2019届高考数学一轮复习学案平面向量
- 格式:pdf
- 大小:3.15 MB
- 文档页数:55
(江苏专版)2019版高考数学一轮复习第五章平面向量学案文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019版高考数学一轮复习第五章平面向量学案文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019版高考数学一轮复习第五章平面向量学案文的全部内容。
第五章平面向量第一节向量的概念及线性运算本节主要包括2个知识点:1。
向量的有关概念;2。
向量的线性运算.基础联通抓主干知识的“源”与“流”名称定义备注向量既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或称模)平面向量是自由向量,平面向量可自由平移零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±错误!平行向量方向相同或相反的非零向量,又叫做共线向量0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0考点贯通抓高考命题的“形”与“神”向量的有关概念[典例](1)设a,b错误!=错误!成立的充分条件的序号为________.①a=-b;②a∥b;③a=2b;④a∥b且|a|=|b|。
(2)设a0为单位向量,下列命题中:①若a为平面内的某个向量,则a=|a|·a0;②若a 与a 0平行,则a =|a|a 0;③若a 与a 0平行且|a |=1,则a =a 0。
假命题的个数是________.[解析] (1)因为向量错误!的方向与向量a 相同,向量错误!的方向与向量b 相同,且错误!=错误!,所以向量a 与向量b 方向相同,故可排除①②④.当a =2b 时,错误!=错误!=错误!,故a =2b 是错误!=错误!成立的充分条件.(2)向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[答案] (1)③ (2)3[易错提醒](1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小;(2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征;(3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.1①若|a|=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则错误!=错误!是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b.其中正确命题的序号是________.解析:①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵错误!=错误!,∴|AB ―→|=|错误!|且错误!∥错误!。
高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
第七单元平面向量教材复习课“平面向量”相关基础知识一课过对应学生用书1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:选C 若a与b都是零向量,则a=b,故选项C正确.2.关于平面向量,下列说法正确的是( )A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量解析:选C 对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D不正确,故选C.3.下列命题中,正确的个数是( )①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足|a|>|b|且a 与b 同向,则a>b ; ④若两个向量相等,则它们的起点和终点分别重合. A .0 B .1 C .2D .3解析:选A 对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误.综上,正确的命题个数是0.[清易错]1.对于平行向量易忽视两点: (1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. 2.单位向量的定义中只规定了长度没有方向限制. 1.若m∥n ,n∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向D .不一定共线解析:选D 可举特例,当n =0时,满足m∥n ,n∥k ,故A 、B 、C 选项都不正确,故D 正确.2.设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:选C “a |a|+b|b|=0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,故答案为C.向量共线定理及平面向量基本定理1.向量共线定理向量b 与a(a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 2.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. [小题速通]1.已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线, ∴AB ―→∥AC ―→,设AB ―→=m AC ―→(m ≠0),即λa +b =m a +m μb ,∴⎩⎪⎨⎪⎧λ=m ,1=m μ,∴λμ=1.2.(2018·南宁模拟)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则m n的值为( )A .-12B.12 C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→D.16AC ―→+32AB ―→ 解析:选C 如图,∵EC ―→=2AE ―→,∴EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=16AC ―→+12AB ―→.[清易错]1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.2.平面向量基本定理指出:平面内任何一个非零向量都可以表示为沿两个不共线的方向分离的两个非零向量的和,并且一旦分解方向确定后,这种分解是唯一的.这一点是易忽视的.1.(2018·大连双基测试)给出下列四个命题: ①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数是( ) A .1 B .2 C .3D .4解析:选C ①错误,两向量是否共线是要看其方向而不是起点或终点;②正确,因为向量既有大小,又有方向,故向量不能比较大小,但向量的模均为实数,故可以比较大小;③错误,当a =0时,不论λ为何值,都有λa =0;④错误,当λ=μ=0时,λa =μb ,此时a 与b 可以是任意向量.2.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+yOB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13.平面向量的运算1.向量的线性运算 向量运算定义法则(或几何意义)运算律三角形法则(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)平面向量的坐标运算①向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1), |a|=x 21+y 21. ②向量坐标的求法设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1),|AB ―→|=x 2-x 12+y 2-y 12.(3)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. [小题速通]1.(2018·嘉兴测试)在△ABC 中,已知M 是BC 边的中点,设CB ―→=a ,CA ―→=b ,则AM ―→=( )A.12a -b B.12a +bC .a -12bD .a +12b解析:选A AM ―→=AC ―→+CM ―→=-CA ―→+12CB ―→=-b +12a.2.设D 是线段BC 的中点,且AB ―→+AC ―→=4AE ―→,则( ) A .AD ―→=2AE ―→ B .AD ―→=4AE ―→C .AD ―→=2EA ―→D .AD ―→=4EA ―→解析:选A ∵D 是线段BC 的中点, ∴AB ―→+AC ―→=2AD ―→, ∵AB ―→+AC ―→=4AE ―→, ∴AD ―→=2AE ―→.3.已知AC 为平行四边形ABCD 的一条对角线,AB ―→=(2,4),AC ―→=(1,3),则AD ―→=( ) A .(-1,-1) B .(3,7) C .(1,1)D .(2,4) 解析:选A 由题意可得AD ―→=BC ―→=AC ―→-AB ―→=(1,3)-(2,4)=(-1,-1). 4.已知A (2,3),B (4,-3),且AP ―→=3AB ―→,则点P 的坐标为________. 解析:设P (x ,y ),∵A (2,3),B (4,-3),且AP ―→=3AB ―→, ∴(x -2,y -3)=3(2,-6)=(6,-18), ∴⎩⎪⎨⎪⎧x -2=6,y -3=-18,解得x =8,y =-15,∴点P 的坐标为(8,-15). 答案:(8,-15)5.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1), 因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1. 答案:-16.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为________.解析:∵D 为AB 的中点,∴OA ―→+OB ―→=2OD ―→, ∵OA ―→+OB ―→+2OC ―→=0, ∴OC ―→=-OD ―→, ∴O 是CD 的中点,∴S △AOC =S △AOD =12S △AOB =14S △ABC .答案:4[清易错]1.向量坐标不是向量的终点坐标,与向量的始点、终点有关系.2.数乘向量仍为向量,只是模与方向发生变化,易误认为数乘向量为实数. 3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.1.若向量AB ―→=(1,2),BC ―→=(3,4),则AC ―→=( ) A .(2,2) B .(-2,-2) C .(4,6)D .(-4,-6)解析:选C AC ―→=AB ―→+BC ―→=(4,6).2.已知向量a ,b 不共线,若AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 是( )A .梯形B .平行四边形C .矩形D .菱形解析:选A 因为AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b , 所以AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b , 所以AD ―→=2BC ―→,即直线AD 与BC 平行,而向量AB ―→与CD ―→不共线,即直线AB 与CD 不平行, 故四边形ABCD 是梯形.3.(2018·河北联考)已知向量a =(1,2),b =(-2,m ),若a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-2,-4) C .(-3,-6)D .(-4,-8)解析:选D 由a ∥b ,得m +4=0,即m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).1.向量的夹角2.平面向量的数量积3.平面向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.|x1x2+y1y2|≤x21+y21x22+y221.设向量e1,e2是两个互相垂直的单位向量,且a=2e1-e2,b=e2,则|a+2b|=( ) A.2 2 B. 5C .2D .4解析:选B ∵向量e 1,e 2是两个互相垂直的单位向量, ∴|e 1|=1,|e 2|=1,e 1·e 2=0, ∵a =2e 1-e 2,b =e 2, ∴a +2b =2e 1+e 2,∴|a +2b|2=4e 21+4e 1·e 2+e 22=5, ∴|a +2b|= 5.2.(2018·云南检测)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52解析:选D 因为a +2b =(-1+2m,4),2a -b =(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 3.已知|a|=1,|b|=2,a ·(a -b)=3,则a 与b 的夹角为( ) A.π3 B.π6C.π2D .π解析:选D 设a 与b 的夹角为θ,由题意知|a|=1,|b|=2, ∵a ·(a -b)=a 2-a ·b =12-1×2×cos θ=3, ∴cos θ=-1. 又θ∈[0,π], ∴a 与b 的夹角为π.4.已知向量a ,b 满足|a|=2,|b|=1,a 与b 的夹角为2π3,则|a +2b|=________.解析:∵(a +2b)2=a 2+4a ·b +4b 2=4+4×2×1×⎝ ⎛⎭⎪⎫-12+4=4,∴|a +2b|=2.答案:25.(2018·衡水中学检测)在直角三角形ABC 中,C =90°,AB =2,AC =1,若AD ―→=32AB ―→,则CD ―→·CB ―→=________.解析:∵AD ―→=32AB ―→,∴CD ―→·CB ―→=(CA ―→+AD ―→)·CB ―→=⎝ ⎛⎭⎪⎫CA ―→+32 AB ―→·CB ―→=⎝ ⎛⎭⎪⎫32CB ―→-12CA ―→·CB ―→=32CB ―→2,又∵C =90°,AB =2,AC =1, ∴CB =3,∴CD ―→·CB ―→=92.答案:926.(2018·东北三校联考)已知正方形ABCD 的边长为2,DE ―→=2EC ―→,DF ―→=12(DC ―→+DB ―→),则BE ―→·DF ―→=________.解析:如图,以B 为原点,BC 所在直线为x 轴,AB 所在直线为y轴建立平面直角坐标系.则B (0,0),E ⎝ ⎛⎭⎪⎫2,23,D (2,2). 由DF ―→=12(DC ―→+DB ―→),知F 为BC 的中点,所以F (1,0),故BE―→=⎝ ⎛⎭⎪⎫2,23,DF ―→=(-1,-2), ∴BE ―→·DF ―→=-2-43=-103.答案:-103[清易错]1.0与实数0的区别:0a =0≠0,a +(-a)=0≠0,a ·0=0≠0. 2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b. 3.在运用向量夹角时,注意其取值范围为[0,π]. 1.有下列说法:①向量b 在向量a 方向上的投影是向量;②若a ·b>0,则a 和b 的夹角为锐角,若a ·b<0,则a 和b 的夹角为钝角; ③(a ·b)c =a(b ·c); ④若a ·b =0,则a =0或b =0. 其中正确的说法个数为( ) A .0B .3C .4D .2答案:A2.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是________.解析:由题意可得a ·b>0,且a ,b 不共线, 即⎩⎪⎨⎪⎧2+λ+3>0,2+λ1≠13,解得λ>-5,且λ≠-53.答案:⎝ ⎛⎭⎪⎫-5,-53∪⎝ ⎛⎭⎪⎫-53,+∞ 3.已知向量a ,b 满足a =(2,0),|b|=1,若|a +b|=7,则a 与b 的夹角是________. 解析:由|a +b|=7,得(a +b)2=a 2+2a ·b +b 2=4+2a ·b +1=7, ∴a ·b =1,∴|a |·|b |·cos 〈a ,b 〉=1,∴cos 〈a ,b 〉=12.又〈a ,b 〉∈[0,π],∴a ,b 的夹角为π3.答案:π3一、选择题1.(2018·常州调研)已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( )A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0, ∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-13(2AB ―→+BC ―→)=-23AB ―→-13BC ―→.2.(2018·合肥质检)已知O ,A ,B ,C 为同一平面内的四个点,若2AC ―→+CB ―→=0,则向量OC ―→等于( )A.23OA ―→-13OB ―→ B .-13OA ―→+23OB ―→C .2OA ―→-OB ―→D .-OA ―→+2OB ―→解析:选C 因为AC ―→=OC ―→-OA ―→,CB ―→=OB ―→-OC ―→, 所以2AC ―→+CB ―→=2(OC ―→-OA ―→)+(OB ―→-OC ―→) =OC ―→-2OA ―→+OB ―→=0, 所以OC ―→=2OA ―→-OB ―→.3.已知向量a 与b 的夹角为30°,且|a|=3,|b|=2,则|a -b|的值为( ) A .1 B.13 C .13D.7-2 3解析:选A 由向量a 与b 的夹角为30°,且|a|=3,|b|=2, 可得a ·b =|a |·|b |·c os 30°=3×2×32=3, 所以|a -b|=a -b2=a 2+b 2-2a ·b=3+4-2×3=1.4.(2018·成都一诊)在边长为1的等边△ABC 中,设BC ―→=a ,CA ―→=b ,AB ―→=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3解析:选A 依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32. 5.已知非零向量a ,b 满足a ·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .3 2C .2 2D .3解析:选D 由非零向量a ,b 满足a ·b =0,可知两个向量垂直,由|a|=3,且a 与a+b 的夹角为π4,说明以向量a ,b 为邻边,a +b 为对角线的平行四边形是正方形,所以|b|=3.6.(2017·青岛二模)在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b)∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D 依题意得b =2⎣⎢⎡⎦⎥⎤a -⎝ ⎛⎭⎪⎫a -12b =(-4,2),所以2a +b =(-2,6),所以6x =-2×3=-6,x =-1.7.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点,且∠AOC =π4,且|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC ―→|=2,∠AOC =π4,所以C (2,2), 又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ), 所以λ=μ=2,λ+μ=2 2.8.已知函数f (x )=A sin(πx +φ)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD ―→+BE ―→)·(BE ―→-CE ―→)的值为( )A .-1B .-12C.12D .2解析:选D 注意到函数f (x )的图象关于点C 对称,因此C 是线段DE 的中点,BD ―→+BE ―→=2BC ―→.又BE ―→-CE ―→=BE ―→+EC ―→=BC ―→, 且|BC ―→|=12T =12×2ππ=1,因此(BD ―→+BE ―→)·(BE ―→-CE ―→)=2BC ―→2=2. 二、填空题9.(2018·洛阳一模)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.解析:∵AB ―→=(a -1,3),AC ―→=(-3,4), 据题意知AB ―→∥AC ―→, ∴4(a -1)=3×(-3), 即4a =-5, ∴a =-54.答案:-5410.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b.答案:b -a -a -b11.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-312.若向量a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为________. 解析:∵a +c =0, ∴c =-a =(-2,-3),∴c ·b =8-21=-13,且|b|=65, ∴c 在b 方向上的投影为|c|cos 〈c ,b 〉=|c |·c ·b |c||b|=c ·b |b|=-1365=-655.答案:-655三、解答题13.已知向量a =(3,0),b =(-5,5),c =(2,k ). (1)求向量a 与b 的夹角; (2)若b ∥c ,求k 的值; (3)若b ⊥(a +c),求k 的值. 解:(1)设向量a 与b 的夹角为θ, ∵a =(3,0),b =(-5,5),∴a ·b =3×(-5)+0×5=-15,|a|=3,|b|=-2+52=52,∴cos θ=a ·b |a |·|b |=-153×52=-22.又∵θ∈[0,π], ∴θ=3π4.(2)∵b ∥c ,∴-5k =5×2,∴k =-2. (3)∵a +c =(5,k ),又b ⊥(a +c), ∴b ·(a +c)=0, ∴-5×5+5×k =0, ∴k =5.14.在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2, ∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12.高考研究课一平面向量的基本运算[典例] (1)(2018·济南模拟)在△ABC 中,AB 边的高为CD ,若CB =a ,CA ―→=b ,a ·b =0,|a|=1,|b|=2,则AD ―→=( )A.13a -13b B.23a -23b C.35a -35b D.45a -45b (2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ=________.[解析] (1)∵a ·b =0,∴∠ACB =90°, ∴AB =5,CD =255,∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD ―→=45AB ―→=45(CB ―→-CA ―→)=45a -45b.(2)法一:由AB ―→=λAM ―→+μAN ―→,得AB ―→=λ·12(AD ―→+AC ―→)+μ·12(AC ―→+AB ―→),则⎝ ⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2AC ―→=0, 得⎝⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2⎝ ⎛⎭⎪⎫AD ―→+12AB ―→ =0, 得⎝ ⎛⎭⎪⎫14λ+34μ-1AB ―→+⎝ ⎛⎭⎪⎫λ+μ2AD ―→=0.因为AB ―→,AD ―→不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45.法二:连接MN 并延长交AB 的延长线于T , 由已知易得AB =45AT ,则45AT ―→=AB ―→=λAM ―→+μAN ―→, 即AT ―→=54λAM ―→+54μAN ―→,因为T ,M ,N 三点共线,所以54λ+54μ=1.故λ+μ=45.[答案] (1)D (2)45[方法技巧](1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[即时演练]1.向量e 1,e 2,a ,b 在正方形网格中的位置如图所示,则a -b =( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解析:选C 结合图形易得,a =-e 1-4e 2,b =-2e 1-e 2,故a -b =e 1-3e 2.2.如图,正方形ABCD 中,E 为DC 的中点,若AE ―→=λAB ―→+μAC ―→,则λ+μ的值为( )A.12 B .-12C .1D .-1解析:选 A 法一:由题意得AE ―→=AD ―→+12AB ―→=BC ―→+AB ―→-12AB ―→=AC ―→-12AB ―→,∴λ=-12,μ=1,∴λ+μ=12,故选A.法二:利用坐标法,以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为1,则A (0,0),B (1,0),C (1,1),E ⎝ ⎛⎭⎪⎫12,1,∴AE ―→=⎝ ⎛⎭⎪⎫12,1,AB ―→=(1,0),AC ―→=(1,1),则⎝ ⎛⎭⎪⎫12,1=λ(1,0)+μ(1,1),∴λ+μ=12.[典例] (1)在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA ―→=(4,3),PQ ―→=(1,5),则BC ―→等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)(2)(2018·绍兴模拟)已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)[解析] (1)由题意,AC ―→=2AQ ―→=2(PQ ―→-PA ―→)=2(-3,2)=(-6,4),PC ―→=AC ―→-AP ―→=(-6,4)-(-4,-3)=(-2,7),∵BP ―→=2PC ―→,∴BC ―→=3PC ―→=(-6,21).(2)MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.[答案] (1)B (2)A [方法技巧]向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求向量的坐标.解题过程中要注意方程思想的运用及正确使用运算法则.[即时演练]1.若向量a =(1,1),b =(1,-1),c =(-1,2),则c =( ) A .-12a +32bB.12a -32bC.32a -12b D .-32a +12b解析:选 B 设c =λ1a +λ2b ,则(-1,2)=λ1(1,1)+λ2(1,-1)=(λ1+λ2,λ1-λ2),所以λ1+λ2=-1,λ1-λ2=2,解得λ1=12,λ2=-32,所以c =12a -32b.2.已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点.若AB ―→∥a ,则点B 的坐标为________.解析:设B (x,2x ),AB ―→=(x -3,2x ). ∵AB ―→∥a ,∴x -3-2x =0,解得x =-3, ∴B (-3,-6). 答案:(-3,-6)共线向量定理及应用平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属低档题.,常见的命题角度有:利用向量共线求参数或点的坐标; 利用向量共线解决三点共线问题.1.若向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4D .6解析:选B ∵a ∥b ,∴2×6-4x =0,解得x =3.2.已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)3.已知平面向量a =(1,m ),b =(2,5),c =(m,3),且(a +c)∥(a -b),则m =________. 解析:因为a =(1,m ),b =(2,5),c =(m,3), 所以a +c =(1+m ,m +3),a -b =(-1,m -5). 又(a +c)∥(a -b),所以(1+m )(m -5)+(m +3)=0,即m 2-3m -2=0, 解得m =3+172或m =3-172.答案:3±172[方法技巧]1.利用两向量共线求参数如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.2.利用两向量共线的条件求向量坐标一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二:利用向量共线解决三点共线问题4.(2018·南阳五校联考)已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.解析:若点A ,B ,C 不能构成三角形,则向量AB ―→,AC ―→共线,∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k =0,解得k =1. 答案:15.设两个非零向量a 与b 不共线,若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b),求证:A ,B ,D 三点共线.证明:因为AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), 所以BD ―→=BC ―→+CD ―→=2a +8b +3(a -b) =5(a +b)=5AB ―→. 所以AB ―→,BD ―→共线.又它们有公共点B ,所以A ,B ,D 三点共线. [方法技巧]三点共线问题的求解策略解决点共线或向量共线问题时,要结合向量共线定理进行,但应注意向量共线与三点共线的区别与联系,当两个向量共线且有公共点时,才能得到三点共线.1.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.2.(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13(AC ―→-AB ―→)=43AC ―→-13AB ―→=-13AB ―→+43AC ―→.3.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC ―→=(-4,-3),则向量BC ―→=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 法一:设C (x ,y ), 则AC ―→=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC ―→=(-4,-2)-(3,2)=(-7,-4). 法二:AB ―→=(3,2)-(0,1)=(3,1),BC ―→=AC ―→-AB ―→=(-4,-3)-(3,1)=(-7,-4).4.(2016·全国卷Ⅰ)设向量a =(m,1),b =(1,2),且|a +b|2=|a|2+|b|2,则m =________.解析:∵|a +b|2=|a|2+|b|2+2a ·b =|a|2+|b|2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-25.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6. 答案:-66.(2015·全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:127.(2014·全国卷Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO ―→=12(AB ―→+AC ―→),则AB ―→与AC ―→的夹角为________.解析:由AO ―→=12(AB ―→+AC ―→),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB ―→与AC―→的夹角为90°.答案:90°一、选择题1.(2018·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b.A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2018·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2018·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.若OA ―→=a ,OB ―→=b ,a 与b 不共线,则∠AOB 平分线上的向量OM ―→为( ) A.a |a|+b |b| B.a +b|a +b| C.|b|a -|a|b|a|+|b|D .λ⎝ ⎛⎭⎪⎫a|a|+b |b|,λ由OM ―→确定解析:选D 以OM 为对角线,以OA ―→,OB ―→方向为邻边作平行四边形OCMD ,∵OM 平分∠AOB ,∴平行四边形OCMD 是菱形. 设OC =OD =λ,则OC ―→=λa |a|,OD ―→=λb |b|,∴OM ―→=OC ―→+OD ―→=λ⎝ ⎛⎭⎪⎫a|a|+b |b|,且λ由OM ―→确定.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y =13. 7.(2018·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6B.π4C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 法一:取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD是直角三角形,AF =12,所以△APD 的面积为12×12×3=34.法二:以A 为原点,以BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系.∵等边三角形ABC 的边长为4, ∴B (-2,-23),C (2,-23),由题知AD ―→=14(AB ―→+AC ―→)=14[(-2,-23)+(2,-23)]=(0,-3),AP ―→=AD ―→+18BC ―→=(0,-3)+18(4,0)=⎝ ⎛⎭⎪⎫12,-3, ∴△ADP 的面积为S =12|AD ―→|·|DP ―→|=12×3×12=34.二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x+y +z =-1+12+12=0.答案:011.(2018·贵阳模拟)已知平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b ,则向量a 的坐标是________.解析:设a =(x ,y ),∵平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b , ∴x 2+y 2=1,且x -y =0,解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22 12.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =1,AB =2,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示),若AP ―→=λED ―→+μAF ―→,其中λ,μ∈R ,则2λ-μ的取值范围是________.解析:以A 为坐标原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,则A (0,0),E (1,0),D (0,1),F ⎝ ⎛⎭⎪⎫32,12, 设P (cos α,sin α)(0°≤α≤90°), ∵AP ―→=λED ―→+μAF ―→,∴(cos α,sin α)=λ(-1,1)+μ⎝ ⎛⎭⎪⎫32,12 =⎝⎛⎭⎪⎫-λ+32μ,λ+μ2,∴cos α=-λ+32μ,sin α=λ+μ2,∴λ=14(3sin α-cos α),μ=12(cos α+sin α),∴2λ-μ=sin α-cos α=2sin(α-45°), ∵0°≤α≤90°,∴-45°≤α-45°≤45°, ∴-22≤sin(α-45°)≤22, ∴-1≤2sin(α-45°)≤1, ∴2λ-μ的取值范围是[-1,1]. 答案:[-1,1] 三、解答题13.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b.(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b),AE ―→=23AD ―→=13(a +b),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b)-a =13(b -2a),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2018·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c)∥(2b -a),求实数k 的值;(2)若d 满足(d -c)∥(a +b),且|d -c|=5,求d 的坐标. 解:(1)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c|=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).15.如图,在△OAB 中,OC ―→=14OA ―→,OD ―→=12OB ―→,AD 与BC 交于点M ,设OA ―→=a ,OB ―→=b.(1)用a ,b 表示OM ―→;(2)在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE ―→=p OA ―→,OF ―→=qOB ―→,求证:17p +37q=1.解:(1)设OM ―→=x a +y b ,由OC ―→=14OA ―→,得OM ―→=4x OC ―→+y b ,∵C ,M ,B 三点共线, ∴4x +y =1.①由OD ―→=12OB ―→,得OM ―→=x a +2y OD ―→,∵A ,M ,D 三点共线, ∴x +2y =1,②联立①②得,x =17,y =37.∴OM ―→=17a +37b.(2)证明:∵OE ―→=p OA ―→,OF ―→=qOB ―→, ∴OA ―→=1p OE ―→,OB ―→=1qOF ―→,∴OM ―→=17·1p OE ―→+37·1q OF ―→.∵E ,M ,F 三点共线, ∴17p +37q=1.1.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足PA ―→+x PB ―→+y PC ―→=0,设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S =λ2,S 3S=λ3,则λ2·λ3取最大值时,3x +y 的值为( ) A.12 B.32 C .1D .2解析:选D 由题意可知λ1+λ2+λ3=1. ∵P 是△ABC 的中位线EF 上任意一点,且EF ∥BC , ∴λ1=12,∴λ2+λ3=12,∴λ2λ3≤⎝⎛⎭⎪⎫λ2+λ322=116,当且仅当λ2=λ3=14时取等号,∴λ2·λ3取最大值时,P 为EF 的中点. 延长AP 交BC 于M ,则M 为BC 的中点, ∴PA =PM ,∴PA ―→=-PM ―→=-12(PB ―→+PC ―→),又∵PA ―→+x PB ―→+y PC ―→=0, ∴x =y =12,∴3x +y =2.2.如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP ―→=12PC ―→,点M ,N 在过点P 的直线上,若AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0),则λ+2μ的最小值为( )A .2 B.83 C .3D.103解析:选B ∵AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0), ∴MB ―→=MP ―→+PB ―→=(1-λ)AB ―→. ∵M ,P ,N 三点共线,∴存在实数k ,使MP ―→=k MN ―→=k (AN ―→-AM ―→)=-k λAB ―→+k μAC ―→. ∵BP ―→=12PC ―→,∴PB ―→=13CB ―→=13AB ―→-13AC ―→.∴MP ―→+PB ―→=⎝ ⎛⎭⎪⎫13-k λAB ―→+⎝ ⎛⎭⎪⎫k μ-13AC ―→=(1-λ)AB ―→, ∴⎩⎪⎨⎪⎧13-k λ=1-λ, ①k μ-13=0, ②由②得,k =13μ代入①得,13-λ3μ=1-λ,∴μ=λ3λ-2, ∴λ+2μ=λ+2λ3λ-2.设f (λ)=λ+2λ3λ-2,λ>0,∴f ′(λ)=9λ2-12λλ-2,令f ′(λ)=0,得λ=0或λ=43.当λ∈⎝ ⎛⎭⎪⎫0,43时,f ′(λ)<0,当λ∈⎝ ⎛⎭⎪⎫43,+∞时,f ′(λ)>0.∴λ=43时,f (λ)取极小值,也是最小值,又f ⎝ ⎛⎭⎪⎫43=83,∴f (λ)的最小值为83,即λ+2μ的最小值为83.高考研究课二平面向量的数量积及应用[全国卷5年命题分析][典例] (1)已知等边△ABC 的边长为2,若BC =3BE ,AD =DC ,则BD ―→·AE ―→等于( )A .-2B .-103C .2D.103(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ―→·CB ―→的值为______;DE ―→·DC ―→的最大值为________.[解析] (1)如图所示,BD ―→·AE ―→=(AD ―→-AB ―→)·(AB ―→+BE ―→)=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→ ·⎝ ⎛⎭⎪⎫AB ―→+13 AC ―→-13AB ―→=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→·⎝ ⎛⎭⎪⎫13AC ―→+23AB ―→=16AC ―→2-23AB ―→2=16×4-23×4=-2. (2)法一:如图,DE ―→·CB ―→=(DA ―→+AE ―→)·CB ―→=DA ―→·CB ―→+AE ―→·CB ―→=DA ―→2=1, DE ―→·DC ―→=(DA ―→+AE ―→)·DC ―→ =DA ―→·DC ―→+AE ―→·DC ―→=AE ―→·DC ―→=|AE ―→|·|DC ―→|≤|DC ―→|2=1,故DE ―→·DC ―→的最大值为1.法二:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE ―→=(t ,-1),CB ―→=(0,-1),所以DE ―→·CB―→=(t ,-1)·(0,-1)=1.因为DC ―→=(1,0),所以DE ―→·DC ―→=(t ,-1)·(1,0)=t ≤1, 故DE ―→·DC ―→的最大值为1. 法三:由图知,无论E 点在哪个位置,DE ―→在CB ―→方向上的投影都是CB =1, ∴DE ―→·CB ―→=|CB ―→|·1=1.当E 运动到B 点时,DE ―→在DC ―→方向上的投影最大,即为DC =1, ∴(DE ―→·DC ―→)max =|DC ―→|·1=1. [答案] (1)A (2)1 1 [方法技巧]平面向量数量积的2种运算方法1.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示,AF ―→=AD ―→+DF ―→. 又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝ ⎛⎭⎪⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.2.(2018·豫东名校联考)如图,BC 是单位圆A 的一条直径,F是线段AB 上的点,且BF ―→=3FA ―→,若DE 是圆A 中绕圆心A 运动的一条直径,则FD ―→·FE ―→的值是________.解析:FD ―→·FE ―→=(FA ―→+AD ―→)·(FA ―→+AE ―→)=(FA ―→+AD ―→)·(FA ―→-AD ―→)=FA ―→2-AD ―→2=⎝ ⎛⎭⎪⎫142-1=-1516.答案:-1516平面向量数量积的性质平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题探究角度有:平面向量的模; 平面向量的夹角; 平面向量的垂直. 角度一:平面向量的模1.(2017·浙江高考)已知向量a ,b 满足|a|=1,|b|=2,则|a +b|+|a -b|的最小值是________,最大值是________.解析:法一:由向量三角不等式得,|a +b|+|a -b |≥|(a +b)-(a -b)|=|2b|=4. 又|a +b|+|a -b|2≤a +b2+a -b22=a 2+b 2=5,∴|a +b|+|a -b|的最大值为2 5.法二:设a ,b 的夹角为θ. ∵|a|=1,|b|=2, ∴|a +b|+|a -b|=a 2+b 2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4,2 5 ],即|a +b|+|a -b|的最小值为4,最大值为2 5. 答案:4 2 52.已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c)=0,则|c|的最大值为________.解析:设c =(x ,y ),2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ),则由题意得(2-x )·(-3-x )+(2-y )·(3-y )=0,即⎝⎛⎭⎪⎫x +122+⎝⎛⎭⎪⎫y -522=132,表示以⎝ ⎛⎭⎪⎫-12,52为圆心,262为半径的圆,所以|c|的最大值为26.答案:26 [方法技巧]利用数量积求解长度问题的处理方法(1)a 2=a ·a =|a|2或|a|=a·a .。
平面向量第一课时平面向量的概念[重要知识]知识点一:向量的概念既有大小又有方向的量叫向量。
注意数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.知识点二:向量的表示法①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;①用有向线段表示;③用有向线段的起点与终点字母:AB;④向量AB的大小――长度称为向量的模,记作|AB|.知识点三:有向线段(1)有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. (2)向量与有向线段的区别:①向量只有大小和方向两个要素,与起点无关,只要大小和方向一样,则这两个向量就是一样的向量;②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向一样,也是不同的有向线段.知识点四:两个特殊的向量(1)零向量:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.(2)单位向量:长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小。
知识点五:平行向量、共线向量(1)定义:方向一样或相反的非零向量叫平行向量。
(2)规定:规定0与任一向量平行.(3)共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:①综合(1)、(2)才是平行向量的完整定义;a b c平行,记作a∥b∥c②向量,,③平行向量可以在同一直线上,要区别于两平行线的位置关系;④共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.知识点六:相等向量(1) 定义长度相等且方向一样的向量叫相等向量. (2)向量a 与b 相等,记作a b =;(3)零向量与零向量相等;(4)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.[典型例题]1.下列命题正确的是 ( ) A .向量AB 与BA 是两平行向量B .若b a 、都是单位向量,则a b =C .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点一样2.若都是单位向量,则||-的取值X 围是 ( ) A .(1,2) B .(0,2)C .[1,2] D .[0,2]3.在正六边形ABCDEF 中,O 为其中心,则2FA AB BO ED +++等于( ) A .FE B.AC C DC D FC4. 如图,在△ABC 中,AB = a , BC = b ,AD 为边BC 的中线,G 为△ABC 的重心, 求:向量.5.已知△ABC 与一点O ,求证:O 为△ABC 的重心的 充要条件是.=++DABCa bG·6.设平面内有四边形ABCD 和O 点,,,,OA a OB b OC c OD d ====,若a c b d +=+,则四边形ABCD 的形状为 。
高考数学一轮复习 第五章 平面向量与复数5.5 复 数考试要求 1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.知识梳理1.复数的有关概念(1)复数的定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 是实部,b 是虚部,i 为虚数单位. (2)复数的分类: 复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数b =0,虚数b ≠0其中,当a =0时为纯虚数.(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 互为共轭复数⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (5)复数的模:向量OZ →的模叫做复数z =a +b i 的模或绝对值,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →.3.复数的四则运算(1)复数的加、减、乘、除运算法则: 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =a +b ic -d i c +d ic -d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i≠0).(2)几何意义:复数加、减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加、减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.常用结论1.(1±i)2=±2i ;1+i 1-i =i ;1-i1+i =-i.2.-b +a i =i(a +b i)(a ,b ∈R ).3.i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). 4.i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N ). 5.复数z 的方程在复平面上表示的图形(1)a ≤|z |≤b 表示以原点O 为圆心,以a 和b 为半径的两圆所夹的圆环; (2)|z -(a +b i)|=r (r >0)表示以(a ,b )为圆心,r 为半径的圆. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)复数z =a -b i(a ,b ∈R )中,虚部为b .( × ) (2)复数可以比较大小.( × )(3)已知z =a +b i(a ,b ∈R ),当a =0时,复数z 为纯虚数.( × )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ ) 教材改编题1.已知复数z 满足(2+i)z =1-i ,其中i 是虚数单位,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 D2.复数z =(3+i)(1-4i),则复数z 的实部与虚部之和是________. 答案 -4解析 z =(3+i)(1-4i)=3-12i +i +4=7-11i ,故实部和虚部之和为7-11=-4. 3.若z =(m 2+m -6)+(m -2)i 为纯虚数,则实数m 的值为________. 答案 -3题型一 复数的概念例1 (1)(2021·浙江)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a 等于( ) A .-1 B .1 C .-3 D .3 答案 C解析 方法一 因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3. 方法二 因为(1+a i)i =3+i ,所以1+a i =3+i i =1-3i ,所以a =-3.(2)(2022·新余模拟)若复数z 满足z 1+i i 32-i =1-i ,则复数z 的虚部为( )A .iB .-iC .1D .-1 答案 C解析 ∵z 1+i i 32-i=1-i ,∴z (1+i)(-i)=(2-i)(1-i), ∴z (1-i)=(2-i)(1-i),∴z =2-i , ∴z =2+i ,∴z 的虚部为1. 教师备选1.(2020·全国Ⅲ)若z (1+i)=1-i ,则z 等于( ) A .1-i B .1+i C .-i D .i 答案 D解析 因为z =1-i 1+i =1-i 21+i 1-i=-i ,所以z =i.2.(2020·全国Ⅰ)若z =1+i ,则|z 2-2z |等于( ) A .0 B .1 C. 2 D .2 答案 D解析 方法一 z 2-2z =(1+i)2-2(1+i)=-2, |z 2-2z |=|-2|=2.方法二 |z 2-2z |=|(1+i)2-2(1+i)| =|(1+i)(-1+i)|=|1+i|·|-1+i|=2.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. (2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.跟踪训练1 (1)(2022·衡水中学模拟)已知x 1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( ) A .2+i B .2-i C .1+2iD .1-2i答案 B解析 由x1+i =1-y i ,得x 1-i 1+i 1-i =1-y i ,即x 2-x2i =1-y i , ∴⎩⎨⎧x2=1,x2=y ,解得x =2,y =1,∴x +y i =2+i , ∴其共轭复数为2-i.(2)已知z =1-3i ,则|z -i|=________. 答案5解析 ∵z =1-3i ,∴z =1+3i , ∴z -i =1+3i -i =1+2i , ∴|z -i|=12+22= 5. 题型二 复数的四则运算例2 (1)(2021·新高考全国Ⅰ)已知z =2-i ,则z (z +i)等于( ) A .6-2i B .4-2i C .6+2i D .4+2i答案 C解析 因为z =2-i ,所以z (z +i)=(2-i)(2+2i)=6+2i.(2)设z 1,z 2,z 3为复数,z 1≠0.给出下列命题: ①若|z 2|=|z 3|,则z 2=±z 3; ②若z 1z 2=z 1z 3,则z 2=z 3;③若z 2=z 3,则|z 1z 2|=|z 1z 3|; ④若z 1z 2=|z 1|2,则z 1=z 2. 其中所有正确命题的序号是( ) A .①③ B .②③ C .②④ D .③④ 答案 B解析 由|i|=|1|,知①错误;z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又z 1≠0,所以z 2=z 3,故②正确; |z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,又z 2=z 3,所以|z 2|=|z 2|=|z 3|,故③正确,令z 1=i ,z 2=-i ,满足z 1z 2=|z 1|2,不满足z 1=z 2,故④错误. 教师备选1.(2020·新高考全国Ⅰ)2-i1+2i 等于( )A .1B .-1C .iD .-i 答案 D 解析2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.2.在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪a b cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 -2 解析 依题意知,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2, 且z 2=2+i 1-i=2+i1+i2=1+3i 2,所以z 2z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i , 故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.思维升华 (1)复数的乘法:复数乘法类似于多项式的乘法运算. (2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数. 跟踪训练2 (1)(2021·全国乙卷)设i z =4+3i ,则z 等于( ) A .-3-4i B .-3+4i C .3-4i D .3+4i答案 C解析 方法一 (转化为复数除法运算) 因为i z =4+3i , 所以z =4+3i i =4+3i -i i -i =-4i -3i 2-i 2=3-4i.方法二 (利用复数的代数形式) 设z =a +b i(a ,b ∈R ),则由i z =4+3i ,可得i(a +b i)=4+3i ,即-b +a i =4+3i ,所以⎩⎪⎨⎪⎧-b =4,a =3,即⎩⎪⎨⎪⎧a =3,b =-4,所以z =3-4i. 方法三 (巧用同乘技巧)因为i z =4+3i ,所以i z ·i =(4+3i)·i ,所以-z =4i -3, 所以z =3-4i.(2)若z =i 2 0231-i ,则|z |=________;z +z =________.答案221 解析 z =i2 0231-i =-i 1-i =1-i2,|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫-122=22,z +z =12-12i +12+12i =1.题型三 复数的几何意义例3 (1)(2021·新高考全国Ⅱ)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A 解析2-i 1-3i=2-i 1+3i 10=5+5i 10=1+i 2,所以该复数在复平面内对应的点为⎝⎛⎭⎫12,12,该点在第一象限.(2)(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 2 3解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R , 因为z 1+z 2=3+i , 所以2z 1=(3+a )+(1+b )i , 2z 2=(3-a )+(1-b )i.因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4, 所以3+a 2+1+b 2=4, ①3-a2+1-b 2=4,②①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=2 3.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →, 则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →, 且|OA →|=|AC →|=|OC →|=2, 可得|BA →|=2|OA →|sin 60°=2 3. 故|z 1-z 2|=|BA →|=2 3. 教师备选1.(2020·北京)在复平面内,复数z 对应的点的坐标是(1,2),则i·z 等于( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 由题意知,z =1+2i , ∴i·z =i(1+2i)=-2+i.2.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( ) A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1 D .x 2+(y +1)2=1 答案 C解析 ∵z 在复平面内对应的点为(x ,y ), ∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1, ∴x 2+(y -1)2=1.思维升华 由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观. 跟踪训练3 (1)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i答案 D解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +41+i 1-i 1+i =1-i +4+4i2=1-i +2+2i =3+i.(2)设复数z 满足条件|z |=1,那么|z +22+i|的最大值是( ) A .3 B .2 3 C .1+2 2 D .4 答案 D解析 |z |=1表示单位圆上的点,那么|z +22+i|表示单位圆上的点到点(-22,-1)的距离,求最大值转化为点(-22,-1)到原点的距离加上圆的半径.因为点(-22,-1)到原点的距离为3,所以所求最大值为4.在如图的复平面中,r =a 2+b 2,cos θ=a r ,sin θ=b r ,tan θ=ba(a ≠0).任何一个复数z =a +b i 都可以表示成z =r (cos θ+isin θ)的形式.其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ →所在射线(射线OZ )为终边的角,叫做复数z =a +b i 的辐角.我们把r (cos θ+isin θ)叫做复数的三角形式.对应于复数的三角形式,把z =a +b i 叫做复数的代数形式.复数乘、除运算的三角表示:已知复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则z 1·z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)].z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 例1 (1)⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 等于( )A.32+332iB.32-332i C .-32+332i D .-32-332i 答案 C解析 ⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 =3⎣⎡⎦⎤cos ⎝⎛⎭⎫π2+π6+isin ⎝⎛⎭⎫π2+π6 =3⎝⎛⎭⎫cos 2π3+isin 2π3=-32+332i. (2)复数cos π3+isin π3经过n 次乘方后,所得的幂等于它的共轭复数,则n 的值等于( ) A .3B .12C .6k -1(k ∈Z )D .6k +1(k ∈Z )答案 C解析 由题意,得⎝⎛⎭⎫cos π3+isin π3n =cos n π3+isin n π3=cos π3-isin π3, 由复数相等的定义,得 ⎩⎨⎧ cos n π3=cos π3=12,sin n π3=-sin π3=-32.解得n π3=2k π-π3(k ∈Z ), ∴n =6k -1(k ∈Z ).(3)复数z =cosπ15+isin π15是方程x 5-α=0的一个根,那么α的值等于( ) A.32+12i B.12+32i C.32-12i D .-12-32i 答案 B解析 由题意得,α=⎝⎛⎭⎫cos π15+isin π155 =cos π3+isin π3=12+32i. 例2 已知i 为虚数单位,z 1=2(cos 60°+isin 60°),z 2=22(sin 30°-icos 30°),则z 1·z 2的三角形式是( )A .4(cos 90°+isin 90°)B .4(cos 30°+isin 30°)C.4(cos 30°-isin 30°)D.4(cos 0°+isin 0°)答案 D解析∵z2=22(sin 30°-icos 30°)=22(cos 300°+isin 300°),∴z1·z2=2(cos 60°+isin 60°)·22(cos 300°+isin 300°)=4(cos 360°+isin 360°)=4(cos 0°+isin 0°).课时精练1.(2022·福州模拟)已知i是虚数单位,则“a=i”是“a2=-1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析i是虚数单位,则i2=-1,“a=i”是“a2=-1”的充分条件;由a2=-1,得a=±i,故“a=i”是“a2=-1”的不必要条件;故“a=i”是“a2=-1”的充分不必要条件.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3-i,则z1z2等于() A.-10 B.10 C.-8 D.8答案 A解析∵z1=3-i,z1,z2在复平面内所对应的点关于虚轴对称,∴z2=-3-i,∴z 1z 2=-9-1=-10.3.(2022·长春实验中学模拟)若复数z 的共轭复数为z 且满足z ·(1+2i)=1-i ,则复数z 的虚部为( )A.35B .-35i C.35i D .-35 答案 A解析 z ·(1+2i)=1-i ,∴z =1-i 1+2i =1-i 1-2i 1+2i 1-2i =-1-3i 5=-15-35i , ∴z =-15+35i , ∴复数z 的虚部为35. 4.已知i 是虚数单位,则复数z =i 2 023+i(i -1)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 因为z =i 2 023+i(i -1)=-i -1-i =-1-2i ,所以复数z 在复平面内对应的点是(-1,-2),位于第三象限.5.(2022·潍坊模拟)在复数范围内,已知p ,q 为实数,1-i 是关于x 的方程x 2+px +q =0的一个根,则p +q 等于( )A .2B .1C .0D .-1答案 C解析 因为1-i 是关于x 的方程x 2+px +q =0的一个根,则1+i 是方程x 2+px +q =0的另一根,由根与系数的关系可得⎩⎪⎨⎪⎧ 1+i +1-i =-p ,1+i 1-i =q ,解得p =-2,q =2,所以p +q =0.6.(2022·苏州模拟)若复数z 满足(1+i)·z =5+3i(其中i 是虚数单位),则下列结论正确的是( )A .z 的虚部为-iB .z 的模为17C .z 的共轭复数为4-iD .z 在复平面内对应的点位于第二象限 答案 B解析 由(1+i)·z =5+3i 得z =5+3i 1+i =5+3i 1-i 1+i 1-i=8-2i 2=4-i , 所以z 的虚部为-1,A 错误;z 的模为42+-12=17,B 正确;z 的共轭复数为4+i ,C 错误;z 在复平面内对应的点为(4,-1),位于第四象限,D 错误.7.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=________. 答案 -i解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i =-3i 3=-i.8.(2022·温州模拟)已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且z 1-i =3+2i ,则a =________,b =________.答案 5 1解析 由z =a +b i(a ,b ∈R ,i 为虚数单位),则z =a -b i ,所以z 1-i=1+i 2(a -b i) =a +b 2+a -b 2i =3+2i , 故a +b 2=3,a -b 2=2,所以a =5,b =1. 9.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为①实数;②虚数;③纯虚数. 解 ①当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0, 即m =2时,复数z 是实数.②当m 2-2m ≠0,且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.③当⎩⎪⎨⎪⎧ m 2+m -6m =0,m ≠0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.10. 如图所示,在平行四边形OABC 中,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →,BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解 (1)∵AO →=-OA →,∴AO →所表示的复数为-3-2i ,∵BC →=AO →,∴BC →所表示的复数为-3-2i.(2)∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,∴B 所对应的复数为1+6i.11.欧拉公式e x i =cos x +isin x 是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项不正确的是( )A .复数e 2i 对应的点位于第二象限B .i 2e π为纯虚数C .复数e x i 3+i的模长等于12 D .i 6e π的共轭复数为12-32i 答案 D解析 对于A ,e 2i =cos 2+isin 2, 因为π2<2<π, 即cos 2<0,sin 2>0,复数e 2i 对应的点位于第二象限,A 正确;对于B ,i 2e π=cos π2+isin π2=i ,i 2e π为纯虚数, B 正确;对于C ,e x i3+i =cos x +isin x 3+i=cos x +isin x 3-i 3+i 3-i =3cos x +sin x 4+3sin x -cos x 4i , 于是得⎪⎪⎪⎪⎪⎪e x i 3+i =⎝ ⎛⎭⎪⎫3cos x +sin x 42+⎝ ⎛⎭⎪⎫3sin x -cos x 42 =12, C 正确; 对于D ,i 6e π=cos π6+isin π6=32+12i , 其共轭复数为32-12i ,D 不正确. 12.(2022·武汉模拟)下列说法中,正确的个数有( )①若|z |=2,则z ·z =4;②若复数z 1,z 2满足|z 1+z 2|=|z 1-z 2|,则z 1z 2=0;③若复数z 的平方是纯虚数,则复数z 的实部和虚部相等;④“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件.A .1个B .2个C .3个D .4个答案 B解析 若|z |=2,则z ·z =|z |2=4,故①正确;设z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ),由|z 1+z 2|=|z 1-z 2|,可得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1-z 2|2=(a 1-a 2)2+(b 1-b 2)2则a 1a 2+b 1b 2=0,而z 1z 2=(a 1+b 1i)(a 2+b 2i)=a 1a 2-b 1b 2+a 1b 2i +b 1a 2i=2a 1a 2+a 1b 2i +b 1a 2i 不一定为0,故②错误;当z =1-i 时,z 2=-2i 为纯虚数,其实部和虚部不相等,故③错误;若复数z =(a -1)+(a 2-1)i(a ∈R )是虚数,则a 2-1≠0,即a ≠±1,所以“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件,故④正确.13.(2022·上外浦东附中模拟)若⎪⎪⎪⎪a -i 1 b -2i 1+i =0(a ,b ∈R ),则a 2+b 2=________. 答案 1解析 ∵⎪⎪⎪⎪a -i 1 b -2i 1+i =(a -i)(1+i)-(b -2i) =a +a i -i +1-b +2i=(a +1-b )+(a +1)i ,由已知可得⎩⎪⎨⎪⎧ a +1-b =0,a +1=0,解得⎩⎪⎨⎪⎧b =0,a =-1, ∴a 2+b 2=1.14.(2022·上海市静安区模拟)投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的点数分别为m 和n ,则复数m +n i n +m i为虚数的概率为________.答案 56 解析 ∵复数m +n i n +m i =m +n i n -m i n +m in -m i =2mn +n 2-m 2i m 2+n 2, 故复数m +n i n +m i为虚数需满足n 2-m 2≠0, 即m ≠n ,故有6×6-6=30(种)情况,∴复数m +n i n +m i 为虚数的概率为306×6=56.15.(2022·青岛模拟)已知复数z 满足|z -1-i|≤1,则|z |的最小值为( )A .1 B.2-1 C. 2 D.2+1答案 B解析 令z =x +y i(x ,y ∈R ),则由题意有(x -1)2+(y -1)2≤1,∴|z |的最小值即为圆(x -1)2+(y -1)2=1上的动点到原点的最小距离,∴|z |的最小值为2-1.16.(2022·张家口调研)已知复数z 满足z 2=3+4i ,且z 在复平面内对应的点位于第三象限.(1)求复数z ;(2)设a ∈R ,且⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫1+z 1+z 2 023+a =2,求实数a 的值. 解 (1)设z =c +d i(c <0,d <0),则z 2=(c +d i)2=c 2-d 2+2cd i =3+4i ,∴⎩⎪⎨⎪⎧ c 2-d 2=3,2cd =4,解得⎩⎪⎨⎪⎧ c =-2,d =-1或⎩⎪⎨⎪⎧ c =2,d =1(舍去). ∴z =-2-i.(2)∵z =-2+i , ∴1+z 1+z =-1-i -1+i =1+i 1-i =1+i 22=i , ∴⎝ ⎛⎭⎪⎫1+z 1+z 2 023=i 2 023=i 2 020+3=i 505×4+3=-i , ∴|a -i|=a 2+1=2, ∴a =±3.。
第三节平面向量的数量积及其应用[考纲传真]1.理解平面向量数量积的含义及其物理意义 2 了解平面向量的数量积与向量投影的关系3掌握数量积的坐标表达式,会进行平面向量数量积的运算4能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题6会用向量方法解决简单的力学问题与其他一些实际问题.双基自主测评I基础知识环能力全面巩固■(对应学生用书第61页)[基础知识填充]1. 向量的夹角(1)定义:已知两个非零向量a和b,如图4-3-1 ,作0A= a, 0B= b,则/ AOB=0 (0 °w 0 < 180° )叫作a与b的夹角.0 b B图4-3-1(2)当0 = 0°时,a与b共线同向.当0 = 180°时,a与b共线反向.当0 =90°时,a与b互相垂直. '—2•平面向量的数量积(1) 定义:已知两个非零向量a和b,它们的夹角为0,则数量| a|| b| • cos 0叫做a与b的数量积(或内积).规定:零向量与任一向量的数量积为0.(2) 几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积Jk 曜或b的长度| b|与a在b方向上射影| a|cos 0的乘积.3. 平面向量数量积的运算律(1) 交换律:a • b= b • a;(2) 数乘结合律:(入a) • b=入(a • b) = a •(入b);(3) 分配律:a •( b+ c) = a • b+ a • C.4. 平面向量数量积的性质及其坐标表示122结论几何表示坐标表小2| a || b |cos 0夹角a - bcos 0 — . [[ i .|a || b |X 1X 2+ y 1y 2cos 0 — . y, ------------------------------- .,,V X 2 + y2^/X 2 + y 2a 丄ba -b — 0X 1X 2+ y 1y 2— 0|a • b | 与 | a || b | 的关系|a - b | w| a || b || X 1X 2+ y 1y 2| w 寸X 1 + y 2 •寸 X 2+ y ;[知识拓展]1两个向量a , b 的夹角为锐角? a •b >0且a , b 不共线;两个向量a ,b 的夹角为钝角? a •b <0且a , b 不共线. 2 •平面向量数量积运算的常用公式 (1)( (2)( (3)(2 2a +b ) •( a -b ) = a — b .2 2 2a +b ) = a + 2a • b + b .a -b )2= a 2-2a • b + b 2.3.当a 与b 同向时,a •b = | a||b1.当a 与b 反向时,a ・b = — |a||b |.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X” (1) 两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.由 a - b = 0,可得 a = 0 或 b = 0.()由a - b = a - c 及a ^0不能推出b = C.()2. 在四边形 ABCDh AB- DC &AC- BD= 0,则四边形 ABCD 为矩形•( [答案](1) V (2) X (3) V(2016 -全国卷川)已知向量BA=A . 30° ,1,则/ ABC=(3.C. 60°D. 120°A [因为BA=2, -2 , BC > 三3, 1,所以 E3A- £=¥+石3=_23.又因为 B A- B <> I B AII 航cos / ABC= 1X 1X cos / ABC 所以 cos / 又 0°<Z ABCc 180°,所以/ABC= 30° .故选 A .](2015 •全国卷 n )向量 a = (1 , - 1), b = ( — 1,2),则(2a + b ) - a =()A . - 1 B. 0 C. 1D. 22C [法: T a = (1 , — 1) , b = ( — 1,2) ,.•. a = 2, a • b =— 3, 从而(2a + b ) • a = 2a 2 + a • b = 4 — 3= 1. 法二:T a = (1 , — 1) , b = ( — 1,2), .2a + b = (2 , — 2) + ( — 1,2) = (1,0),从而(2a + b ) • a = (1,0) • (1 , — 1) = 1,故选 C.]4. ______________ (教材改编)已知|a | = 5, | b | = 4, a 与b 的夹角0 = 120° ,则向量b 在向量a 方向上的 投影为 __ .—2 [由数量积的定义知, b 在a 方向上的投影为| b |cos 0 = 4x cos 120 ° =— 2.]5. (2017 •全国卷I)已知向量 a = ( — 1,2) , b = (m,1).若向量 a + b 与a 垂直,则 m=7 [ T a = ( — 1,2) , b = (m,1), ••• a + b = ( — 1 + m,2 + 1) = ( m- 1,3). 又 a + b 与 a 垂直,二(a + b ) • a = 0, 即(m-1) x ( — 1) + 3X 2= 0, 解得m= 7.]题型分类突破I 高琴题型烦律方法逐-突砸■(对应学生用书第62页)心 ......平面向量数量积的运算■■■I (1)(2016 •天津高考)已知△ ABC 是边长为1的等边三角形,点D, E 分别是边AB,BC 的中点,连接 DE 并延长到点F ,使得DE= 2EF,则AF- BC 勺值为()A . 11D -S'已知正方形 ABCD 勺边长为1,点E 是AB 边上的动点,则DE- CB 勺值为C.;DE ・DC的最大值为 【导学号: 00090135】AF = AM DF又D, E 分别为AB BC 的中点,(1) B (2) 1 1 [(1)如图所示,f 1 f f 1 ・_且DE=2EF所以AD= 1A B DF=2AC+;AC=4AC1f2当E 运动到B 点时,DE^DC 方向上的投影最大,即为 DC = 1, 所以(DE' Dg =| DC - 1= 1.][规律方法]1.求两个向量的数量积有三种方法: 利用定义;利用向量的坐标运算; 利用数量积的几何意义.~T 1 -T 3 ~T 所以 AF = 2AB+ 4AC又 BC= AC- AB3T-4AC-又 | AB =|AQ = 1,z BAO 60°,故AF- E3C = 4-2 — 4X 1X 1X 2= 1.故选 B.4 2 4 2 8⑵ 法一:以射线AB AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),巳1,0),C (1,1) ,D (0,1),设E (t, 0) , t € [0,1],则DE = (t , - 1),(t , -1) - (0,- 1) = 1.因为 DC = (1,0),所以 DE- DC = (t ,- 1) - (1,0) = t w 1, 故D E- DC 的最大值为1.法二:由图知,无论E 点在哪个位置,DE 在CB^向上的投影都是 CB= 1,所以DE- CB= | CB则 AF- BC= -(AC-AB 3 T T2. (1)要有“基底”意识,关键用基向量表示题目中所求相关向量. (2)注意向量夹角的大小,以及夹角0 = 0°, 90°, 180°三种特殊情形.2[变式训练1] ⑴ 已知AB= (2,1),点C ( — 1,0) , D (4,5),则向量AB 在 C [方向上的投影为(1) C (2)C [(1)因为点 C ( —1,0) , Q4,5),所以 C* (5,5),又AB= (2,1),所以向量 AB 在CD?向上的投影为|AB |cos 〈 AB C D =磊=芈I CD%2⑵ 由 AB- AF = 3 得AB ・(AM DF = AB- DF= 3,所以 |DF = 1, |CF = 2,BE • BC= — 6 + 2 = — 4.](1)(2017 •合肥二次质检)已知不共线的两个向量a ,b 满足|a — b | = 2且a 丄(a—2b ),则 | b | =( )A . 2 C. 2 2⑵(2018 •西安模拟)已知平面向量a , b 的夹角为 卡,且|a | = .3, | b | = 2,在厶ABC 中,AB= 2a + 2b , AC= 2a — 6b , D 为 BC 的中点,贝U |AQ = ______ .(1)B (2)2[(1)由 a 丄(a — 2b )得 a - (a — 2b ) = | a | — 2a - b = 0.又•/ | a — b | = 2,「. | a(2)(2018 •榆林模拟)已知在矩形ABCD 中 AB= 3, BC = 3, BE = 2EC 点 F 在边 CD 上.若AB- AF = 3,则 A E- 'BF 的值为()【导学号:00090136】A . 0B 育C.— 4D. 42B.- 3 5 D. 3 5C. 所以 AE - BF = ( AB+ BE ) •( BC+ CF ) =AB- BC+ AB- CF + BE- BC + BE- CF = AB- CF +ISfifl... ......... . ............................ j平面向量数量积的性质角度1平面向量的模MBB. 2 D. 4—b| 2= | a|2—2a - b+ | b|2= 4,则| b|2= 4, | b| = 2,故选B.■ ■ ~9 1 ~> (2)因为 A[> 2(AB+ AC 1=2(2a + 2b + 2a — 6b ) =2a — 2b ,所以 |AD 2= 4(a — b )2= 4(a 2— 2b •a + b 2)—e 2的夹角为B ,贝U cos 3 =⑵ 若向量a = (k, 3) , b = (1,4) , c = (2,1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取2=I — 2X 3X 2X1 X cos a + 4= I ,所以|a | = 3,i i222因为 b = (3e 1 — e 2) = I — 2X 3X 1 XI X cos a + 1 = 8, 所以 | b | = 2 2,a •b = (3 e 1 — 2e 2)- (3 e 1 — e ?)2 21 =9e 1 — 9e 1 • e2 + 2e 2= I — I X 1 X 1 X + 2 = 8,3 所以cos 3= rOi 占=3^=弩.(2) •/ 2a — 3b 与c 的夹角为钝角, ••• (2 a — 3b ) - c v 0, 即(2 k — 3, — 6) - (2,1) v 0,• 4k — 6— 6v 0, • k v 3.9又若(2a — 3b ) // c ,贝U 2k — 3 =— 12,即卩 k =—》 当 k =— I 时,2a — 3b = ( — 12,— 6) = — 6c ,=4X (3 — 2X 2X3 X cos n + 4) = 4,所以 | AD = 2.]角度2平面向量的夹角2-2 1(1)已知单位向量 e 1与e 2的夹角为 a ,且cos a = 3 向量 a = 3e i — 2e 2与 b = 3e i值范围是 (1)弩(2)[(1)因为 a 2= (3 e 1 — 2e 2)2△in 2 x — ¥cos x = 2,2 2即2a -3b 与c 反向. 综上,k 的取值范围为 一R, 角度3平面向量的垂直 (2016 •山东高考)已知向量a = (1 , - 1), b = (6 , - 4).若a 丄(ta + b ),则实 数t 的值为 _________ —5 [ - a = (1 , — 1), b = (6 , — 4),…ta + b = (t + 6, — t — 4). 又 a 丄(ta + b ),则 a •( ta + b ) = 0,即 t + 6 +1 + 4= 0,解得 t =— 5.] a • b [规律方法]1.求两向量的夹角:cos 0 = ,要注意0 c [0 , n ]. 丨a l •丨b | 2.两向量垂直的应用: 两非零向量垂直的充要条件是: a 丄b ? a • b = 0? | a — b | = |a + b |. 3 •求向量的模:利用数量积求解长度问题的处理方法有: (1) a 2= a • a = | a |2 或 | a | = a • a . (2) | a ± b | = a ± b 2= a ±2a • b + b . ⑶若 a = (x , y ),则 | a | = x 2 + y 2. |U3[ 平面向量与三角函数的综合 (2018 •佛山模拟)在平面直角坐标系 xOy 中,已知向量m = ^2, — 2小=(sin cos x ) , x c (1)若 miL n ,求 tan x 的值; n ⑵若m 与n 的夹角为—,求x 的值. 【导学号:00090137】所以 sin x = cos x ,所以 tan x = 1. n 1⑵因为 | m = I n | = 1,所以 m-n = cos —=-,3 2x . 所以 m-n = 0, x , cos x ), n Ln . 即承n cos x(1)因为m = n = (sin所以sin 12因为 O v x v n ,所以—n_< x — n_<n n , 一 n n 5 n 所以x —才=6,即x =〒2. [规律方法]平面向量与三角函数的综合问题的解题思路得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题 sin x x= -------cos x •- tan 2 x = —=1 — tan x 53⑵•/ a = sin ^, , b = (cos x , — 1),3 2 2 2 2••• a •b = sin x cos x — ?, b = cos x + ( — 1) = cos x + 1,23 2 1 1 1• f (x ) = (a + b ) - b = a •b + b = sin x cos x — ~ + cos x + 1 = 2sin 2x + 尹 + cos 2x ) — ?⑴ 题目条件给出向量的坐标中含有三角函数的形式, 运用向量共线或垂直或等式成立等, 思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018 •郴州模拟)已知向量a = sin x , | , b = (cos X , (1)当a //b 时,求tan 2 x 的值; (2)求函数f (x ) = (a + b ) - b 在|—-2 , 0上的值域. (1) ■/ a //b , a = sin x , | , b = (cos x , 3 x - ( — 1) — 2 • cos 即sin 3 X + 2C0S x = 0, 得sin 3 x = — 2C0S x , 二tan -32,匕2tan x 12 x = 0,1 n 1 sin 2x+ 才.I nT x€ |—— , 0••• sin 2x+4 € —1 ,n故函数 f (X ) = (a + b ) • b 在 | — , 0 • •• f(X)= 刍n -弓,2上的值域为•—, 2。
第七单元平面向量教材复习课“平面向量”相关基础知识一课过对应学生用书1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:选C 若a与b都是零向量,则a=b,故选项C正确.2.关于平面向量,下列说法正确的是( )A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量解析:选C 对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D不正确,故选C.3.下列命题中,正确的个数是( )①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足|a|>|b|且a 与b 同向,则a>b ; ④若两个向量相等,则它们的起点和终点分别重合. A .0 B .1 C .2D .3解析:选A 对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误.综上,正确的命题个数是0.[清易错]1.对于平行向量易忽视两点: (1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. 2.单位向量的定义中只规定了长度没有方向限制. 1.若m∥n ,n∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向D .不一定共线解析:选D 可举特例,当n =0时,满足m∥n ,n∥k ,故A 、B 、C 选项都不正确,故D 正确.2.设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:选C “a |a|+b|b|=0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,故答案为C.向量共线定理及平面向量基本定理1.向量共线定理向量b 与a(a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 2.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. [小题速通]1.已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线, ∴AB ―→∥AC ―→,设AB ―→=m AC ―→(m ≠0),即λa +b =m a +m μb ,∴⎩⎪⎨⎪⎧λ=m ,1=m μ,∴λμ=1.2.(2018·南宁模拟)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则m n的值为( )A .-12B.12 C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→D.16AC ―→+32AB ―→ 解析:选C 如图,∵EC ―→=2AE ―→,∴EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=16AC ―→+12AB ―→.[清易错]1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.2.平面向量基本定理指出:平面内任何一个非零向量都可以表示为沿两个不共线的方向分离的两个非零向量的和,并且一旦分解方向确定后,这种分解是唯一的.这一点是易忽视的.1.(2018·大连双基测试)给出下列四个命题: ①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数是( ) A .1 B .2 C .3D .4解析:选C ①错误,两向量是否共线是要看其方向而不是起点或终点;②正确,因为向量既有大小,又有方向,故向量不能比较大小,但向量的模均为实数,故可以比较大小;③错误,当a =0时,不论λ为何值,都有λa =0;④错误,当λ=μ=0时,λa =μb ,此时a 与b 可以是任意向量.2.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+yOB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13.平面向量的运算1.向量的线性运算 向量运算定义法则(或几何意义)运算律三角形法则(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)平面向量的坐标运算①向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1), |a|=x 21+y 21. ②向量坐标的求法设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1),|AB ―→|=x 2-x 12+y 2-y 12.(3)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. [小题速通]1.(2018·嘉兴测试)在△ABC 中,已知M 是BC 边的中点,设CB ―→=a ,CA ―→=b ,则AM ―→=( )A.12a -b B.12a +bC .a -12bD .a +12b解析:选A AM ―→=AC ―→+CM ―→=-CA ―→+12CB ―→=-b +12a.2.设D 是线段BC 的中点,且AB ―→+AC ―→=4AE ―→,则( ) A .AD ―→=2AE ―→ B .AD ―→=4AE ―→C .AD ―→=2EA ―→D .AD ―→=4EA ―→解析:选A ∵D 是线段BC 的中点, ∴AB ―→+AC ―→=2AD ―→, ∵AB ―→+AC ―→=4AE ―→, ∴AD ―→=2AE ―→.3.已知AC 为平行四边形ABCD 的一条对角线,AB ―→=(2,4),AC ―→=(1,3),则AD ―→=( ) A .(-1,-1) B .(3,7) C .(1,1)D .(2,4) 解析:选A 由题意可得AD ―→=BC ―→=AC ―→-AB ―→=(1,3)-(2,4)=(-1,-1). 4.已知A (2,3),B (4,-3),且AP ―→=3AB ―→,则点P 的坐标为________. 解析:设P (x ,y ),∵A (2,3),B (4,-3),且AP ―→=3AB ―→, ∴(x -2,y -3)=3(2,-6)=(6,-18), ∴⎩⎪⎨⎪⎧x -2=6,y -3=-18,解得x =8,y =-15,∴点P 的坐标为(8,-15). 答案:(8,-15)5.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1), 因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1. 答案:-16.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为________.解析:∵D 为AB 的中点,∴OA ―→+OB ―→=2OD ―→, ∵OA ―→+OB ―→+2OC ―→=0, ∴OC ―→=-OD ―→, ∴O 是CD 的中点,∴S △AOC =S △AOD =12S △AOB =14S △ABC .答案:4[清易错]1.向量坐标不是向量的终点坐标,与向量的始点、终点有关系.2.数乘向量仍为向量,只是模与方向发生变化,易误认为数乘向量为实数. 3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.1.若向量AB ―→=(1,2),BC ―→=(3,4),则AC ―→=( ) A .(2,2) B .(-2,-2) C .(4,6)D .(-4,-6)解析:选C AC ―→=AB ―→+BC ―→=(4,6).2.已知向量a ,b 不共线,若AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 是( )A .梯形B .平行四边形C .矩形D .菱形解析:选A 因为AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b , 所以AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b , 所以AD ―→=2BC ―→,即直线AD 与BC 平行,而向量AB ―→与CD ―→不共线,即直线AB 与CD 不平行, 故四边形ABCD 是梯形.3.(2018·河北联考)已知向量a =(1,2),b =(-2,m ),若a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-2,-4) C .(-3,-6)D .(-4,-8)解析:选D 由a ∥b ,得m +4=0,即m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).1.向量的夹角2.平面向量的数量积3.平面向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.|x1x2+y1y2|≤x21+y21x22+y221.设向量e1,e2是两个互相垂直的单位向量,且a=2e1-e2,b=e2,则|a+2b|=( ) A.2 2 B. 5C .2D .4解析:选B ∵向量e 1,e 2是两个互相垂直的单位向量, ∴|e 1|=1,|e 2|=1,e 1·e 2=0, ∵a =2e 1-e 2,b =e 2, ∴a +2b =2e 1+e 2,∴|a +2b|2=4e 21+4e 1·e 2+e 22=5, ∴|a +2b|= 5.2.(2018·云南检测)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52解析:选D 因为a +2b =(-1+2m,4),2a -b =(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 3.已知|a|=1,|b|=2,a ·(a -b)=3,则a 与b 的夹角为( ) A.π3 B.π6C.π2D .π解析:选D 设a 与b 的夹角为θ,由题意知|a|=1,|b|=2, ∵a ·(a -b)=a 2-a ·b =12-1×2×cos θ=3, ∴cos θ=-1. 又θ∈[0,π], ∴a 与b 的夹角为π.4.已知向量a ,b 满足|a|=2,|b|=1,a 与b 的夹角为2π3,则|a +2b|=________.解析:∵(a +2b)2=a 2+4a ·b +4b 2=4+4×2×1×⎝ ⎛⎭⎪⎫-12+4=4,∴|a +2b|=2.答案:25.(2018·衡水中学检测)在直角三角形ABC 中,C =90°,AB =2,AC =1,若AD ―→=32AB ―→,则CD ―→·CB ―→=________.解析:∵AD ―→=32AB ―→,∴CD ―→·CB ―→=(CA ―→+AD ―→)·CB ―→=⎝ ⎛⎭⎪⎫CA ―→+32 AB ―→·CB ―→=⎝ ⎛⎭⎪⎫32CB ―→-12CA ―→·CB ―→=32CB ―→2,又∵C =90°,AB =2,AC =1, ∴CB =3,∴CD ―→·CB ―→=92.答案:926.(2018·东北三校联考)已知正方形ABCD 的边长为2,DE ―→=2EC ―→,DF ―→=12(DC ―→+DB ―→),则BE ―→·DF ―→=________.解析:如图,以B 为原点,BC 所在直线为x 轴,AB 所在直线为y轴建立平面直角坐标系.则B (0,0),E ⎝ ⎛⎭⎪⎫2,23,D (2,2). 由DF ―→=12(DC ―→+DB ―→),知F 为BC 的中点,所以F (1,0),故BE―→=⎝ ⎛⎭⎪⎫2,23,DF ―→=(-1,-2), ∴BE ―→·DF ―→=-2-43=-103.答案:-103[清易错]1.0与实数0的区别:0a =0≠0,a +(-a)=0≠0,a ·0=0≠0. 2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b. 3.在运用向量夹角时,注意其取值范围为[0,π]. 1.有下列说法:①向量b 在向量a 方向上的投影是向量;②若a ·b>0,则a 和b 的夹角为锐角,若a ·b<0,则a 和b 的夹角为钝角; ③(a ·b)c =a(b ·c); ④若a ·b =0,则a =0或b =0. 其中正确的说法个数为( ) A .0B .3C .4D .2答案:A2.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是________.解析:由题意可得a ·b>0,且a ,b 不共线, 即⎩⎪⎨⎪⎧2+λ+3>0,2+λ1≠13,解得λ>-5,且λ≠-53.答案:⎝ ⎛⎭⎪⎫-5,-53∪⎝ ⎛⎭⎪⎫-53,+∞ 3.已知向量a ,b 满足a =(2,0),|b|=1,若|a +b|=7,则a 与b 的夹角是________. 解析:由|a +b|=7,得(a +b)2=a 2+2a ·b +b 2=4+2a ·b +1=7, ∴a ·b =1,∴|a |·|b |·cos 〈a ,b 〉=1,∴cos 〈a ,b 〉=12.又〈a ,b 〉∈[0,π],∴a ,b 的夹角为π3.答案:π3一、选择题1.(2018·常州调研)已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( )A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0, ∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-13(2AB ―→+BC ―→)=-23AB ―→-13BC ―→.2.(2018·合肥质检)已知O ,A ,B ,C 为同一平面内的四个点,若2AC ―→+CB ―→=0,则向量OC ―→等于( )A.23OA ―→-13OB ―→ B .-13OA ―→+23OB ―→C .2OA ―→-OB ―→D .-OA ―→+2OB ―→解析:选C 因为AC ―→=OC ―→-OA ―→,CB ―→=OB ―→-OC ―→, 所以2AC ―→+CB ―→=2(OC ―→-OA ―→)+(OB ―→-OC ―→) =OC ―→-2OA ―→+OB ―→=0, 所以OC ―→=2OA ―→-OB ―→.3.已知向量a 与b 的夹角为30°,且|a|=3,|b|=2,则|a -b|的值为( ) A .1 B.13 C .13D.7-2 3解析:选A 由向量a 与b 的夹角为30°,且|a|=3,|b|=2, 可得a ·b =|a |·|b |·c os 30°=3×2×32=3, 所以|a -b|=a -b2=a 2+b 2-2a ·b=3+4-2×3=1.4.(2018·成都一诊)在边长为1的等边△ABC 中,设BC ―→=a ,CA ―→=b ,AB ―→=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3解析:选A 依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32. 5.已知非零向量a ,b 满足a ·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .3 2C .2 2D .3解析:选D 由非零向量a ,b 满足a ·b =0,可知两个向量垂直,由|a|=3,且a 与a+b 的夹角为π4,说明以向量a ,b 为邻边,a +b 为对角线的平行四边形是正方形,所以|b|=3.6.(2017·青岛二模)在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b)∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D 依题意得b =2⎣⎢⎡⎦⎥⎤a -⎝ ⎛⎭⎪⎫a -12b =(-4,2),所以2a +b =(-2,6),所以6x =-2×3=-6,x =-1.7.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点,且∠AOC =π4,且|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC ―→|=2,∠AOC =π4,所以C (2,2), 又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ), 所以λ=μ=2,λ+μ=2 2.8.已知函数f (x )=A sin(πx +φ)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD ―→+BE ―→)·(BE ―→-CE ―→)的值为( )A .-1B .-12C.12D .2解析:选D 注意到函数f (x )的图象关于点C 对称,因此C 是线段DE 的中点,BD ―→+BE ―→=2BC ―→.又BE ―→-CE ―→=BE ―→+EC ―→=BC ―→, 且|BC ―→|=12T =12×2ππ=1,因此(BD ―→+BE ―→)·(BE ―→-CE ―→)=2BC ―→2=2. 二、填空题9.(2018·洛阳一模)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.解析:∵AB ―→=(a -1,3),AC ―→=(-3,4), 据题意知AB ―→∥AC ―→, ∴4(a -1)=3×(-3), 即4a =-5, ∴a =-54.答案:-5410.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b.答案:b -a -a -b11.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-312.若向量a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为________. 解析:∵a +c =0, ∴c =-a =(-2,-3),∴c ·b =8-21=-13,且|b|=65, ∴c 在b 方向上的投影为|c|cos 〈c ,b 〉=|c |·c ·b |c||b|=c ·b |b|=-1365=-655.答案:-655三、解答题13.已知向量a =(3,0),b =(-5,5),c =(2,k ). (1)求向量a 与b 的夹角; (2)若b ∥c ,求k 的值; (3)若b ⊥(a +c),求k 的值. 解:(1)设向量a 与b 的夹角为θ, ∵a =(3,0),b =(-5,5),∴a ·b =3×(-5)+0×5=-15,|a|=3,|b|=-2+52=52,∴cos θ=a ·b |a |·|b |=-153×52=-22.又∵θ∈[0,π], ∴θ=3π4.(2)∵b ∥c ,∴-5k =5×2,∴k =-2. (3)∵a +c =(5,k ),又b ⊥(a +c), ∴b ·(a +c)=0, ∴-5×5+5×k =0, ∴k =5.14.在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2, ∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12.高考研究课一平面向量的基本运算[典例] (1)(2018·济南模拟)在△ABC 中,AB 边的高为CD ,若CB =a ,CA ―→=b ,a ·b =0,|a|=1,|b|=2,则AD ―→=( )A.13a -13b B.23a -23b C.35a -35b D.45a -45b (2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ=________.[解析] (1)∵a ·b =0,∴∠ACB =90°, ∴AB =5,CD =255,∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD ―→=45AB ―→=45(CB ―→-CA ―→)=45a -45b.(2)法一:由AB ―→=λAM ―→+μAN ―→,得AB ―→=λ·12(AD ―→+AC ―→)+μ·12(AC ―→+AB ―→),则⎝ ⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2AC ―→=0, 得⎝⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2⎝ ⎛⎭⎪⎫AD ―→+12AB ―→ =0, 得⎝ ⎛⎭⎪⎫14λ+34μ-1AB ―→+⎝ ⎛⎭⎪⎫λ+μ2AD ―→=0.因为AB ―→,AD ―→不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45.法二:连接MN 并延长交AB 的延长线于T , 由已知易得AB =45AT ,则45AT ―→=AB ―→=λAM ―→+μAN ―→, 即AT ―→=54λAM ―→+54μAN ―→,因为T ,M ,N 三点共线,所以54λ+54μ=1.故λ+μ=45.[答案] (1)D (2)45[方法技巧](1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[即时演练]1.向量e 1,e 2,a ,b 在正方形网格中的位置如图所示,则a -b =( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解析:选C 结合图形易得,a =-e 1-4e 2,b =-2e 1-e 2,故a -b =e 1-3e 2.2.如图,正方形ABCD 中,E 为DC 的中点,若AE ―→=λAB ―→+μAC ―→,则λ+μ的值为( )A.12 B .-12C .1D .-1解析:选 A 法一:由题意得AE ―→=AD ―→+12AB ―→=BC ―→+AB ―→-12AB ―→=AC ―→-12AB ―→,∴λ=-12,μ=1,∴λ+μ=12,故选A.法二:利用坐标法,以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为1,则A (0,0),B (1,0),C (1,1),E ⎝ ⎛⎭⎪⎫12,1,∴AE ―→=⎝ ⎛⎭⎪⎫12,1,AB ―→=(1,0),AC ―→=(1,1),则⎝ ⎛⎭⎪⎫12,1=λ(1,0)+μ(1,1),∴λ+μ=12.[典例] (1)在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA ―→=(4,3),PQ ―→=(1,5),则BC ―→等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)(2)(2018·绍兴模拟)已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)[解析] (1)由题意,AC ―→=2AQ ―→=2(PQ ―→-PA ―→)=2(-3,2)=(-6,4),PC ―→=AC ―→-AP ―→=(-6,4)-(-4,-3)=(-2,7),∵BP ―→=2PC ―→,∴BC ―→=3PC ―→=(-6,21).(2)MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.[答案] (1)B (2)A [方法技巧]向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求向量的坐标.解题过程中要注意方程思想的运用及正确使用运算法则.[即时演练]1.若向量a =(1,1),b =(1,-1),c =(-1,2),则c =( ) A .-12a +32bB.12a -32bC.32a -12b D .-32a +12b解析:选 B 设c =λ1a +λ2b ,则(-1,2)=λ1(1,1)+λ2(1,-1)=(λ1+λ2,λ1-λ2),所以λ1+λ2=-1,λ1-λ2=2,解得λ1=12,λ2=-32,所以c =12a -32b.2.已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点.若AB ―→∥a ,则点B 的坐标为________.解析:设B (x,2x ),AB ―→=(x -3,2x ). ∵AB ―→∥a ,∴x -3-2x =0,解得x =-3, ∴B (-3,-6). 答案:(-3,-6)共线向量定理及应用平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属低档题.,常见的命题角度有:利用向量共线求参数或点的坐标; 利用向量共线解决三点共线问题.1.若向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4D .6解析:选B ∵a ∥b ,∴2×6-4x =0,解得x =3.2.已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)3.已知平面向量a =(1,m ),b =(2,5),c =(m,3),且(a +c)∥(a -b),则m =________. 解析:因为a =(1,m ),b =(2,5),c =(m,3), 所以a +c =(1+m ,m +3),a -b =(-1,m -5). 又(a +c)∥(a -b),所以(1+m )(m -5)+(m +3)=0,即m 2-3m -2=0, 解得m =3+172或m =3-172.答案:3±172[方法技巧]1.利用两向量共线求参数如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.2.利用两向量共线的条件求向量坐标一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二:利用向量共线解决三点共线问题4.(2018·南阳五校联考)已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.解析:若点A ,B ,C 不能构成三角形,则向量AB ―→,AC ―→共线,∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k =0,解得k =1. 答案:15.设两个非零向量a 与b 不共线,若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b),求证:A ,B ,D 三点共线.证明:因为AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), 所以BD ―→=BC ―→+CD ―→=2a +8b +3(a -b) =5(a +b)=5AB ―→. 所以AB ―→,BD ―→共线.又它们有公共点B ,所以A ,B ,D 三点共线. [方法技巧]三点共线问题的求解策略解决点共线或向量共线问题时,要结合向量共线定理进行,但应注意向量共线与三点共线的区别与联系,当两个向量共线且有公共点时,才能得到三点共线.1.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.2.(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13(AC ―→-AB ―→)=43AC ―→-13AB ―→=-13AB ―→+43AC ―→.3.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC ―→=(-4,-3),则向量BC ―→=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 法一:设C (x ,y ), 则AC ―→=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC ―→=(-4,-2)-(3,2)=(-7,-4). 法二:AB ―→=(3,2)-(0,1)=(3,1),BC ―→=AC ―→-AB ―→=(-4,-3)-(3,1)=(-7,-4).4.(2016·全国卷Ⅰ)设向量a =(m,1),b =(1,2),且|a +b|2=|a|2+|b|2,则m =________.解析:∵|a +b|2=|a|2+|b|2+2a ·b =|a|2+|b|2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-25.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6. 答案:-66.(2015·全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:127.(2014·全国卷Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO ―→=12(AB ―→+AC ―→),则AB ―→与AC ―→的夹角为________.解析:由AO ―→=12(AB ―→+AC ―→),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB ―→与AC―→的夹角为90°.答案:90°一、选择题1.(2018·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b.A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2018·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2018·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.若OA ―→=a ,OB ―→=b ,a 与b 不共线,则∠AOB 平分线上的向量OM ―→为( ) A.a |a|+b |b| B.a +b|a +b| C.|b|a -|a|b|a|+|b|D .λ⎝ ⎛⎭⎪⎫a|a|+b |b|,λ由OM ―→确定解析:选D 以OM 为对角线,以OA ―→,OB ―→方向为邻边作平行四边形OCMD ,∵OM 平分∠AOB ,∴平行四边形OCMD 是菱形. 设OC =OD =λ,则OC ―→=λa |a|,OD ―→=λb |b|,∴OM ―→=OC ―→+OD ―→=λ⎝ ⎛⎭⎪⎫a|a|+b |b|,且λ由OM ―→确定.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y =13. 7.(2018·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6B.π4C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 法一:取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD是直角三角形,AF =12,所以△APD 的面积为12×12×3=34.法二:以A 为原点,以BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系.∵等边三角形ABC 的边长为4, ∴B (-2,-23),C (2,-23),由题知AD ―→=14(AB ―→+AC ―→)=14[(-2,-23)+(2,-23)]=(0,-3),AP ―→=AD ―→+18BC ―→=(0,-3)+18(4,0)=⎝ ⎛⎭⎪⎫12,-3, ∴△ADP 的面积为S =12|AD ―→|·|DP ―→|=12×3×12=34.二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x+y +z =-1+12+12=0.答案:011.(2018·贵阳模拟)已知平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b ,则向量a 的坐标是________.解析:设a =(x ,y ),∵平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b , ∴x 2+y 2=1,且x -y =0,解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22 12.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =1,AB =2,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示),若AP ―→=λED ―→+μAF ―→,其中λ,μ∈R ,则2λ-μ的取值范围是________.解析:以A 为坐标原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,则A (0,0),E (1,0),D (0,1),F ⎝ ⎛⎭⎪⎫32,12, 设P (cos α,sin α)(0°≤α≤90°), ∵AP ―→=λED ―→+μAF ―→,∴(cos α,sin α)=λ(-1,1)+μ⎝ ⎛⎭⎪⎫32,12 =⎝⎛⎭⎪⎫-λ+32μ,λ+μ2,∴cos α=-λ+32μ,sin α=λ+μ2,∴λ=14(3sin α-cos α),μ=12(cos α+sin α),∴2λ-μ=sin α-cos α=2sin(α-45°), ∵0°≤α≤90°,∴-45°≤α-45°≤45°, ∴-22≤sin(α-45°)≤22, ∴-1≤2sin(α-45°)≤1, ∴2λ-μ的取值范围是[-1,1]. 答案:[-1,1] 三、解答题13.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b.(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b),AE ―→=23AD ―→=13(a +b),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b)-a =13(b -2a),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2018·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c)∥(2b -a),求实数k 的值;(2)若d 满足(d -c)∥(a +b),且|d -c|=5,求d 的坐标. 解:(1)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c|=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).15.如图,在△OAB 中,OC ―→=14OA ―→,OD ―→=12OB ―→,AD 与BC 交于点M ,设OA ―→=a ,OB ―→=b.(1)用a ,b 表示OM ―→;(2)在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE ―→=p OA ―→,OF ―→=qOB ―→,求证:17p +37q=1.解:(1)设OM ―→=x a +y b ,由OC ―→=14OA ―→,得OM ―→=4x OC ―→+y b ,∵C ,M ,B 三点共线, ∴4x +y =1.①由OD ―→=12OB ―→,得OM ―→=x a +2y OD ―→,∵A ,M ,D 三点共线, ∴x +2y =1,②联立①②得,x =17,y =37.∴OM ―→=17a +37b.(2)证明:∵OE ―→=p OA ―→,OF ―→=qOB ―→, ∴OA ―→=1p OE ―→,OB ―→=1qOF ―→,∴OM ―→=17·1p OE ―→+37·1q OF ―→.∵E ,M ,F 三点共线, ∴17p +37q=1.1.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足PA ―→+x PB ―→+y PC ―→=0,设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S =λ2,S 3S=λ3,则λ2·λ3取最大值时,3x +y 的值为( ) A.12 B.32 C .1D .2解析:选D 由题意可知λ1+λ2+λ3=1. ∵P 是△ABC 的中位线EF 上任意一点,且EF ∥BC , ∴λ1=12,∴λ2+λ3=12,∴λ2λ3≤⎝⎛⎭⎪⎫λ2+λ322=116,当且仅当λ2=λ3=14时取等号,∴λ2·λ3取最大值时,P 为EF 的中点. 延长AP 交BC 于M ,则M 为BC 的中点, ∴PA =PM ,∴PA ―→=-PM ―→=-12(PB ―→+PC ―→),又∵PA ―→+x PB ―→+y PC ―→=0, ∴x =y =12,∴3x +y =2.2.如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP ―→=12PC ―→,点M ,N 在过点P 的直线上,若AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0),则λ+2μ的最小值为( )A .2 B.83 C .3D.103解析:选B ∵AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0), ∴MB ―→=MP ―→+PB ―→=(1-λ)AB ―→. ∵M ,P ,N 三点共线,∴存在实数k ,使MP ―→=k MN ―→=k (AN ―→-AM ―→)=-k λAB ―→+k μAC ―→. ∵BP ―→=12PC ―→,∴PB ―→=13CB ―→=13AB ―→-13AC ―→.∴MP ―→+PB ―→=⎝ ⎛⎭⎪⎫13-k λAB ―→+⎝ ⎛⎭⎪⎫k μ-13AC ―→=(1-λ)AB ―→, ∴⎩⎪⎨⎪⎧13-k λ=1-λ, ①k μ-13=0, ②由②得,k =13μ代入①得,13-λ3μ=1-λ,∴μ=λ3λ-2, ∴λ+2μ=λ+2λ3λ-2.设f (λ)=λ+2λ3λ-2,λ>0,∴f ′(λ)=9λ2-12λλ-2,令f ′(λ)=0,得λ=0或λ=43.当λ∈⎝ ⎛⎭⎪⎫0,43时,f ′(λ)<0,当λ∈⎝ ⎛⎭⎪⎫43,+∞时,f ′(λ)>0.∴λ=43时,f (λ)取极小值,也是最小值,又f ⎝ ⎛⎭⎪⎫43=83,∴f (λ)的最小值为83,即λ+2μ的最小值为83.高考研究课二平面向量的数量积及应用[全国卷5年命题分析][典例] (1)已知等边△ABC 的边长为2,若BC =3BE ,AD =DC ,则BD ―→·AE ―→等于( )A .-2B .-103C .2D.103(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ―→·CB ―→的值为______;DE ―→·DC ―→的最大值为________.[解析] (1)如图所示,BD ―→·AE ―→=(AD ―→-AB ―→)·(AB ―→+BE ―→)=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→ ·⎝ ⎛⎭⎪⎫AB ―→+13 AC ―→-13AB ―→=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→·⎝ ⎛⎭⎪⎫13AC ―→+23AB ―→=16AC ―→2-23AB ―→2=16×4-23×4=-2. (2)法一:如图,DE ―→·CB ―→=(DA ―→+AE ―→)·CB ―→=DA ―→·CB ―→+AE ―→·CB ―→=DA ―→2=1, DE ―→·DC ―→=(DA ―→+AE ―→)·DC ―→ =DA ―→·DC ―→+AE ―→·DC ―→=AE ―→·DC ―→=|AE ―→|·|DC ―→|≤|DC ―→|2=1,故DE ―→·DC ―→的最大值为1.法二:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE ―→=(t ,-1),CB ―→=(0,-1),所以DE ―→·CB―→=(t ,-1)·(0,-1)=1.因为DC ―→=(1,0),所以DE ―→·DC ―→=(t ,-1)·(1,0)=t ≤1, 故DE ―→·DC ―→的最大值为1. 法三:由图知,无论E 点在哪个位置,DE ―→在CB ―→方向上的投影都是CB =1, ∴DE ―→·CB ―→=|CB ―→|·1=1.当E 运动到B 点时,DE ―→在DC ―→方向上的投影最大,即为DC =1, ∴(DE ―→·DC ―→)max =|DC ―→|·1=1. [答案] (1)A (2)1 1 [方法技巧]平面向量数量积的2种运算方法1.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示,AF ―→=AD ―→+DF ―→. 又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝ ⎛⎭⎪⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.2.(2018·豫东名校联考)如图,BC 是单位圆A 的一条直径,F是线段AB 上的点,且BF ―→=3FA ―→,若DE 是圆A 中绕圆心A 运动的一条直径,则FD ―→·FE ―→的值是________.解析:FD ―→·FE ―→=(FA ―→+AD ―→)·(FA ―→+AE ―→)=(FA ―→+AD ―→)·(FA ―→-AD ―→)=FA ―→2-AD ―→2=⎝ ⎛⎭⎪⎫142-1=-1516.答案:-1516平面向量数量积的性质平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题探究角度有:平面向量的模; 平面向量的夹角; 平面向量的垂直. 角度一:平面向量的模1.(2017·浙江高考)已知向量a ,b 满足|a|=1,|b|=2,则|a +b|+|a -b|的最小值是________,最大值是________.解析:法一:由向量三角不等式得,|a +b|+|a -b |≥|(a +b)-(a -b)|=|2b|=4. 又|a +b|+|a -b|2≤a +b2+a -b22=a 2+b 2=5,∴|a +b|+|a -b|的最大值为2 5.法二:设a ,b 的夹角为θ. ∵|a|=1,|b|=2, ∴|a +b|+|a -b|=a 2+b 2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4,2 5 ],即|a +b|+|a -b|的最小值为4,最大值为2 5. 答案:4 2 52.已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c)=0,则|c|的最大值为________.解析:设c =(x ,y ),2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ),则由题意得(2-x )·(-3-x )+(2-y )·(3-y )=0,即⎝⎛⎭⎪⎫x +122+⎝⎛⎭⎪⎫y -522=132,表示以⎝ ⎛⎭⎪⎫-12,52为圆心,262为半径的圆,所以|c|的最大值为26.答案:26 [方法技巧]利用数量积求解长度问题的处理方法(1)a 2=a ·a =|a|2或|a|=a·a .。
2019-2020年高考数学一轮复习 第五篇 平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版【xx 年高考会这样考】1.考查平面向量基本定理的应用. 2.考查坐标表示下向量共线条件. 【复习指导】本讲复习时,应理解基本定理,重点运用向量的坐标进行加、减、数乘的运算以及向量共线的运算.基础梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2叫表示这一平面内所有向量的一组基底. 2.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线.一个区别向量坐标与点的坐标的区别:在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA→=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变,即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.两个防范(1)要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.(2)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.双基自测1.(人教A 版教材习题改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ). A .(4,3)B .(-4,-3)C .(-3,-4)D .(-3,4)解析 a 1+a 2+…+a n -1=-a n =(-3,-4). 答案 C2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ). A .3a +b B .3a -b C .-a +3b D .a +3b解析 设c =x a +y b ,则⎩⎪⎨⎪⎧x -y =4,x +y =2,∴⎩⎪⎨⎪⎧x =3,y =-1.∴c =3a -b . 答案 B3.(xx·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( ).A .-1B .1C .-2D .2解析 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1. 答案 A4.设向量a =(1,-3),b =(-2,4),若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c =( ).A .(4,6)B .(-4,-6)C .(4,-6)D .(-4,6) 解析 设c =(x ,y ), 则4a +(3b -2a )+c =0,∴⎩⎪⎨⎪⎧4-6-2+x =0,-12+12+6+y =0,∴⎩⎪⎨⎪⎧x =4,y =-6.答案 C5.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析 a +b =(1,m -1).∵(a +b )∥c ,∴2-(-1)(m -1)=0,∴m =-1. 答案 -1考向一 平面向量基本定理的应用【例1】►(xx·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.[审题视点] 由B ,H ,C 三点共线可用向量AB →,AC →来表示AH →.解析 由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12.答案 12应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.解析 以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,令AB =2,则AB →=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由已知得DF =BF =3,则AD →=(2+3, 3).∵AD →=xAB →+yAC →,∴(2+3,3)=(2x,2y ).即有⎩⎨⎧2+3=2x ,3=2y ,解得⎩⎪⎨⎪⎧x =1+32,y =32.另解:AD →=AF →+FD →=⎝ ⎛⎭⎪⎫1+32AB →+32AC →,所以x =1+32,y =32. 答案 1+32 32考向二 平面向量的坐标运算【例2】►(xx·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →.求M ,N 的坐标和MN →.[审题视点] 求CA →,CB →的坐标,根据已知条件列方程组求M ,N . 解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA →=(1,8),CB →=(6,3).∴CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6). 设M (x ,y ),则CM →=(x +3,y +4). ∴⎩⎪⎨⎪⎧x +3=3,y +4=24,得⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20).同理可得N (9,2),∴MN →=(9-0,2-20)=(9,-18).利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( ). A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5). 答案 B考向三 平面向量共线的坐标运算【例3】►已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方[审题视点] 根据共线条件求k ,然后判断方向.解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0. 解得k =-13.这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ).即两个向量恰好方向相反, 故题设的实数k 存在.向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值. 【训练3】 (xx·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ).A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73解析 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1).∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-73.答案 D阅卷报告5——平面几何知识应用不熟练致误【问题诊断】 在平面几何图形中设置向量问题,是高考命题向量试题的常见形式,求解这类问题的常规思路是:首先选择一组基向量,把所有需要的向量都用基向量表示,然后再进行求解.【防范措施】 一是会利用平行四边形法则和三角形法则;二是弄清平面图形中的特殊点、线段等.【示例】►(xx·湖南)在边长为1的正三角形ABC 中,设BC →误.=2BD →,CA →=3CE →,则AD →·BE →=错因 搞错向量的夹角或计算错 实录 -12(填错的结论多种).正解 由题意画出图形如图所示,取一组基底{AB →,AC →},结合图形可得AD →=12(AB →+AC →),BE →=AE →-AB →=23AC →-AB →,∴AD →·BE →=12(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-AB →=13AC →2-12AB →2-16AB →·AC →=13-12-16cos 60°=-14. 答案 -14【试一试】 (xx·天津)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. [尝试解析]以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ),PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ),|PA →+3PB →|2=25+(3a -4x )2≥25,∴|PA →+3PB →|的最小值为5. 答案 52019-2020年高考数学一轮复习 第五篇 平面向量 第3讲 平面向量的数量积教案 理 新人教版【xx 年高考会这样考】1.考查平面向量数量积的运算.2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系.基础梳理1.两个向量的夹角已知两个非零向量a 和b (如图),作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 2.两个向量的数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.3.向量数量积的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b|cos θ的数量积. 4.向量数量积的性质设a 、b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ; (2)a ⊥b ⇔a ·b =0;(3)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a ||b |,特别的,a ·a =|a |2或者|a |=a ·a ;(4)cos θ=a ·b |a ||b |;(5)|a ·b |≤|a ||b |. 5.向量数量积的运算律 (1)a ·b =b ·a ;(2)λa ·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 6.平面向量数量积的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2; (2)|a |=x 21+y 21; (3)cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21 x 22+y 22; (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.7.若A (x 1,y 1),B (x 2,y 2),AB →=a ,则|a |=x 1-x 22+y 1-y 22(平面内两点间的距离公式).一个条件两个向量垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2=0. 两个探究(1)若a ·b >0,能否说明a 和b 的夹角为锐角? (2)若a ·b <0,能否说明a 和b 的夹角为钝角? 三个防范(1)若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c 若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.(2)数量积运算不适合结合律,即(a ·b )c ≠a (b ·c ),这是由于(a ·b )c 表示一个与c 共线的向量,a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )c 与a (b ·c )不一定相等.(3)向量夹角的概念要领会,比如正三角形ABC 中,AB →与BC →的夹角应为120°,而不是60°.双基自测1.(人教A 版教材习题改编)已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角为( ). A.π3 B.π4 C.2π3 D.3π4 解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,∴θ=2π3.答案 C2.若a ,b ,c 为任意向量,m ∈R ,则下列等式不一定成立的是( ). A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m bD .(a ·b )·c =a ·(b ·c )答案 D3.(xx·广东)若向量a ,b ,c 满足a ∥b ,且a ⊥c ,则c ·(a +2b )=( ). A .4 B .3 C .2 D .0解析 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0. 答案 D4.已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于( ). A .9 B .4 C .0 D .-4 解析 a -b =(1-x,4). 由a ⊥(a -b ),得1-x +8=0. ∴x =9. 答案 A5.(xx·江西)已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________. 解析 由|a |=|b |=2,(a +2b )(a -b )=-2, 得a ·b =2,cos 〈a ,b 〉=a ·b |a ||b |=22×2=12,又〈a ,b 〉∈[0,π]所以〈a ,b 〉=π3. 答案π3考向一 求两平面向量的数量积【例1】►(xx·合肥模拟)在△ABC 中,M 是BC 的中点,|AM →|=1,AP →=2PM →,则PA →·(PB →+PC →)=________.[审题视点] 由M 是BC 的中点,得PB →+PC →=2PM →.解析 如图,因为M 是BC 的中点,所以PB →+PC →=2PM →,又AP →=2PM →,|AM →|=1,所以PA →·(PB →+PC →)=PA →·2PM →=-4|PM →|2=-49|AM →|2=-49,故填-49.答案 -49当向量表示平面图形中的一些有向线段时,要根据向量加减法运算的几何法则进行转化,把题目中未知的向量用已知的向量表示出来,在这个过程中要充分利用共线向量定理和平面向量基本定理、以及解三角形等知识. 【训练1】 如图,在菱形ABCD 中,若AC =4,则CA →·AB →=________.解析 AB →=AO →+OB →,故CA →·AB →=CA →·(AO →+OB →)=CA →·AO →+CA →·OB →.而AO →=-12CA →,CA →⊥OB →.所以CA →·AB →=-12CA 2=-8.答案 -8考向二 利用平面向量数量积求夹角与模【例2】►已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.[审题视点] 由平面向量数量积的运算法则得a ·b 的值,再求其夹角的余弦值,从而得其夹角.解 (1)(2a -3b )·(2a +b )=61,解得a ·b =-6. ∴cos θ=a ·b |a ||b |=-64×3=-12,又0≤θ≤π,∴θ=2π3. (2)|a +b |2=a 2+2a ·b +b 2=13, ∴|a +b |=13.|a -b |2=a 2-2a ·b +b 2=37. ∴|a -b |=37.在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,是求距离常用的公式.【训练2】 已知a 与b 是两个非零向量,且|a |=|b |=|a -b |,求a 与a +b 的夹角. 解 设a 与a +b 的夹角为θ,由|a |=|b |得|a |2=|b |2. 又由|b |2=|a -b |2=|a |2-2a ·b +|b |2.∴a ·b =12|a |2, 而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |. ∴cos θ=a a +b |a ||a +b |=|a |2+12|a |2|a |·3|a |=32. ∵0°≤θ≤180°,∴θ=30°,即a 与a +b 的夹角为30°.考向三 平面向量的数量积与垂直问题【例3】►已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R ).(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.[审题视点] 利用a ⊥b ⇔x 1x 2+y 1y 2=0及a ∥b ⇔x 1y 2-x 2y 1=0,求解.解 (1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0.整理,得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0),a -b =(-2,0),∴|a -b |=-2+02=2. 当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4),∴|a -b |=2 5.综上,可知|a -b |=2或2 5.已知两向量垂直就是利用其数量积为零列出方程,通过解方程求出其中的参数值.在计算数量积时要注意方法的选择:一种方法是把互相垂直的两个向量的坐标求出来,再计算数量积;另一种方法是根据数量积的运算法则进行整体计算,把这个数量积的计算化归为基本的向量数量积的计算.【训练3】 已知平面内A ,B ,C 三点在同一条直线上,OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),且OA →⊥OB →,求实数m ,n 的值.解 由于A ,B ,C 三点在同一条直线上,则AC →∥AB →,AC →=OC →-OA →=(7,-1-m ),AB →=OB →-OA →=(n +2,1-m ),∴7(1-m )-(-1-m )(n +2)=0,即mn +n -5m +9=0,①又∵OA →⊥OB →,∴-2n +m =0.②联立①②,解得⎩⎪⎨⎪⎧ m =6,n =3或⎩⎪⎨⎪⎧ m =3,n =32.规范解答10——如何解决平面向量与解三角形的综合问题【问题研究】 平面向量与三角的综合性问题大多是以三角题型为背景的一种向量描述.它需要根据向量的运算性质将向量问题转化为三角的相关知识来解答,三角知识是考查的主体.考查的要求并不高,解题时要综合利用平面向量的几何意义等将题中的条件翻译成简单的数学问题.【解决方案】 解决这类问题时,首先要考虑向量工具性的作用,如利用向量的模与数量积转化边长与夹角问题,然后注意三角形中边角的向量关系式的表达形式,最后用三角知识规范解答.【示例】► (本题满分12分)(xx·安徽)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.先求sin A ,再利用面积公式求bc ,最后利用数量积及余弦定理可解决.[解答示范] 由cos A =1213,得sin A = 1-⎝ ⎛⎭⎪⎫12132=513.(2分) 又12bc sin A =30, ∴bc =156.(4分)(1)AB →·AC →=bc cos A =156×1213=144(8分) (2)a 2=b 2+c 2-2bc cos A =(c -b )2+2bc (1-cos A ) =1+2×156×⎝ ⎛⎭⎪⎫1-1213=25,又a >0(10分) ∴a =5.(12分)三角形的三边可与三个向量对应,这样就可以利用向量的知识来解三角形了,解决此类问题要注意内角与向量的夹角之间的联系与区别,还要注意向量的数量积与三角形面积公式之间关系的应用.【试一试】 已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,设AB →与BC →的夹角为θ.(1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值.[尝试解答] (1)∵AB →·BC →=6,∴|AB →|·|BC →|·cos θ=6.∴|AB →|·|BC →|=6cos θ. 又∵S =12|AB →|·|BC →|·sin(π-θ)=3tan θ, ∴3≤3tan θ≤3,即33≤tan θ≤1. 又∵θ∈(0,π),∴π6≤θ≤π4. (2)f (θ)=1+2cos 2θ+sin 2θ=cos 2θ+sin 2θ+2=2sin ⎝⎛⎭⎪⎫2θ+π4+2, 由θ∈⎣⎢⎡⎦⎥⎤π6,π4,得2θ∈⎣⎢⎡⎦⎥⎤π3,π2,∴2θ+π4∈⎣⎢⎡⎦⎥⎤712π,34π. ∴当2θ+π4=34π即θ=π4时,f (θ)min =3.。
第七单元平面向量教材复习课“平面向量”相关基础知识一课过对应学生用书1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:选C 若a与b都是零向量,则a=b,故选项C正确.2.关于平面向量,下列说法正确的是( )A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量解析:选C 对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D不正确,故选C.3.下列命题中,正确的个数是( )①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足|a|>|b|且a 与b 同向,则a>b ; ④若两个向量相等,则它们的起点和终点分别重合. A .0 B .1 C .2D .3解析:选A 对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误.综上,正确的命题个数是0.[清易错]1.对于平行向量易忽视两点: (1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. 2.单位向量的定义中只规定了长度没有方向限制. 1.若m∥n ,n∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向D .不一定共线解析:选D 可举特例,当n =0时,满足m∥n ,n∥k ,故A 、B 、C 选项都不正确,故D 正确.2.设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:选C “a |a|+b|b|=0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,故答案为C.向量共线定理及平面向量基本定理1.向量共线定理向量b 与a(a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 2.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. [小题速通]1.已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:选D ∵A ,B ,C 三点共线, ∴AB ―→∥AC ―→,设AB ―→=m AC ―→(m ≠0),即λa +b =m a +m μb ,∴⎩⎪⎨⎪⎧λ=m ,1=m μ,∴λμ=1.2.(2018·南宁模拟)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则m n的值为( )A .-12B.12 C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→D.16AC ―→+32AB ―→ 解析:选C 如图,∵EC ―→=2AE ―→,∴EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=16AC ―→+12AB ―→.[清易错]1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.2.平面向量基本定理指出:平面内任何一个非零向量都可以表示为沿两个不共线的方向分离的两个非零向量的和,并且一旦分解方向确定后,这种分解是唯一的.这一点是易忽视的.1.(2018·大连双基测试)给出下列四个命题: ①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0(λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数是( ) A .1 B .2 C .3D .4解析:选C ①错误,两向量是否共线是要看其方向而不是起点或终点;②正确,因为向量既有大小,又有方向,故向量不能比较大小,但向量的模均为实数,故可以比较大小;③错误,当a =0时,不论λ为何值,都有λa =0;④错误,当λ=μ=0时,λa =μb ,此时a 与b 可以是任意向量.2.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+yOB ―→,且BP ―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13.平面向量的运算1.向量的线性运算 向量运算定义法则(或几何意义)运算律三角形法则(1)平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)平面向量的坐标运算①向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则 a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1), |a|=x 21+y 21. ②向量坐标的求法设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1),|AB ―→|=x 2-x 12+y 2-y 12.(3)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. [小题速通]1.(2018·嘉兴测试)在△ABC 中,已知M 是BC 边的中点,设CB ―→=a ,CA ―→=b ,则AM ―→=( )A.12a -b B.12a +bC .a -12bD .a +12b解析:选A AM ―→=AC ―→+CM ―→=-CA ―→+12CB ―→=-b +12a.2.设D 是线段BC 的中点,且AB ―→+AC ―→=4AE ―→,则( ) A .AD ―→=2AE ―→ B .AD ―→=4AE ―→C .AD ―→=2EA ―→D .AD ―→=4EA ―→解析:选A ∵D 是线段BC 的中点, ∴AB ―→+AC ―→=2AD ―→, ∵AB ―→+AC ―→=4AE ―→, ∴AD ―→=2AE ―→.3.已知AC 为平行四边形ABCD 的一条对角线,AB ―→=(2,4),AC ―→=(1,3),则AD ―→=( ) A .(-1,-1) B .(3,7) C .(1,1)D .(2,4) 解析:选A 由题意可得AD ―→=BC ―→=AC ―→-AB ―→=(1,3)-(2,4)=(-1,-1). 4.已知A (2,3),B (4,-3),且AP ―→=3AB ―→,则点P 的坐标为________. 解析:设P (x ,y ),∵A (2,3),B (4,-3),且AP ―→=3AB ―→, ∴(x -2,y -3)=3(2,-6)=(6,-18), ∴⎩⎪⎨⎪⎧x -2=6,y -3=-18,解得x =8,y =-15,∴点P 的坐标为(8,-15). 答案:(8,-15)5.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1), 因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1. 答案:-16.设O 在△ABC 的内部,D 为AB 的中点,且OA ―→+OB ―→+2OC ―→=0,则△ABC 的面积与△AOC 的面积的比值为________.解析:∵D 为AB 的中点,∴OA ―→+OB ―→=2OD ―→, ∵OA ―→+OB ―→+2OC ―→=0, ∴OC ―→=-OD ―→, ∴O 是CD 的中点,∴S △AOC =S △AOD =12S △AOB =14S △ABC .答案:4[清易错]1.向量坐标不是向量的终点坐标,与向量的始点、终点有关系.2.数乘向量仍为向量,只是模与方向发生变化,易误认为数乘向量为实数. 3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.1.若向量AB ―→=(1,2),BC ―→=(3,4),则AC ―→=( ) A .(2,2) B .(-2,-2) C .(4,6)D .(-4,-6)解析:选C AC ―→=AB ―→+BC ―→=(4,6).2.已知向量a ,b 不共线,若AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 是( )A .梯形B .平行四边形C .矩形D .菱形解析:选A 因为AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b , 所以AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b , 所以AD ―→=2BC ―→,即直线AD 与BC 平行,而向量AB ―→与CD ―→不共线,即直线AB 与CD 不平行, 故四边形ABCD 是梯形.3.(2018·河北联考)已知向量a =(1,2),b =(-2,m ),若a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-2,-4) C .(-3,-6)D .(-4,-8)解析:选D 由a ∥b ,得m +4=0,即m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).1.向量的夹角2.平面向量的数量积3.平面向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.|x1x2+y1y2|≤x21+y21x22+y221.设向量e1,e2是两个互相垂直的单位向量,且a=2e1-e2,b=e2,则|a+2b|=( ) A.2 2 B. 5C .2D .4解析:选B ∵向量e 1,e 2是两个互相垂直的单位向量, ∴|e 1|=1,|e 2|=1,e 1·e 2=0, ∵a =2e 1-e 2,b =e 2, ∴a +2b =2e 1+e 2,∴|a +2b|2=4e 21+4e 1·e 2+e 22=5, ∴|a +2b|= 5.2.(2018·云南检测)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52解析:选D 因为a +2b =(-1+2m,4),2a -b =(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 3.已知|a|=1,|b|=2,a ·(a -b)=3,则a 与b 的夹角为( ) A.π3 B.π6C.π2D .π解析:选D 设a 与b 的夹角为θ,由题意知|a|=1,|b|=2, ∵a ·(a -b)=a 2-a ·b =12-1×2×cos θ=3, ∴cos θ=-1. 又θ∈[0,π], ∴a 与b 的夹角为π.4.已知向量a ,b 满足|a|=2,|b|=1,a 与b 的夹角为2π3,则|a +2b|=________.解析:∵(a +2b)2=a 2+4a ·b +4b 2=4+4×2×1×⎝ ⎛⎭⎪⎫-12+4=4,∴|a +2b|=2.答案:25.(2018·衡水中学检测)在直角三角形ABC 中,C =90°,AB =2,AC =1,若AD ―→=32AB ―→,则CD ―→·CB ―→=________.解析:∵AD ―→=32AB ―→,∴CD ―→·CB ―→=(CA ―→+AD ―→)·CB ―→=⎝ ⎛⎭⎪⎫CA ―→+32 AB ―→·CB ―→=⎝ ⎛⎭⎪⎫32CB ―→-12CA ―→·CB ―→=32CB ―→2,又∵C =90°,AB =2,AC =1, ∴CB =3,∴CD ―→·CB ―→=92.答案:926.(2018·东北三校联考)已知正方形ABCD 的边长为2,DE ―→=2EC ―→,DF ―→=12(DC ―→+DB ―→),则BE ―→·DF ―→=________.解析:如图,以B 为原点,BC 所在直线为x 轴,AB 所在直线为y轴建立平面直角坐标系.则B (0,0),E ⎝ ⎛⎭⎪⎫2,23,D (2,2). 由DF ―→=12(DC ―→+DB ―→),知F 为BC 的中点,所以F (1,0),故BE―→=⎝ ⎛⎭⎪⎫2,23,DF ―→=(-1,-2), ∴BE ―→·DF ―→=-2-43=-103.答案:-103[清易错]1.0与实数0的区别:0a =0≠0,a +(-a)=0≠0,a ·0=0≠0. 2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b. 3.在运用向量夹角时,注意其取值范围为[0,π]. 1.有下列说法:①向量b 在向量a 方向上的投影是向量;②若a ·b>0,则a 和b 的夹角为锐角,若a ·b<0,则a 和b 的夹角为钝角; ③(a ·b)c =a(b ·c); ④若a ·b =0,则a =0或b =0. 其中正确的说法个数为( ) A .0B .3C .4D .2答案:A2.已知a =(1,3),b =(2+λ,1),且a 与b 的夹角为锐角,则实数λ的取值范围是________.解析:由题意可得a ·b>0,且a ,b 不共线, 即⎩⎪⎨⎪⎧2+λ+3>0,2+λ1≠13,解得λ>-5,且λ≠-53.答案:⎝ ⎛⎭⎪⎫-5,-53∪⎝ ⎛⎭⎪⎫-53,+∞ 3.已知向量a ,b 满足a =(2,0),|b|=1,若|a +b|=7,则a 与b 的夹角是________. 解析:由|a +b|=7,得(a +b)2=a 2+2a ·b +b 2=4+2a ·b +1=7, ∴a ·b =1,∴|a |·|b |·cos 〈a ,b 〉=1,∴cos 〈a ,b 〉=12.又〈a ,b 〉∈[0,π],∴a ,b 的夹角为π3.答案:π3一、选择题1.(2018·常州调研)已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( )A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0, ∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-13(2AB ―→+BC ―→)=-23AB ―→-13BC ―→.2.(2018·合肥质检)已知O ,A ,B ,C 为同一平面内的四个点,若2AC ―→+CB ―→=0,则向量OC ―→等于( )A.23OA ―→-13OB ―→ B .-13OA ―→+23OB ―→C .2OA ―→-OB ―→D .-OA ―→+2OB ―→解析:选C 因为AC ―→=OC ―→-OA ―→,CB ―→=OB ―→-OC ―→, 所以2AC ―→+CB ―→=2(OC ―→-OA ―→)+(OB ―→-OC ―→) =OC ―→-2OA ―→+OB ―→=0, 所以OC ―→=2OA ―→-OB ―→.3.已知向量a 与b 的夹角为30°,且|a|=3,|b|=2,则|a -b|的值为( ) A .1 B.13 C .13D.7-2 3解析:选A 由向量a 与b 的夹角为30°,且|a|=3,|b|=2, 可得a ·b =|a |·|b |·c os 30°=3×2×32=3, 所以|a -b|=a -b2=a 2+b 2-2a ·b=3+4-2×3=1.4.(2018·成都一诊)在边长为1的等边△ABC 中,设BC ―→=a ,CA ―→=b ,AB ―→=c ,则a ·b +b ·c +c ·a =( )A .-32B .0 C.32D .3解析:选A 依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32. 5.已知非零向量a ,b 满足a ·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .3 2C .2 2D .3解析:选D 由非零向量a ,b 满足a ·b =0,可知两个向量垂直,由|a|=3,且a 与a+b 的夹角为π4,说明以向量a ,b 为邻边,a +b 为对角线的平行四边形是正方形,所以|b|=3.6.(2017·青岛二模)在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b)∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D 依题意得b =2⎣⎢⎡⎦⎥⎤a -⎝ ⎛⎭⎪⎫a -12b =(-4,2),所以2a +b =(-2,6),所以6x =-2×3=-6,x =-1.7.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点,且∠AOC =π4,且|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2 B. 2 C .2D .4 2解析:选A 因为|OC ―→|=2,∠AOC =π4,所以C (2,2), 又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ), 所以λ=μ=2,λ+μ=2 2.8.已知函数f (x )=A sin(πx +φ)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD ―→+BE ―→)·(BE ―→-CE ―→)的值为( )A .-1B .-12C.12D .2解析:选D 注意到函数f (x )的图象关于点C 对称,因此C 是线段DE 的中点,BD ―→+BE ―→=2BC ―→.又BE ―→-CE ―→=BE ―→+EC ―→=BC ―→, 且|BC ―→|=12T =12×2ππ=1,因此(BD ―→+BE ―→)·(BE ―→-CE ―→)=2BC ―→2=2. 二、填空题9.(2018·洛阳一模)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.解析:∵AB ―→=(a -1,3),AC ―→=(-3,4), 据题意知AB ―→∥AC ―→, ∴4(a -1)=3×(-3), 即4a =-5, ∴a =-54.答案:-5410.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b.答案:b -a -a -b11.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-312.若向量a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为________. 解析:∵a +c =0, ∴c =-a =(-2,-3),∴c ·b =8-21=-13,且|b|=65, ∴c 在b 方向上的投影为|c|cos 〈c ,b 〉=|c |·c ·b |c||b|=c ·b |b|=-1365=-655.答案:-655三、解答题13.已知向量a =(3,0),b =(-5,5),c =(2,k ). (1)求向量a 与b 的夹角; (2)若b ∥c ,求k 的值; (3)若b ⊥(a +c),求k 的值. 解:(1)设向量a 与b 的夹角为θ, ∵a =(3,0),b =(-5,5),∴a ·b =3×(-5)+0×5=-15,|a|=3,|b|=-2+52=52,∴cos θ=a ·b |a |·|b |=-153×52=-22.又∵θ∈[0,π], ∴θ=3π4.(2)∵b ∥c ,∴-5k =5×2,∴k =-2. (3)∵a +c =(5,k ),又b ⊥(a +c), ∴b ·(a +c)=0, ∴-5×5+5×k =0, ∴k =5.14.在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2, ∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12.高考研究课一平面向量的基本运算[典例] (1)(2018·济南模拟)在△ABC 中,AB 边的高为CD ,若CB =a ,CA ―→=b ,a ·b =0,|a|=1,|b|=2,则AD ―→=( )A.13a -13b B.23a -23b C.35a -35b D.45a -45b (2)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ=________.[解析] (1)∵a ·b =0,∴∠ACB =90°, ∴AB =5,CD =255,∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD ―→=45AB ―→=45(CB ―→-CA ―→)=45a -45b.(2)法一:由AB ―→=λAM ―→+μAN ―→,得AB ―→=λ·12(AD ―→+AC ―→)+μ·12(AC ―→+AB ―→),则⎝ ⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2AC ―→=0, 得⎝⎛⎭⎪⎫μ2-1AB ―→+λ2AD ―→+⎝ ⎛⎭⎪⎫λ2+μ2⎝ ⎛⎭⎪⎫AD ―→+12AB ―→ =0, 得⎝ ⎛⎭⎪⎫14λ+34μ-1AB ―→+⎝ ⎛⎭⎪⎫λ+μ2AD ―→=0.因为AB ―→,AD ―→不共线,所以由平面向量基本定理得⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.所以λ+μ=45.法二:连接MN 并延长交AB 的延长线于T , 由已知易得AB =45AT ,则45AT ―→=AB ―→=λAM ―→+μAN ―→, 即AT ―→=54λAM ―→+54μAN ―→,因为T ,M ,N 三点共线,所以54λ+54μ=1.故λ+μ=45.[答案] (1)D (2)45[方法技巧](1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.[即时演练]1.向量e 1,e 2,a ,b 在正方形网格中的位置如图所示,则a -b =( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2解析:选C 结合图形易得,a =-e 1-4e 2,b =-2e 1-e 2,故a -b =e 1-3e 2.2.如图,正方形ABCD 中,E 为DC 的中点,若AE ―→=λAB ―→+μAC ―→,则λ+μ的值为( )A.12 B .-12C .1D .-1解析:选 A 法一:由题意得AE ―→=AD ―→+12AB ―→=BC ―→+AB ―→-12AB ―→=AC ―→-12AB ―→,∴λ=-12,μ=1,∴λ+μ=12,故选A.法二:利用坐标法,以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为1,则A (0,0),B (1,0),C (1,1),E ⎝ ⎛⎭⎪⎫12,1,∴AE ―→=⎝ ⎛⎭⎪⎫12,1,AB ―→=(1,0),AC ―→=(1,1),则⎝ ⎛⎭⎪⎫12,1=λ(1,0)+μ(1,1),∴λ+μ=12.[典例] (1)在△ABC 中,点P 在BC 上,且BP =2PC ,点Q 是AC 的中点,若PA ―→=(4,3),PQ ―→=(1,5),则BC ―→等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)(2)(2018·绍兴模拟)已知点M (5,-6)和向量a =(1,-2),若MN ―→=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)[解析] (1)由题意,AC ―→=2AQ ―→=2(PQ ―→-PA ―→)=2(-3,2)=(-6,4),PC ―→=AC ―→-AP ―→=(-6,4)-(-4,-3)=(-2,7),∵BP ―→=2PC ―→,∴BC ―→=3PC ―→=(-6,21).(2)MN ―→=-3a =-3(1,-2)=(-3,6), 设N (x ,y ),则MN ―→=(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0.[答案] (1)B (2)A [方法技巧]向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求向量的坐标.解题过程中要注意方程思想的运用及正确使用运算法则.[即时演练]1.若向量a =(1,1),b =(1,-1),c =(-1,2),则c =( ) A .-12a +32bB.12a -32bC.32a -12b D .-32a +12b解析:选 B 设c =λ1a +λ2b ,则(-1,2)=λ1(1,1)+λ2(1,-1)=(λ1+λ2,λ1-λ2),所以λ1+λ2=-1,λ1-λ2=2,解得λ1=12,λ2=-32,所以c =12a -32b.2.已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点.若AB ―→∥a ,则点B 的坐标为________.解析:设B (x,2x ),AB ―→=(x -3,2x ). ∵AB ―→∥a ,∴x -3-2x =0,解得x =-3, ∴B (-3,-6). 答案:(-3,-6)共线向量定理及应用平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式出现,难度较小,属低档题.,常见的命题角度有:利用向量共线求参数或点的坐标; 利用向量共线解决三点共线问题.1.若向量a =(2,4)与向量b =(x,6)共线,则实数x =( ) A .2 B .3 C .4D .6解析:选B ∵a ∥b ,∴2×6-4x =0,解得x =3.2.已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).答案:(2,4)3.已知平面向量a =(1,m ),b =(2,5),c =(m,3),且(a +c)∥(a -b),则m =________. 解析:因为a =(1,m ),b =(2,5),c =(m,3), 所以a +c =(1+m ,m +3),a -b =(-1,m -5). 又(a +c)∥(a -b),所以(1+m )(m -5)+(m +3)=0,即m 2-3m -2=0, 解得m =3+172或m =3-172.答案:3±172[方法技巧]1.利用两向量共线求参数如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.2.利用两向量共线的条件求向量坐标一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.角度二:利用向量共线解决三点共线问题4.(2018·南阳五校联考)已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则k =________.解析:若点A ,B ,C 不能构成三角形,则向量AB ―→,AC ―→共线,∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k =0,解得k =1. 答案:15.设两个非零向量a 与b 不共线,若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b),求证:A ,B ,D 三点共线.证明:因为AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), 所以BD ―→=BC ―→+CD ―→=2a +8b +3(a -b) =5(a +b)=5AB ―→. 所以AB ―→,BD ―→共线.又它们有公共点B ,所以A ,B ,D 三点共线. [方法技巧]三点共线问题的求解策略解决点共线或向量共线问题时,要结合向量共线定理进行,但应注意向量共线与三点共线的区别与联系,当两个向量共线且有公共点时,才能得到三点共线.1.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ.又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ),所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.2.(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13(AC ―→-AB ―→)=43AC ―→-13AB ―→=-13AB ―→+43AC ―→.3.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC ―→=(-4,-3),则向量BC ―→=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:选A 法一:设C (x ,y ), 则AC ―→=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC ―→=(-4,-2)-(3,2)=(-7,-4). 法二:AB ―→=(3,2)-(0,1)=(3,1),BC ―→=AC ―→-AB ―→=(-4,-3)-(3,1)=(-7,-4).4.(2016·全国卷Ⅰ)设向量a =(m,1),b =(1,2),且|a +b|2=|a|2+|b|2,则m =________.解析:∵|a +b|2=|a|2+|b|2+2a ·b =|a|2+|b|2, ∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-25.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 解析:∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6. 答案:-66.(2015·全国卷Ⅱ)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.解析:∵λa +b 与a +2b 平行,∴λa +b =t (a +2b),即λa +b =t a +2t b ,∴⎩⎪⎨⎪⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.答案:127.(2014·全国卷Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO ―→=12(AB ―→+AC ―→),则AB ―→与AC ―→的夹角为________.解析:由AO ―→=12(AB ―→+AC ―→),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB ―→与AC―→的夹角为90°.答案:90°一、选择题1.(2018·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b.A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2018·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2018·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.若OA ―→=a ,OB ―→=b ,a 与b 不共线,则∠AOB 平分线上的向量OM ―→为( ) A.a |a|+b |b| B.a +b|a +b| C.|b|a -|a|b|a|+|b|D .λ⎝ ⎛⎭⎪⎫a|a|+b |b|,λ由OM ―→确定解析:选D 以OM 为对角线,以OA ―→,OB ―→方向为邻边作平行四边形OCMD ,∵OM 平分∠AOB ,∴平行四边形OCMD 是菱形. 设OC =OD =λ,则OC ―→=λa |a|,OD ―→=λb |b|,∴OM ―→=OC ―→+OD ―→=λ⎝ ⎛⎭⎪⎫a|a|+b |b|,且λ由OM ―→确定.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y =13. 7.(2018·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6B.π4C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 法一:取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD是直角三角形,AF =12,所以△APD 的面积为12×12×3=34.法二:以A 为原点,以BC 的垂直平分线为y 轴,建立如图所示的平面直角坐标系.∵等边三角形ABC 的边长为4, ∴B (-2,-23),C (2,-23),由题知AD ―→=14(AB ―→+AC ―→)=14[(-2,-23)+(2,-23)]=(0,-3),AP ―→=AD ―→+18BC ―→=(0,-3)+18(4,0)=⎝ ⎛⎭⎪⎫12,-3, ∴△ADP 的面积为S =12|AD ―→|·|DP ―→|=12×3×12=34.二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x+y +z =-1+12+12=0.答案:011.(2018·贵阳模拟)已知平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b ,则向量a 的坐标是________.解析:设a =(x ,y ),∵平面向量a ,b 满足|a|=1,b =(1,1),且a ∥b , ∴x 2+y 2=1,且x -y =0,解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22 12.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =1,AB =2,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示),若AP ―→=λED ―→+μAF ―→,其中λ,μ∈R ,则2λ-μ的取值范围是________.解析:以A 为坐标原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,则A (0,0),E (1,0),D (0,1),F ⎝ ⎛⎭⎪⎫32,12, 设P (cos α,sin α)(0°≤α≤90°), ∵AP ―→=λED ―→+μAF ―→,∴(cos α,sin α)=λ(-1,1)+μ⎝ ⎛⎭⎪⎫32,12 =⎝⎛⎭⎪⎫-λ+32μ,λ+μ2,∴cos α=-λ+32μ,sin α=λ+μ2,∴λ=14(3sin α-cos α),μ=12(cos α+sin α),∴2λ-μ=sin α-cos α=2sin(α-45°), ∵0°≤α≤90°,∴-45°≤α-45°≤45°, ∴-22≤sin(α-45°)≤22, ∴-1≤2sin(α-45°)≤1, ∴2λ-μ的取值范围是[-1,1]. 答案:[-1,1] 三、解答题13.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b.(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b),AE ―→=23AD ―→=13(a +b),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b)-a =13(b -2a),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2018·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +k c)∥(2b -a),求实数k 的值;(2)若d 满足(d -c)∥(a +b),且|d -c|=5,求d 的坐标. 解:(1)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c|=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).15.如图,在△OAB 中,OC ―→=14OA ―→,OD ―→=12OB ―→,AD 与BC 交于点M ,设OA ―→=a ,OB ―→=b.(1)用a ,b 表示OM ―→;(2)在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE ―→=p OA ―→,OF ―→=qOB ―→,求证:17p +37q=1.解:(1)设OM ―→=x a +y b ,由OC ―→=14OA ―→,得OM ―→=4x OC ―→+y b ,∵C ,M ,B 三点共线, ∴4x +y =1.①由OD ―→=12OB ―→,得OM ―→=x a +2y OD ―→,∵A ,M ,D 三点共线, ∴x +2y =1,②联立①②得,x =17,y =37.∴OM ―→=17a +37b.(2)证明:∵OE ―→=p OA ―→,OF ―→=qOB ―→, ∴OA ―→=1p OE ―→,OB ―→=1qOF ―→,∴OM ―→=17·1p OE ―→+37·1q OF ―→.∵E ,M ,F 三点共线, ∴17p +37q=1.1.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足PA ―→+x PB ―→+y PC ―→=0,设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S =λ2,S 3S=λ3,则λ2·λ3取最大值时,3x +y 的值为( ) A.12 B.32 C .1D .2解析:选D 由题意可知λ1+λ2+λ3=1. ∵P 是△ABC 的中位线EF 上任意一点,且EF ∥BC , ∴λ1=12,∴λ2+λ3=12,∴λ2λ3≤⎝⎛⎭⎪⎫λ2+λ322=116,当且仅当λ2=λ3=14时取等号,∴λ2·λ3取最大值时,P 为EF 的中点. 延长AP 交BC 于M ,则M 为BC 的中点, ∴PA =PM ,∴PA ―→=-PM ―→=-12(PB ―→+PC ―→),又∵PA ―→+x PB ―→+y PC ―→=0, ∴x =y =12,∴3x +y =2.2.如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP ―→=12PC ―→,点M ,N 在过点P 的直线上,若AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0),则λ+2μ的最小值为( )A .2 B.83 C .3D.103解析:选B ∵AM ―→=λAB ―→,AN ―→=μAC ―→(λ>0,μ>0), ∴MB ―→=MP ―→+PB ―→=(1-λ)AB ―→. ∵M ,P ,N 三点共线,∴存在实数k ,使MP ―→=k MN ―→=k (AN ―→-AM ―→)=-k λAB ―→+k μAC ―→. ∵BP ―→=12PC ―→,∴PB ―→=13CB ―→=13AB ―→-13AC ―→.∴MP ―→+PB ―→=⎝ ⎛⎭⎪⎫13-k λAB ―→+⎝ ⎛⎭⎪⎫k μ-13AC ―→=(1-λ)AB ―→, ∴⎩⎪⎨⎪⎧13-k λ=1-λ, ①k μ-13=0, ②由②得,k =13μ代入①得,13-λ3μ=1-λ,∴μ=λ3λ-2, ∴λ+2μ=λ+2λ3λ-2.设f (λ)=λ+2λ3λ-2,λ>0,∴f ′(λ)=9λ2-12λλ-2,令f ′(λ)=0,得λ=0或λ=43.当λ∈⎝ ⎛⎭⎪⎫0,43时,f ′(λ)<0,当λ∈⎝ ⎛⎭⎪⎫43,+∞时,f ′(λ)>0.∴λ=43时,f (λ)取极小值,也是最小值,又f ⎝ ⎛⎭⎪⎫43=83,∴f (λ)的最小值为83,即λ+2μ的最小值为83.高考研究课二平面向量的数量积及应用[全国卷5年命题分析][典例] (1)已知等边△ABC 的边长为2,若BC =3BE ,AD =DC ,则BD ―→·AE ―→等于( )A .-2B .-103C .2D.103(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ―→·CB ―→的值为______;DE ―→·DC ―→的最大值为________.[解析] (1)如图所示,BD ―→·AE ―→=(AD ―→-AB ―→)·(AB ―→+BE ―→)=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→ ·⎝ ⎛⎭⎪⎫AB ―→+13 AC ―→-13AB ―→=⎝ ⎛⎭⎪⎫12AC ―→-AB ―→·⎝ ⎛⎭⎪⎫13AC ―→+23AB ―→=16AC ―→2-23AB ―→2=16×4-23×4=-2. (2)法一:如图,DE ―→·CB ―→=(DA ―→+AE ―→)·CB ―→=DA ―→·CB ―→+AE ―→·CB ―→=DA ―→2=1, DE ―→·DC ―→=(DA ―→+AE ―→)·DC ―→ =DA ―→·DC ―→+AE ―→·DC ―→=AE ―→·DC ―→=|AE ―→|·|DC ―→|≤|DC ―→|2=1,故DE ―→·DC ―→的最大值为1.法二:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE ―→=(t ,-1),CB ―→=(0,-1),所以DE ―→·CB―→=(t ,-1)·(0,-1)=1.因为DC ―→=(1,0),所以DE ―→·DC ―→=(t ,-1)·(1,0)=t ≤1, 故DE ―→·DC ―→的最大值为1. 法三:由图知,无论E 点在哪个位置,DE ―→在CB ―→方向上的投影都是CB =1, ∴DE ―→·CB ―→=|CB ―→|·1=1.当E 运动到B 点时,DE ―→在DC ―→方向上的投影最大,即为DC =1, ∴(DE ―→·DC ―→)max =|DC ―→|·1=1. [答案] (1)A (2)1 1 [方法技巧]平面向量数量积的2种运算方法1.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示,AF ―→=AD ―→+DF ―→. 又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝ ⎛⎭⎪⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.2.(2018·豫东名校联考)如图,BC 是单位圆A 的一条直径,F是线段AB 上的点,且BF ―→=3FA ―→,若DE 是圆A 中绕圆心A 运动的一条直径,则FD ―→·FE ―→的值是________.解析:FD ―→·FE ―→=(FA ―→+AD ―→)·(FA ―→+AE ―→)=(FA ―→+AD ―→)·(FA ―→-AD ―→)=FA ―→2-AD ―→2=⎝ ⎛⎭⎪⎫142-1=-1516.答案:-1516平面向量数量积的性质平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题.常见的命题探究角度有:平面向量的模; 平面向量的夹角; 平面向量的垂直. 角度一:平面向量的模1.(2017·浙江高考)已知向量a ,b 满足|a|=1,|b|=2,则|a +b|+|a -b|的最小值是________,最大值是________.解析:法一:由向量三角不等式得,|a +b|+|a -b |≥|(a +b)-(a -b)|=|2b|=4. 又|a +b|+|a -b|2≤a +b2+a -b22=a 2+b 2=5,∴|a +b|+|a -b|的最大值为2 5.法二:设a ,b 的夹角为θ. ∵|a|=1,|b|=2, ∴|a +b|+|a -b|=a 2+b 2+a -b2=5+4cos θ+5-4cos θ. 令y =5+4cos θ+5-4cos θ, 则y 2=10+225-16cos 2θ.∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4,2 5 ],即|a +b|+|a -b|的最小值为4,最大值为2 5. 答案:4 2 52.已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c)=0,则|c|的最大值为________.解析:设c =(x ,y ),2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ),则由题意得(2-x )·(-3-x )+(2-y )·(3-y )=0,即⎝⎛⎭⎪⎫x +122+⎝⎛⎭⎪⎫y -522=132,表示以⎝ ⎛⎭⎪⎫-12,52为圆心,262为半径的圆,所以|c|的最大值为26.答案:26 [方法技巧]利用数量积求解长度问题的处理方法(1)a 2=a ·a =|a|2或|a|=a·a .。