的极限值也是一个非常重要的概念。
比如,如果函数在某个点的右侧极限等于左侧极限,那么在这个点上,函数就是连续的。
同时,我们也可以通过极限来描述一些特殊的函数,比如说带有间断点的函数等等。
另外,实变函数的导数也是中的一个核心概念。
导数是研究函数变化率的基本工具,它描述的是函数在某个点上的变化速率。
如果函数在某个点上是可微的,那么该点的导数就是函数在该点处的变化率。
同时,实变函数的积分也是中的一个非常重要的概念。
积分是对函数在某个区间上的累加和,可以用来表示面积、体积等概念。
积分的应用非常广泛,在物理、工程、统计学等多个领域都有着广泛的应用。
的研究还包括一些其他的重要性质,比如收敛性、极值、等等。
这些性质的研究,不仅能够深入了解实变函数的构成和性质,还能够在各个领域中应用到实际问题的解决中。
总的来说,是数学中非常重要的一个分支领域,它在理论和应用两个方面都有着广泛的应用。
它的建立,不仅为实数函数的研究提供了基础,还为各个应用领域中的问题提供了重要的数学工具和理论基础。
实变函数简明教程
实变函数是数学中的一个重要概念,它是指定义在实数集上的函数。
实变函数在数学中有着广泛的应用,涉及到微积分、数学分析、概率论等多个领域。
本文将为大家介绍实变函数的基本概念、性质和应用。
一、实变函数的基本概念
实变函数是指定义在实数集上的函数,即函数的自变量和函数值都是实数。
实变函数可以用符号f(x)表示,其中x为实数,f(x)为实数集上的函数值。
实变函数的定义域为实数集,通常用D(f)表示。
二、实变函数的性质
1. 连续性:实变函数在定义域上连续,当且仅当对于任意的实数x0,函数f(x)在x0处极限存在且等于f(x0)。
2. 导数:实变函数在某一点处的导数表示函数在该点处的变化率,即函数在该点处的切线斜率。
如果函数在某一点处可导,则该点处的导数等于函数在该点处的切线斜率。
3. 积分:实变函数的积分是指对函数在某一区间上的面积或体积进行求解。
积分可以分为定积分和不定积分两种。
三、实变函数的应用
实变函数在数学中有着广泛的应用,以下是一些常见的应用:
1. 微积分:微积分是实变函数的重要应用之一,它涉及到导数、积分等概念,是研究实变函数的基础。
2. 数学分析:数学分析是研究实变函数的性质和变化规律的学科,它包括实分析和复分析两个方向。
3. 概率论:概率论是研究随机事件发生概率的学科,实变函数在概率论中有着重要的应用,如概率密度函数、累积分布函数等。
实变函数是数学中的一个重要概念,它在数学分析、微积分、概率论等多个领域中都有着广泛的应用。
对于学习数学的人来说,掌握实变函数的基本概念、性质和应用是非常重要的。
实变函数考试重点题目第一章:求极限 Eg :求1(,)n A n n=的上下极限下极限1111lim inf (,)(,)(0,)n nm n m m A n m n m ∞∞∞======+∞上极限1111lim sup (,)(,)(0,)n nm n mm A n m n m ∞∞∞======+∞P24页 第5题5、设F 是]1,0[上全体实函数所构成的集合,c F 2=.证明:(1)设)(x E χ为E 的示性函数,]}1,0[|{⊂=E E A ,F E x B E ⊂⊂=]}1,0[|)({χ,显然B A ~,于是F B A c ≤==2;(2)设]}1,0[|))(,{(∈=x x f x G f ,}|{F f G C f ∈=,}]1,0[|{R ⨯⊂=P P D ,显然D C F ⊂~,于是cD C F 2=≤=,总之,c F 2=.P30页 定理1 定理2 P35页 第2 12题2.设一元实函数)()(R C x f ∈⇒R ∈∀a ,})(|{a x f x G >=是开集,})(|{a x f x F ≥=是闭集.证明:(1)G x ∈∀0,取0)(0>-=a x f ε,因)()(0x C x f ∈,那么对于0>ε,0>∃δ,..t s δ<-||0x x 时, ε<-|)()(|0x f x f ,即a x f x f =->ε)()(0,从而G x N ⊂),(0δ,所以G 是开集.(2)F x '∈∀0,∃互异点列F x k ⊂}{..t s 0x x k →,显然a x f k ≤)(,因)()(0x C x f ∈,有a x f x f k k ≤=∞→)(lim )(0,即F x ∈0,于是F F ⊂',所以所以F 是闭集.12、设实函数)()(nC x f R ∈⇔O ∈∀G ,O ∈-)(1G f.证明:“⇒”O ∈∀G ,)(10G fx -∈∀,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,那么对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε, 从而)(1G fx -∈,于是)(),(10G fx N -⊂δ,所以O ∈-)(1G f.“⇐”n x R ∈∀0,0>∀ε,由于O ∈=)),((0εx f N G , 那么O ∈∈-)(10G fx ,这样0>∃δ..t s )(),(10G fx N -⊂δ,从而)(),(10G f x N x -⊂∈∀δ,均有)),(()(0εx f N x f ∈,即)()(nC x f R ∈.P42页 定理4P44页 定理2 定理3定理2:∀非空n E R ⊂,0>∀d ,}),(|{d E x x U <=ρ ⇒ O ∈⊂U E . 证明:显然U E ⊂.U x ∈∀,取0),(>-=E x d ρδ,),(δx U y ∈∀,有d E x E x x y E y =+<+≤),(),(),(),(ρδρρρ可见U y ∈,这样U x U x ⊂∈),(δ, ∴O ∈⊂U E .P45页 第5.6题5、设非空n E R ⊂,则),(E P ρ在n R 上一致连续.证明:0>∀ε,取εδ=,n Q P R ∈∀,,只要δρ<),(Q P ,由于),(),(),(E Q Q P E P ρρρ+≤,),(),(),(E P P Q E Q ρρρ+≤,有ερρρ<≤-),(|),(),(|Q P E Q E P ,所以, ),(E P ρ在n R 上一致连续.6、∀非空⊕C ∈21,F F ⇒)()(nC P f R ∈∃..t s 1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.证明:显然)(),(),(),()(211nC F P F P F P P f R ∈+=ρρρ,1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.P54页 定理(3)(4) P57页 第5 7题5、设实函数)(x f 在],[b a 上连续,}),(|),{(b x a x f y y x E ≤≤==,证明0*=E m . 证明:因为],[)(b a C x f ∈,于是)(x f 在],[b a 上一致连续,那么0>∀ε, 0>∃δ, ..t s 当δ<-||t s ,时,ε<-|)()(|s f t f .取δ<-na b ,将],[b a 进行n 等分,其分点为b x x x a n =<<<= 10,记],[1i i i x x I -=,])(,)([εε+-=i i i x f x f J ,显然,)(}),(|),{(11ni i ini i J II x x f y y x E ==⨯⊂∈==,∑∑==⨯=⨯≤≤ni i ini i iJ m Im J Im E m 11*)]()([)(0εε)(2)2(1a b na b ni -=⋅-=∑=,于是,由ε的任意性,知0*=E m .7、0*>E m ,证明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .证明:反证.假设E x ∈∀,0>∃x δ,使得0)),((*=x x N E m δ ,当然存在以有理数为端点的区间x I ..t s ),(x x x N I x δ⊂∈,由于}{x I 至多有可数个,记作}{k J ,有)(1∞=⊂k kJE E 那么0)(01**=≤≤∑∞=k k J E mE m ,这与条件0*>E m 不符,说明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .P65页 定理5 定理6 P68页 第4 5 9 11题4、设M ⊂}{m E ,证明m mm mmE E m inf lim )inf lim (≤.又+∞<∞=)(1m m E m ,证明m mm m mE E m sup lim )sup lim (≥.证明:因m m k k E E ↑⊂∞= ,有m mmk km m mk km mmE EEm E m inf lim lim)()inf lim (1≤==∞=∞→∞=∞=.又因m mk k E E ↓⊃∞= ,+∞<∞=)(1 m m E m ,有m mmk km m mk km mmE EEm E m sup lim lim)()sup lim (1≥==∞=∞→∞=∞=.5、设M ⊂}{m E ,+∞<∑∞=1)(m m E m ,证明0sup lim =m mmE .证明:因m mk k E E ↓⊃∞= ,+∞<≤∑∞=∞=11)()(m mm m Em E m ,有0)(lim)(lim )()sup lim (01=≤==≤∑∞=∞→∞=∞→∞=∞=mk km mk k m m mk km mEm E m E m E m,所以0sup lim =m mmE .P103页 第2题2、证明当)(x f 既是1E 上又是2E 上的非负可测函数时,)(x f 也是21E E 上的非负可测函数. 证明:由条件知 R ∈∀a ,n E x a x f x E M ∈∈>],)(;[1,n E x a x f x E M ∈∈>],)(;[2,于是],)(;[21E E x a x f x E ∈>n E x a x f x E E x a x f x E M ∈∈>∈>=],)(;[],)(;[11 所以)(x f 也是21E E 上的非负可测函数.P104页 第6 11题6、设实函数)()(n C x f R ∈,证明:M ∈∀E ,均有)()(E x f M ∈. 证明:M ∈∀E ,R ∈∀a ,显然O ∈+∞=),(a G ,下面证明M ∈-)(1G f.},)(|{)(10nx a x f x G fx R ∈>=∈∀-,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,这样对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε,从而)(1G f x -∈,于是)(),(10G f x N -⊂δ,那么M O ⊂∈-)(1G f.由于M ∈=∈>=--)(},)(|{)(11G f E E x a x f x G f,所以)()(E x f M ∈.11、设)(x f 是E 上的可测函数,)(y g 是R 上的连续函数,证明)]([x f g 是E 上的可测函数.证明:R ∈∀a ,因)()(R C y g ∈,若O ∈-∞=),(a G ,有O ∈<=-})(|{)(1a y g y G g由于})]([|{a x f g x x <∈⇔a x f g <)]([⇔)()(1G g x f -∈⇔)]([11G gfx --∈,于是M ∈=<--)]([})]([|{11G gf a x fg x ,所以)()]([E x f g M ∈.P117页 第2题2、设K x f k ≤|)(|..e a E ,)()(x f x f mk →E x ∈, 证明K x f ≤|)(|..e a E . 证明:+∈∀N m ,当mx f x f k 1|)()(|<-,K x f k ≤|)(|时,mK x f x f x f x f k k 1|)(||)()(||)(|+<+-≤,于是]1|)(|;[m K x f x m mE m +≥= ]|)(|;[]1|)()(|;[K x f x m m x f x f x m k k >+≥-≤0]1|)()(|;[→≥-≤mx f x f x m k ,∞→k ,有0=m mE ,因↑}{m E ,有0lim ]|)(|;[==≥∞→m m E K x f x m 所以K x f ≤|)(|..e a E .课件 第四章第四节 倒数第2~5题3、定理:设)()(x f x f mk →,)()(x g x f mk →E x ∈, 则)(~)(x g x f E. 证明: +∈∀N k m ,, 若mx f x f k 21|)()(|<-,mx g x f k 21|)()(|<-,有mx g x f x f x f x g x f k k 1|)()(||)()(||)()(|<-+-≤-,于是 ]1|)()(|;[m x g x f x E ≥-]21|)()(|;[]21|)()(|;[m x g x f x E m x f x f x E k k ≥-≥-⊂ ,从而]1|)()(|;[m x g x f x mE ≥-]21|)()(|;[]21|)()(|;[mx g x f x mE m x f x f x mE k k ≥-+≥-≤000=+→, 又因∞=≥-=≠1]1|)()(|;[)]()(;[m mx g x f x E x g x f x E ,有 0)]()(;[=≠x g x f x mE ,所以)(~)(x g x f E.1、设)()(x f x f mk →,)()(x g x g mk →,E x ∈, 证明)()()()(x g x f x g x f mk k ++→. 证明:已知,0>∀σ,当2|)()(|σ<-x f x f k ,2|)()(|σ<-x g x g k ,时,σ<-+-≤+-+|)()(||)()(||)]()([)]()([|x g x g x f x f x g x f x g x f k k k k ,由于)()(x f x f m k →,)()(x g x g mk →,E x ∈,有]|)]()([)]()([|;[0σ≥+-+≤x g x f x g x f x m k k0]2|)()(|;[]2|)()(|;[→≥-+≥-≤σσx g x g x m x f x f x m k k ,所以)()()()(x g x f x g x f mk k ++→.2、设)()(x f x f mk →,)()(E x g M ∈且几乎处处有限, 证明)()()()(x g x f x g x f mk →. 证明:已知,)()(x f x f mk →,)(x g 在E 上几乎处处有限,那么0>∀σ,0>∀ε,0>∃K ..t s2]|)()(|;[εσ<≥-Kx f x f x m k , 2]|)(|;[ε<≥K x g x m ]|)()()()(|;[σ≥-x g x f x g x f x m k ]]|)(||)()(|;[σ≥-≤x g x f x f x m k]|)(|;[]|)()(|;[K x g x m K x f x f x m k ≥+≥-≤σεσ<≥+≥-≤]|)(|;[]|)()(|;[K x g x m Kx f x f x m k ,所以)()()()(x g x f x g x f mk →.3、设0)(→mk x f ,证明0)(2→mk x f .证明:已知,0)(→mk x f ,那么0>∀σ,0>∀ε,..t s εσ<≥-]|)()(|;[x f x f x m k ,有εσσ<≥=≥-]|)(|;[]|0)(|;[2x f x m x f x m k k ,所以0)(2→mk x f .。
实变函数讲义【最新版】目录1.实变函数的定义和基本概念2.实变函数的性质和特点3.实变函数的分类和应用4.实变函数的典型例子和解析5.实变函数的数学工具和方法正文实变函数是数学中的一个重要分支,主要研究实数的变化规律和特性。
实变函数的定义是指以实数为自变量,以实数或实数集合为函数值的函数。
下面,我们将详细介绍实变函数的相关内容。
首先,实变函数具有以下性质和特点:1) 实变函数的值域为实数集或实数集合。
2) 实变函数可以是单射、满射或双射。
3) 实变函数可以具有连续性、可导性和积分性等性质。
其次,实变函数可以分为不同的类型和应用领域,如:1) 实数域上的实变函数,主要研究实数的变化规律;2) 复数域上的实变函数,主要研究复数的变化规律;3) 高维空间上的实变函数,主要研究高维空间的变化规律;4) 实变函数在物理学、工程学和经济学等领域具有广泛的应用。
接下来,我们来看实变函数的典型例子和解析:1) 指数函数:y = a^x (a > 0, a ≠ 1),它是一个在实数域上的实变函数,具有连续性、可导性和正态分布等特点。
2) 对数函数:y = log_a(x) (a > 0, a ≠ 1),它也是一个在实数域上的实变函数,具有单调性、可导性和反函数等特点。
3) 三角函数:y = sin(x)、y = cos(x)、y = tan(x),它们是在实数域上的周期函数,具有周期性、连续性和可导性等特点。
最后,研究实变函数需要运用一些数学工具和方法,如:1) 微积分:求导、积分和微分方程等;2) 级数:级数收敛性和级数求和等;3) 拓扑:极限、连续性和紧致性等;4) 实分析:实数的完备性、实数的连续性和实数的可微性等。
总之,实变函数作为数学中的一个重要分支,具有广泛的应用和深远的影响。
实变函数内容、方法与技巧实变函数是数学中一个重要的概念,在实分析中被广泛研究和应用。
本文将介绍实变函数的内容、方法与技巧。
1.实变函数的定义:实变函数是指定义在实数集上的函数,其自变量和因变量都是实数。
常见的实变函数有多项式函数、指数函数、对数函数、三角函数等。
2.实变函数的基本性质:实变函数有一些基本的性质。
首先,实变函数可以进行运算,包括加法、减法、乘法和除法。
其次,实变函数具有定义域和值域,即函数的自变量和因变量的取值范围。
此外,实变函数还有奇偶性、周期性等特点。
3.实变函数的连续性:连续性是实变函数研究中的一个重要概念。
一个函数在某一点处连续,意味着函数在该点的极限存在,并且与函数在该点的值相等。
实变函数在定义域上连续,可以用极限的性质来描述。
4.实变函数的一致连续性:一致连续性是连续性的更强形式。
一个实变函数在整个定义域上一致连续,意味着对于任意给定的正数ε,存在一个正数δ,当自变量的取值在某个区间内时,函数值的变化小于ε。
一致连续性是实变函数相对于局部连续性更一般的性质。
5.实变函数的可导性:可导性是实变函数中的另一个重要概念。
一个函数在某一点处可导,意味着函数在该点的导数存在。
实变函数可导与实变函数在该点处连续是不同的概念。
可导函数具有一些重要的性质,如导数的线性性、链式法则、微分中值定理等。
6.实变函数的积分:积分是实变函数研究中的一个重点内容。
实变函数的积分有两种形式:定积分和不定积分。
定积分是指对函数在一个区间上的积分,可以用来计算函数在该区间上的面积、弧长、体积等。
不定积分是指求函数的原函数,可以用来求解微分方程、计算复合函数的积分等。
7.实变函数的级数展开:级数展开是实变函数研究中的另一个重要内容。
一个实变函数可以用其在某个点处的泰勒级数来近似表示,通过截断级数可以得到函数的近似值。
级数展开在计算、物理学等领域有广泛的应用。
8.实变函数的图像与性质:实变函数的图像可以用来观察函数的性质。
《实变函数论》实变函数论是数学的一个重要分支,可以用来分析数学中各种基本实变函数的性质。
它主要是研究如何利用导数、积分、最值和定积分来研究实变函数的性质。
它是求解不可逆微分方程的基础。
它也是研究复变函数性质的基础,把复变函数看作一种特殊的实变函数。
实变函数论包括实值变量函数的微分、积分、最值等,还包括复变量函数的性质。
它是数学分析中的重要分支,与特殊函数论、复变函数论有着密切的关系。
实变函数论中最基础的概念是数量级和极限。
数量级指的是极限的概念,表示随着实变量的变化,函数值的变化程度。
极限是指当实变量接近某个数值时,函数值在某一点处的极限值。
而对极限的深入研究,就是实变函数论的重要内容。
实变函数论几乎可以关注任何一个实变函数的性质,从最基础的极限研究,到有关积分的性质,以及利用实变函数来求解某个特殊的微分方程。
因此,实变函数论的研究对解决各种数学问题都有重要的意义。
实变函数论的重要技术有微分、积分、微分不变性、莱布尼茨定理等等。
它们在极限和积分研究中发挥着重要作用,也是研究复变函数性质的基础。
实变函数论的重要应用在于各种不可逆微分方程的求解。
它可以通过求解它们的极限和积分来解决。
比如,必经微分方程,可以用它的极限和积分来解决;简单自变量微分方程,也可以用它的导数来解决。
由于实变函数论的应用十分广泛,它也与其他学科有着良好的交流和联系。
总之,实变函数论是数学分析中的重要分支,有着重要的研究和实际应用价值,其中涉及到复变函数、微分、积分、最值、极限和定积分等数学基础概念,也与其他学科有着密切的关系。
学习实变函数论不仅有利于研究基础数学,而且可以运用到工程学和其他许多科学中。
实变函数论中的基本概念及性质分析实变函数论是数学分析中的重要内容,主要研究实变函数的基本概念和性质。
实变函数是指定义域和值域都是实数的函数,在实际问题中具有广泛应用。
本文将从实变函数的基本概念、连续性、可导性、极限以及函数的性质等方面对实变函数进行分析。
一、实变函数的基本概念实变函数是数学中最基本的概念之一,它与虚变函数相对应,是指定义域和值域都是实数的函数。
实变函数可以表示为f:D→R,其中D为定义域,R为值域。
实变函数的定义域可以是一个区间、多个区间的并或交,甚至是整个实数集。
实变函数的定义有一些特点,首先是唯一性,同一个定义域和值域的实变函数只能有一个。
其次是有定义性,即每个值域中的元素都有相应的定义域中的元素与之对应。
此外,实变函数还具有有界性、单调性、周期性等多种性质。
二、实变函数的连续性和可导性连续性和可导性是实变函数的重要性质,对于函数的性质和应用具有重要意义。
连续性是指在定义域上函数的变化没有突变,没有间断点。
实变函数在某一点x=c处连续的充分必要条件是:函数在x=c处的极限存在且等于函数在x=c处的值。
如果函数在定义域的每一点处都连续,则称函数在该定义域上连续。
可导性是指函数在某一点处的导数存在。
实变函数f(x)在点x=c处可导的充分必要条件是:函数在点x=c处的两侧导数存在且相等。
如果函数在定义域的每一点处都可导,则称函数在该定义域上可导。
三、实变函数的极限极限是实变函数论中的重要概念,用于描述数列或函数在某一点处的逼近情况。
对于实变函数f(x),当x无限靠近a时,f(x)无限靠近L,我们称L是函数f(x)在点x=a处的极限。
实变函数的极限有一些基本性质,如保号性、四则运算、夹逼准则等。
利用这些性质,我们可以求解实变函数的极限,帮助我们更好地理解和分析函数的行为。
四、实变函数的性质分析实变函数的性质分析是数学分析中的重要内容,可以帮助我们更深入地研究函数的特点和应用。
实变函数的性质有很多,如有界性、单调性、周期性、奇偶性等。
2011实变函数复习要点第一章 集合(一)考核知识点1. 集合的定义、简单性质及集合的并、交、补和极限运算。
2. 对等和基数及其性质。
3. 可数集合的概念及其性质。
4. 不可数集合的概念及例子。
(二)考核要求 1. 集合概念识记:集合的概念、表示方法、子集、真子集和包含关系。
2. 集合的运算(1)识记:集合的并、交、补概念。
De Morgan 公式ΓααΓαα∈∈=c c A A )( ΓααΓαα∈∈=cc A A )( (2)综合应用:集合的并、交、补运算。
例 利用集合的并、交、补运算证明集合相等。
例 N n x x A n n n ∈-≤<--=},11:{11设]0,1[1-=⋂∞=n n A ,)1,2(1-=⋃∞=n n A3. 对等与基数(1)识记:集合的对等与基数的概念。
(2)综合应用:集合的对等的证明 例 利用定义直接构造两集合间的1-1对应。
4. 可数集合(1)识记:可数集合的概念和可数集合的性质,可数集合类。
(2)综合应用:可数集合的性质。
5. 不可数集合识记:不可数集合的概念、例子。
第二章 点集 (一)考核知识点1. n 维欧氏空间邻域、集合的距离、有界点集和区间体积概念以及邻域的性质。
2. 聚点、内点、界点、开核、边界、导集和闭包及其性质。
3. 开集、闭集及其性质。
4. 直线上的开集的构造,构成区间,康托集。
(二)考核要求1. 度量空间,n 维欧氏空间识记:邻域的概念、有界点集概念。
2. 聚点、内点和界点识记:聚点、内点、外点、界点、孤立点、接触点、开核、边界、导集和闭包。
如 聚点与内点的关系,界点与聚点、孤立点的关系如聚点的等价定义:设E P '∈0,存在E 中的互异的点列{}n P 使0lim P P n n =∞→如0P 为E 的接触点的充要条件为存在E 中点列{}n P , 使得0lim P P n n =∞→3. 开集,闭集(1)识记:开集、闭集的概念。
实变函数论主要知识点
第一章 集 合
1、 集合的并、交、差运算;余集和De Morgan 公式;上极限和下极限;
练习: ①证明()()A B C A B
C --=-; ②证明11[][]n E f a E f a n
∞=>=≥+;
2、 对等与基数的定义及性质;
练习: ①证明(0,1)
; ②证明(0,1)[0,1];
3、 可数集的定义与常见的例;性质“有限个可数集合的直积是可数集合”与应用;可数集合的基数;
练习: ①证明直线上增函数的不连续点最多只有可数多个;
②证明平面上坐标为有理数的点的全体所成的集合为一可数集; ③Q = ;
④[0,1]中有理数集E 的相关结论;
4、 不可数集合、连续基数的定义及性质;
练习: ①(0,1)= ; ②P = (P 为Cantor 集);
第二章点集
1、度量空间,n维欧氏空间中有关概念
度量空间(Metric Space),在数学中是指一个集合,并且该集合中的任意元素之间的距离是可定义的。
n维欧氏空间: 设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g(g称为内积),则V称为(对于g的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间)。
具体来说,g是V上的二元实值函数,满足如下关系:
(1)g(x,y)=g(y,x);
(2)g(x+y,z)=g(x,z)+g(y,z);
(3)g(kx,y)=kg(x,y);
(4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0时成立。
这里x,y,z是V中任意向量,k是任意实数。
2、,聚点、界点、内点的概念、性质及判定(求法);开核,导集,闭包的概念、性质及判定(求法);
聚点:有点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。
内点:如果存在点P的某个邻域U(P)∈E,则称P为E的内点。
3、开集、闭集、完备集的概念、性质;直线上开集的构造;
4、Cantor集的构造和性质;
5、练习:①P =,P'=,P=;
②
11
1,,,,
2n
'
⎧⎫
⎨⎬
⎩⎭
= ;
第三章测度论
1、外测度的定义和基本性质(非负性,单调性,次可数可加性);
2、可测集的定义与性质(可测集类关于可数并,可数交,差,余集,单调集列的极限运算
封闭);可数可加性(注意条件);
3、零测度集的例子和性质;
4、可测集的例子和性质;
练习:①mQ=,mP=;
②零测度集的任何子集仍为零测度集;
③有限或可数个零测度集之和仍为零测度集;
④[0,1]中有理数集E的相关结论;
5、存在不可测集合;
第四章可测函数
1、可测函数的定义,不可测函数的例子;
练习:①第四章习题3;
2、可测函数与简单函数的关系;可测函数与连续函数的关系(鲁津定理);
3、叶果洛夫定理及其逆定理;
练习:①第四章习题7;
4、依测度收敛的定义、简单的证明;
5、具体函数列依测度收敛的验证;
6、依测度收敛与几乎处处收敛的关系,两者互不包含的例子;
第五章 积 分 论
1、非负简单函数L 积分的定义;
练习: ①Direchlet 函数在1上的L 积分
2、可测函数L 积分的定义(积分确定;可积);基本性质(§5.4 定理1和定理2诸条);
3、Lebesgue 控制收敛定理的内容和简单应用;
4、L 积分的绝对连续性和可数可加性(了解);
5、Riemann 可积的充要条件;
练习: ①[0,1]上的Direchlet 函数不是R-可积的;
6、Lebesgue 可积的充要条件:若f 是可测集合E 上的有界函数,则f 在E 上L-可积⇔f 在E 上可测;
练习: ①[0,1]上的Direchlet 函数是L-可积的;
②设3,()10,x x f x x ⎧⎪=⎨⎪⎩为无理数为有理数
,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。
例1、求由曲线θ=γθ=γ2cos ,sin 22所围图形公共部分的面积 解:两曲线的交点⎪⎪⎭⎫ ⎝⎛π⎪⎪⎭
⎫ ⎝⎛π65,22,6,22 ()⎥⎥⎦
⎤⎢⎢⎣⎡θθ+θθ=⎰⎰ππ
π
60462d 2cos 21d sin 2212S =θθ-⎰π
d )2cos 1(6
0+⎰ππ
θθ4
6
d 2cos 2
1362sin 212sin 214
660--π=θ+⎥⎦⎤⎢⎣⎡θ-θ=ππ
π
例2.边长为a 和b(a>b)的矩形薄片斜置欲液体中,薄片长边a 与液面平行位于深为h 处,而
薄片与液面成α角,已知液体的密度为ρ,求薄片所受的压力
解:取x 为积分变量,变化区间为[h,h+bsin α]从中取[x,x+dx]知道面积元素α
sin dx a dS = 压力元素αρsin dx xa
dP =,则 )sin 21(sin 1sin sin sin αραραραα
b h ab xdx a dx xa P b h h b h h +===⎰⎰++。