[推荐学习]高中数学第一章三角函数1.5正弦函数的图像与性质优化训练北师大版必修4
- 格式:doc
- 大小:257.79 KB
- 文档页数:5
高中数学第一章三角函数1.5 正弦函数的图像与性质学案北师大版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.5 正弦函数的图像与性质学案北师大版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.5 正弦函数的图像与性质学案北师大版必修4的全部内容。
1.5 正弦函数的图像与性质知识梳理1。
任意角的正弦函数(1)单位圆:圆心在原点O,半径等于1的圆称为单位圆.(2)定义如图1-4—1所示,单位圆与角α的终边交于P点.设P(a,b),则P点纵坐标b是角α的函数,称为正弦函数,记为b=sinα(α∈R)。
通常用x、y表示自变量和因变量,将正弦函数表示为y=sinx(x∈R).图1—4-1(3)正弦线如图1—4-1所示,过点P作x轴的垂线PM,垂足为M.单位圆中的有向线段MP叫做角α的正弦线。
当角α的终边在x轴上时,M与P重合,此时正弦线变成一个点.(4)正弦线所表示的正弦值可如下确定:正弦线的方向是表示正弦值的符号,同y轴一致,向上为正,向下为负;正弦线的长度是正弦值的绝对值.(5)正弦函数定义的推广如图1—4—2所示,设P(x,y)是α的终边上任意一点,图1-4—2P 到原点的距离|OP|=r ,有r=22y x ,则sinα=ry 。
对于每一个确定的角α,总有唯一确定的正弦值与之对应,所以这个对应法则是以角α为自变量的函数,叫做正弦函数。
正弦函数值与点P 在角α终边上的位置无关,只依赖于角α的大小。
2.周期函数一般地,对于函数y=f (x),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,f (x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T 叫做这个函数的周期.对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期,今后提到的三角函数的周期,如没特别指明,一般都是指它的最小正周期.3.任意角的正弦值的符号(1)图形表示:各象限正弦函数符号,如图1—4—3所示.图1-4-3(2)表格表示.α的终边sinα x 非负半轴0 第一象限+y非负半轴+第二象限+x非正半轴0第三象限—y非正半轴-第四象限—4.正弦函数的图像和性质(1)图像:如图1-4-4所示.图1—4—4(2)性质.函数性质y=sinx 定义域R值域[-1,1]当x=2kπ+2π(k∈Z)时,y取最大值1;当x=2kπ-2π(k∈Z)时,y取最小值-1周期2π奇偶性奇函数单调性增区间[—2π+2kπ,2π+2kπ](k∈Z)减区间[—2π+2kπ,23π+2kπ](k∈Z)5。
2019-2020年高中数学第一章三角函数1.5正弦函数的图像与性质课后导练北师大版必修基础达标1.sin600°的值是()A. B.- C. D.解析:利用诱导公式2kπ+α,将sin600°化为sin(600°-2×360°).sin600°=sin(600°-720°)=sin(-120°)=.答案:D2.若sin(π-α)=,则sin(-5π+α)的值为()A. B. C.± D.0解析:化简已知和结论,易找出条件和结论的关系.由sin(π-α)=,知sinα=,而sin(-5π+α)=sin(-6π+π+α)=sin(π+α)=-sinα.∴sin(-5π+α)=.答案:B3.角α终边有一点P(t,t)(t≠0),则sinα的值是()A. B. C.± D.1解析:因P(t,t),∴P在第一或第三象限的角平分线上,∴sinα=±.答案:C4.函数y=的定义域是()A.[kπ-,kπ+],(k∈Z)B.[2kπ+,2kπ+π],(k∈Z)C.[kπ+,(k+1)π],(k∈Z)D.[2kπ,2kπ+π],(k∈Z)解析:由sinx≥0知2kπ≤α≤2kπ+π(k∈Z).答案:D5.y=属于()A.{1,-1}B.{1}C.{-1}D.{1,0,-1}解析:当sinx>0时,y=1;当sinx<0时,y=-1,故y∈{-1,1}.答案:A6.已知角θ的终边落在y=2x上,则sinα=_________.解析:取y=2x上的点(1,2),则r=,∴sinα=,同理取点(-1,-2),得sinα=.答案:±7.若x∈[-π,π],且sinx=,则x等于…()A.或B.-或C.或D.或-解析:考虑到是特殊值,因此角x必为特殊角,可先确定出符合条件的最小正角.由于sinx=,所以x的终边落在第三或第四象限.在[-π,π]内,只有-和.答案:D8.设sinx=t-3,则t的取值范围是()A.RB.(2,4)C.(-2,2)D.[2,4]解析:当x∈R时,-1≤sinx≤1,∴-1≤t-3≤1,∴2≤t≤4.答案:D9.判断下列函数的奇偶性.(1)f(x)=xsin(π+x);(2)f(x)=.解析:(1)函数的定义域为R,关于原点对称.f(x)=xsin(π+x)=-xsinx,f(-x)=-(-x)sin(-x)=-xsinx=f(x)∴f(x)是偶函数.(2)∵sinx-1≥0,∴sinx=1,x=2kπ+,(k∈Z),函数定义域是不关于原点对称的区间,故为非奇非偶函数.10.求下列函数的周期.(1)y=sinx;(2)y=2sin().解析:(1)如果令m=x,则sinx=sinm是周期函数,且周期为2π.∴sin(x+2π)=sinx,即sin[(x+4π)]=sinx,∴sin12x的周期4π.(2)∵2sin(+2π)=2sin(),即2sin[(x+6π)-]=2sin(),∴2sin()的周期是6π.综合运用11.若sinx>,则x满足()A.k·360°+60°<x<k·360°+120°B.60°<x<120°C.k·360°+15°<x<k·360°+75°D.k·180°+30°<x<k·180°+150°解析:可借助于单位圆中的正弦线或三角函数图象来解决.画出单位圆或正弦曲线草图,可确定满足sinx>的x应是k·360°+60°<x<k·360°+120°.答案:A12.下列函数中,周期为π、图象关于直线x=对称的函数是()A.y=2sin(+)B.y=2sin(-)C.y=sin(2x+)D.y=sin(2x-)解析:sin(ωx+φ)的周期是,对称轴方程是ωx+φ=kπ+(k∈Z),由周期为π,排除A、B.将x=代入2x+得,将x=代入2x-得,故选D.答案:D13.用五点法作y=2sin2x的图象时,首先应描出的五点的横坐标可以是()A.0,,π,,2πB.0,,,,πC.0,π,2π,3π,4πD.0,,,,解析:先写出y=sinx五点的横坐标.0,π,,2π.当2x=0时,x=0;当2x=时,x=;当2x=π时,x=;当2x=时,x=;当2x=2π时,x=π,故选B.答案:B14.y=|sinx|+sinx的值域是________.解析:当sinx≥0时,y=2sinx,这时0≤y≤2;当sinx<0时,y=0,∴函数的值域是[0,2].答案:[0,2]15.以一年为一个周期调查某商品出厂价及该商品在商店的销售价格时发现:该商品的出厂价是在6元的基础上按月份随正弦曲线波动的.已知3月份出厂价最高为8元,7月份出厂价最低为4元;而该商品在商店内的销售价格是在9元的基础上也是按月份随正弦曲线波动的,并且已知3月份价格最高为10元,7月份价格最低为8元.假设某商店每月购进这种商品m件,且当月能售完,请估计哪个月份赢利最大,并说明理由.解析:由条件得:出厂价格函数是y1=2sin(x-)+6;销售价格函数为y2=sin(x-)+9.则利润函数为y=m(y2-y1).=m[sin(x-)+9-2sin(x-)-6]=m[3-sin(x-)].所以当x=7时,y=4m.所以7月份赢利最大.拓展探究16.烟筒弯头是由两个圆柱形的烟筒焊在一起做成的,现在要用长方形铁皮做成一个直角烟筒弯头(两个圆柱呈垂直状),如右图,若烟筒的直径为12 cm,最短母线为6 cm,应将铁皮如何剪裁,才能既省工又省料?解析:如下图(2)所示,两个圆柱形烟筒的截面与水平面成45°角,设O是圆柱的轴与截面的交点,过O作水平面,它与截面的交线为CD,它与圆柱的交线是以O为圆心的圆,CD 是此圆的直径.又设B是这个圆上任意一点,过B作BE垂直CD于E,作圆柱的母线AB,交截平面与圆柱的交线于A,易知∠AEB=45°,所以AB=BE.设BD弧长为x,它所取的圆心角∠DOB=α,根据弧长公式,知α=.又设AB=y,在Rt△BOE 中,sinα=,故BE=6sinα,从而y=AB=BE=6sinα,即y=6sin.所以,铁皮在接口处的轮廓线是正弦曲线y=6sin(0≤x≤12π),其图象如下图(4).因为将两个圆柱形铁皮上的曲线对拼起来,正好可以完全吻合,所以最节约且最省工的裁剪方式如下图(5).。
1.5 正弦函数的图像与性质5分钟训练(预习类训练,可用于课前)1.函数y=1-sinx,x∈[0,2π]的大致图像是( )图1-4-2解析:对于本题可按如下程序进行思考:首先作出(或想象出)y=sinx,x∈[0,2π]的图像,如下图所示:然后作出(或想象出)y=-sinx,x∈[0,2π]的图像(请同学自己画出);最后作出(或想象出)y=-sinx+1的图像(请同学自己画出). 易得图像应为B. 本题亦可验证(0,1)、(2π,0)两点.答案:B2.在[0,2π]上画出函数y=sinx-1的简图. 解析:(1)第一步:按五个关键点列表;x 0 2ππ 23π 2π sinx 0 1 0 -1 0 sinx-1-1-1-2-1第二步:描点;第三步:画图,即用光滑的曲线将五个点连结起来.3.分析y=sinx-1及y=2sinx 的图像与y=sinx 的图像在[0,2π]上的位置关系. 解:(1)在同一坐标系中画出y=sinx-1与y=sinx 的图像.通过图像比较,y=sinx-1的图像是将y=sinx 的图像整个向下平行移动了1个单位得到的. (2)在同一坐标系中,画出y=2sinx 与y=sinx 的图像.通过图像很容易看出,将y=sinx 的图像上所有的点的横坐标保持不变,纵坐标扩大到原来的2倍,就可以得到y=2sinx 的图像. 10分钟训练(强化类训练,可用于课中) 1.函数y=sin (-x ),x∈[0,2π]的简图是( )图1-4-3解析:y=f(x)的图像与y=f(-x)的图像关于y 轴对称,先作出y=sinx 的图像,再作此图像关于y 轴的对称图像即得y=sin(-x)的图像. 答案:B2.函数y=4sinx 的图像( )A.关于y 轴对称B.关于直线x=6π对称 C.关于原点对称 D.关于直线x=π对称解析:先作出y=4sinx 的图像,通过图像可以看出y=4sinx 的图像关于原点对称. 答案:C3.函数y=-sinx 图像上五个关键点的坐标是____________.解析:函数y=-sinx 与y=sinx ,当x 取同一值时,函数值互为相反数 答案:(0,0),(2π,-1),(π,0),(23π,1),(2π,0)4.作出函数y=-sinx ,x∈[-π,π]的简图,并回答下列问题:(1)观察函数图像,写出满足下列条件的x 的区间:①sinx>0;②sinx<0. (2)直线y=21与y=-sinx ,x∈[-π,π]的图像有几个交点? 解:利用五点法作图,(1)根据图像可知:图像在x 轴上方的部分sinx>0,在x 轴下方的部分sinx<0,所以当x∈(-π,0)时,sinx>0;当x∈(0,π)时,sinx<0.(2)画出直线y=21,得知有两个交点. 30分钟训练(巩固类训练,可用于课后)1.函数y=x+sin|x|,x∈[-π,π]的大致图像是图1-4-4中的哪一项?( )图1-4-4解析:首先y=x+sin|x|在x∈[-π,π]上递增;其次y=x+sin|x|不是奇函数,故选C 答案:C 2.已知y=sinx(2π≤x≤25π)的图像和直线y=1围成一个封闭的平面图形,则这个封闭图形的面积是_____________.解析:如图:y=sinx(2π≤x≤25π)的图像与直线y=1围成的封闭图形的面积为(225ππ-)×2÷2=2π.答案:2π3.(2005高考上海卷,理10文11)函数f(x)=sinx+2|sinx|,x∈[0,2π]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围是___________. 解析:∵f(x)=⎩⎨⎧∈-∈],2,[,sin ),,0[,sin 3πππx x x x∴y=f(x)图像如图,故若y=f(x)与y=k 的图像有且仅有两个交点 则k 的范围1<k<3. 答案:1<k<3 4.方程sinx=10x的根的个数为____________. 解析:这是一个超越方程,无法直接求解,考虑利用数形结合思想,转化为求函数y=10x 的图像与函数y=sinx 的图像交点个数,借助图形直观求解.当x≥4π时,10410π≥x >1≥sinx,当0<x<4π时,sin 25π=1>25π0=10x,从而x>0时,有3个交点.由对称性知x<0时,也有3个交点,加上原点,一共有7个交点.答案:7 5.画出函数y=x sin 211-在[0,2π]上的简图,求出y 的最大值和最小值,并写出y 取得最大值和最小值时x 的值的集合. 解:列表:x 0 2π π 23π 2π y=sinx 0 1 0 -1 0 y=1-1 2sinx1121描点得y=x sin 211-在[0,2π]上的图像(如下图).由图可知y 的最大值为23,此时x 的取值集合是{23π};y 的最小值为21,此时x 的取值集合是{2π}. 6.利用正弦函数的图像,求满足条件sinx≥21的x 的集合. 解:作出正弦函数y=sinx ,x∈[0,2π]的图像.由图形可以得到,满足条件的x 的集合为[6π+2kπ,65π+2kπ],k∈Z .7.根据正弦函数的图像求满足sinx≥23的x 的范围. 解:首先在同一坐标系内作出函数y=sinx 与y=23的图像然后观察长度为2π(一个周期)的一个闭区间内的情形,如观察[0,2π]看到符合sinx≥23的x∈[3π,32π]. 最后由正弦函数的周期为2kπ(k∈Z ,k≠0),得x∈[2kπ+3π,2kπ+32π](k∈Z ).8.作函数y=|sinx|与y=sin|x|的图像.解:y=|sinx|=⎩⎨⎧∈+<<+-∈+≤≤,,222,sin ,,22,sin Z k k x k x Z k k x k x πππππππ其图像为y=sin|x|=⎩⎨⎧<-≥,0,sin ,0,sin x x x x其图像为。
函数y=sinx 的图象作法
第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).
第二步:在单位圆中画出对应于角6,0π,3π,2
π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).
第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x∈[0,2π]的图象.
根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x∈R 的图象.
把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.。
1.5.1 正弦函数的图像备课资料一、备用习题1.用“五点法”画出下列函数的图像: (1)y=2-sinx,x ∈[0,2π];(2)y=21+sinx,x ∈[0,2π]. 2.如图7中的曲线对应的函数解析式是( )图7A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx| 参考答案:1.解:按五个关键点列表如下:(1)如图8. (2)如图9.图8 图92.C二、潮汐与港口水深我国东汉时期的学者王充说过“涛之兴也,随月盛衰”.唐代学者张若虚(约660年至约720年)在他的《春江花月夜》中,更有“春江潮水连海平,海上明月共潮生”这样的优美诗句.古人把海水白天的上涨叫作“潮”,晚上的上涨叫作“汐”.实际上,潮汐与月球、地球都有关系.在月球万有引力的作用下,就地球的海面上的每一点而言,海水会随着地球本身的自转,大约在一天里经历两次上涨、两次降落.由于潮汐与港口的水深有密切关系,任何一个港口的工作人员对此都十分重视,以便合理地加以利用.例如,某港口工作人员在某年农历八月初一从0时至24时记录的时间t(h)与水深d(m)的关系如下:观察它们的位置关系,不难发现,我们可以选用正弦型函数d=5+2.5sin 6t,t ∈[0,24)来近似地描述这个港口这一天的水深d 与时间t 的关系,并画出简图(如图10).图10由此图或利用科学计算器,可以得到t 取其他整数时d 的近似值,从而把上表细化.(2)利用这个函数及其简图,例如这一年农历八月初二或九月初一,假设有一条货船的吃水深度(即船底与水面的距离)为4 m,安全条例规定至少要有1.5 m 的安全间隙(即船底与水底的距离),那么根据 5.5≤d≤7.5,就可以近似得到此船何时能进入港口和在港口能逗留多久.如果此船从凌晨2时开始卸货,吃水深度由于船减少了载重而按0.3 m/h 的速度递减,还可以近似得到卸货必须在什么时间前停止才能将船驶向较深的某目标水域.不同的日子,潮汐的时刻和大小是不同的.农历初一和十五涨的是大潮,尤以八月十五中秋为甚.以上的估算必须结合其他数据一起考虑,才能加以科学利用.。
§5 正弦函数的图像与性质5.1 正弦函数的图像知识点 正弦函数的图像[填一填]正弦函数的图像(1)图像:正弦函数y =sin x 的图像,又称为正弦曲线,如图所示.(2)画法:在平面直角坐标系中描出五个关键点: (0,0),(π2,1),(π,0),(32π,-1),(2π,0).然后再根据正弦函数的基本形状,用光滑曲线将这五个点连接起来,得到正弦函数的简图,这种画正弦曲线的方法称为“五点法”.[答一答]怎样用五点法画正弦函数y =sin x ,x ∈[0,2π]的图像?提示:画正弦函数y =sin x ,x ∈[0,2π]的图像,有五个关键点,它们是(0,0),(π2,1),(π,0),(3π2,-1),(2π,0),因此描出这五个点后,正弦函数y =sin x ,x ∈[0,2π]的图像的形状基本上就确定了.在描点时,光滑的曲线是指经过最高点或最低点的连线,要保证近似“圆弧”的形状,经过位于x 轴的点时要改变“圆弧的圆心的位置”.1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分. (2)因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠ 0的图像与函数y =sin x ,x ∈[0,2π]的图像形状完全一致,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”就是利用单位圆中正弦线作出正弦函数图像的方法.该方法作图较精确,但较为烦琐.(2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的形状.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的情况下常用此法,要切实掌握好.另外与“五点法”作图有关的问题经常出现在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必须是确定的五点.(3)用光滑的曲线顺次连接时,要注意线的走向,一般在最高(低)点的附近要平滑,不要出现“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.类型一画正弦函数的图像【例1】用“五点法”画函数y=-2+sin x,x∈[0,2π]的简图.【思路探究】本题主要考查正弦型函数y=sin x-2的图像的画法.在区间[0,2π]内找出关键的五个点,列表,并在平面直角坐标系内画出图像;也可以先画出函数y=sin x的图像,然后向下平移2个单位长度得到函数y=sin x-2的图像.【解】法1:按五个关键点列表:x 0π2π3π22πsin x 010-10-2+sin x -2-1-2-3-2 利用正弦函数的性质描点,如下图的实线部分.法2:先用“五点法”画出函数y=sin x,x∈[0,2π]的图像(如图中的虚线部分),再将其向下平移2个单位长度即可得到函数y=-2+sin x,x∈[0,2π]的图像(如图中的实线部分).规律方法函数y=sin x+m的图像既可以用五点法画出,也可以将函数y=sin x的图像向上(m>0)或向下(m<0)平移|m|个单位长度得到.用“五点法”作函数y=2sin x,x∈[0,2π]的图像.解:列表:x 0 π2 π 3π2 2π y =2sin x2-2描点、连线,得函数y =2sin x ,x ∈[0,2π]的图像,如图.类型二 利用正弦线求角的范围【例2】 利用三角函数线,求满足下列条件的角α的集合: (1)sin α=12;(2)sin α≤-12.【思路探究】 先借助单位圆作出正弦线,然后找出符合条件的角的集合. 【解】 (1)如图(1). 故使sin α=12的α的集合为{α|α=π6+2k π或α=5π6+2k π,k ∈Z }.图(1)(2)如图(2).在Rt △OMP 中, |OP |=1,|MP |=12,∴∠MOP =π6.故使sin α≤-12的α的集合为{α|2k π-5π6≤α≤2k π-π6,k ∈Z }.规律方法注意终边相同的角的表示方法及角的旋转方向.利用单位圆中的正弦线求满足sinα≥32的角α的集合.解:如图所示.使sinα≥32的α的集合为{α|2kπ+π3≤α≤2kπ+2π3,k∈Z}.类型三正弦曲线的应用【例3】判断方程x+sin x=0的根的个数.【思路探究】转化为判断函数y=-x和y=sin x的图像的交点个数.【解】在同一直角坐标系中画出y=-x和y=sin x的图像,如图所示.由图知y=-x和y=sin x的图像仅有一个交点,则方程x+sin x=0仅有一个根.规律方法关于方程根的个数问题,往往是运用数形结合法构造函数,转化为函数图像交点的个数问题.将本例中的方程改为“x 2-sin x =0”,试判断根的个数.解:在同一直角坐标系中画出y =x 2和y =sin x 的图像,如图所示.由图知y =x 2和y =sin x 的图像有两个交点,则方程x 2-sin x =0有两个根.——易错警示—— 忽略函数的定义域致误【例4】 若x 是三角形的最小角,则y =sin x 的值域是________.【错解】 (0,1]【正解】 由三角形内角和为π知,若x 为三角形中的最小角,则0<x ≤π3①,由y =sin x 图像(如图)知y ∈(0,32]. 【错解分析】 忽视①处x 为最小角,x 实际范围为(0,π3],认为x 为三角形的内角,有x ∈(0,π)或x ∈(0,π2],从而得出错误答案.【答案】 (0,32] 【防范措施】 深入挖掘题目中的条件要重视对题目条件的挖掘和充分的应用,否则会导致错误.如本例中用到了三角形中的最小角,需要在记住三角形内角和为π的基础上,推导出最小角的范围(0,π3].函数y =lg(3+2sin x ),x ∈[0,2π]有意义时,x 的取值范围是[0,43π)∪(53π,2π].解析:由题意知,3+2sin x >0,则sin x >-32.由y =sin x ,x ∈[0,2π]的图像(如图)可知x 的取值范围为[0,43π)∪(53π,2π].一、选择题1.函数y =sin x 的图像与x 轴的交点有( D ) A .0个 B .3个 C .6个D .无数个2.函数y =sin x 在某个区间上是减函数,则该区间可以是( D ) A .[0,π2]B .[0,π]C .[π,2π]D .[π2,3π2]解析:由y =sin x 的图像可知4个选项中只有D 正确. 3.关于正弦函数y =sin x 的图像,下列说法错误的是( D ) A .关于原点对称 B .有最大值1 C .与y 轴有1个交点D .关于y 轴对称解析:由正弦函数y =sin x 的图像可知,它关于原点对称,有最大值1,最小值-1,并且与y 轴有一个交点,坐标为(0,0),只有D 错误.二、填空题4.函数y =sin x 的图像上最低点的纵坐标等于-1. 三、解答题5.用五点法画出函数y=2-sin x,x∈[0,2π]的图像.解:按五个关键点列表:x 0π2π3π22πsin x 010-10 y=2-sin x 2123 2 在直角坐标系中描出这五个点,作出相应的函数图像,如图所示.。
1.5 正弦函数典题精讲1.周期函数一定都有最小正周期吗?剖析:并不是所有周期函数都存在最小正周期.很多同学对此产生质疑,其突破的方法是:通过经验的积累,考虑特殊的周期函数.例如:常数函数f(x)=C(C为常数),x∈R.当x取定义域内的任意值时,函数值都是C,即对于函数f(x)的定义域内的每一个值x都有f(x+T)=C,因此f(x)是周期函数,由于T可以是任意不为零的常数,而正数集合中没有最小者,所以f(x)没有最小正周期.2.正弦函数线有何作用?剖析:有的同学学习了正弦线后,感到正弦线没有什么用处.其突破的路径是准确理解正弦线的定义和平时经验的积累.正弦线是当点P为终边与单位圆交点时,正弦函数值的直观表现形式.正弦线的方向和长度直观反映了正弦值的符号和绝对值.由正弦线的方向判断正弦值的正负,由正弦线的长度确定正弦值的绝对值大小.由此可见,用正弦线表示正弦函数值,反映了变换与转化、数形的结合与分离的思想方法.正弦函数在各象限的符号除从各象限点的坐标的符号结合正弦函数的定义来记忆之外,也可以根据画出的正弦线的方向记忆.正弦线的主要作用是解三角不等式、证明三角不等式、求函数定义域及比较三角函数式的大小,同时它也是以后学习正弦函数的图像与性质的基础.例如:求函数y=log2(sinx)的定义域.思路分析:转化为解三角不等式sinx>0.图1-4-5解:要使函数有意义,x的取值需满足sinx>0.如图1-4-5所示,MP是角x的正弦线,则有sinx=MP >0, ∴MP 的方向向上. ∴角x 的终边在x 轴的上方. ∴2kπ<x <2kπ+π(k∈Z ).∴函数y=log 2(sinx)的定义域是(2kπ,2kπ+π)k∈Z .由以上可看出,利用三角函数线,数形结合,能使问题得以简化.三角函数线是利用数形结合思想解决有关三角函数问题的重要工具,通过平时经验的积累,掌握三角函数线的应用. 3.在推广了的三角函数定义中,为什么三角函数值与点P 在角α终边上的位置无关,只依赖于角α的大小?剖析:联系相似三角形的知识来分析.设P 0(x 0,y 0)是角α终边上的另一点,|OP 0|=r 0,由相似三角形的知识可知,只要点P 0在α终边上,总有r y =0r y .因此所得的比值都对应相等.所以角α的正弦函数值只依赖于终边的位置即α的大小,与点P 在角α终边上的位置无关. 典题精讲例1(经典回放)sin 600°的值是( )A.21 B.-21C.23D.-23思路解析:sin600°=sin(360°+240°)=sin240°=sin(180°+60°)=-sin60°=-23. 答案:D绿色通道:诱导公式选择的一般步骤:先将-α化为正角;再用2kπ+α(k∈Z )化为[0,2π)内的角;再用π+α,π-α,2π-α化为锐角的三角函数.由此看利用诱导公式能将任意角的三角函数化为锐角的三角函数,也就是说:诱导公式真是好,负化正后大化小. 变式训练sin(-2 010°)的值是( )A.-21B.23C.21D.-23思路解析:sin(-2 010°)=sin [(-6×360°)+150°]=sin150°=sin(180°-30°)=sin30°=21. 答案:C例2(2005某某高考卷,理12)f(Z )是定义在R 上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是( ) A.2B.3C.4D.5思路解析:∵f(x)是奇函数,∴f(0)=-f(-0),f(-2)=-f(2)=0. ∴f(0)=0,f(2)=0.∵f(x)是以3为周期的周期函数,∴f(-2)=f(3-2)=f(1)=0,f(3)=f(0)=0,f(4)=f(1+3)=f(1)=0. ∴f(5)=f(3+2)=f(2)=0.∴在区间(0,6)内f(1)=f(2)=f(3)=f(4)=f(5)=0. 答案:D绿色通道:高考试题中,通常不会单独考查周期函数,往往是周期函数和三角函数,和函数的奇偶性、单调性等综合考查.一般是利用周期函数的性质f(x+T)=f(x),解决求函数值、解析式及解方程等问题.变式训练定义在R 上的偶函数f(x)满足f(3+x)=f(3-x),若当x∈(0,3)时,f(x)=2x,则当x∈(-6,-3)时,f(x)的解析式为( ) A.2x+6B.-2x+6C.2x-6D.-2x-6思路解析:∵f(x)是偶函数,∴f(-x)=f(x). 又∵f(3+x)=f(3-x),∴f(x)的图像关于直线x=3对称.∴f(x+6)=f(x+3+3)=f[3-(x+3)]=f(-x)=f(x).∴f(x)是周期函数,6是一个周期.当x∈(-6,-3)时,有0<x+6<3, ∴f(x)=f(x +6)=2x+6. 答案:A例3已知角α的终边经过点P (3,4),求sinα. 思路分析:分别写出x 、y 、r 的值,应用定义求解. 解:由x=3,y=4,得r=2243+=5. ∴sinα=r y =54. 绿色通道:如果已知角的终边经过的一个点求三角函数值,通常应用三角函数的定义求解. 变式训练已知角α的终边经过点P (3t ,4t ),t≠0,求sinα. 思路分析:应用三角函数的定义直接求解,注意t 的取值符号. 解:由x=3t ,y=4t ,得r=22)4()3(t t +=5|t|.当t >0时,r=5t ,∴sinα=54; 当t <0时,r=-5t ,∴sinα=-54.例4(2006某某高考卷,文8) 设a >0,对于函数f(x)=xx sin sin α+(0<x <π),下列结论正确的是( )A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值思路解析:令t=sinx,0<x <π,则t∈(0,1],那么函数f(x)= xx sin sin α+(0<x <π)的值域为函数y=1+t a ,t∈(0,1]的值域,又a >0,可以证明y=1+ta,t∈(0,1]是一个减函数,所以函数f(x)有最小值而无最大值. 答案:B绿色通道:(1)求三角函数最值的常用方法:换元法.设sinx=t ,将三角函数转化为二次函数等其他常见的初等函数,再求最值;(2)形如“y=dx c bx a ++sin sin 的函数的最值问题,常用换元法,也可用分离变量法.变式训练1求函数y=2sin 1sin 3++x x 的值域.思路分析:此类题型可转化为分式函数的值域的求法,即分离常数法,或通过反解sinx 法,利用sinx 的值域确定函数的值域. 解法一:设t=sinx,x∈R ,则t∈[-1,1],∴函数f(x)= 2sin 1sin 3++x x 的值域为函数y=213++t t ,t∈[-1,1]的值域,可以证明y=213++t t ,t∈[-1,1]是增函数.∴2113+-+-≤y≤2113++. ∴-2≤y≤34.∴函数的值域为[-2,34].解法二:由y=2sin 1sin 3++x x ,得sinx=y y --312.∵|sinx|≤1, ∴|y y --312|≤1,解得-2≤y≤34. ∴函数的值域为[-2,34]. 变式训练2求函数y=(5-sinx)(2+sinx)的最大值及此时x 的集合. 思路分析:利用换元法转化为求二次函数的最大值. 解:设sinx=t ,则-1≤t≤1,y=(5-sinx)(2+sinx)=(5-t)(2+t)=-t 2+3t+10=-(t-23)2+449,则当t=1时,y 取最大值12,此时sinx=1,x=2kπ+2π(k∈Z ),所以函数y=(5-sinx)(2+sinx)最大值为1,此时x 的集合是{x|x=2kπ+2π,k∈Z }. 例5作出函数y=-s inx(0≤x≤2π)的图像.思路分析:利用“五点法”作图,关键是找出五个关键点,所以,最好利用列表整理数据,使问题既清晰又准确. 解:列表:x 0 2π π 23π 2π sinx 0 1 0 -1 0 -sinx-11描点作图(图1-4-6):图1-4-6绿色通道:由于正弦曲线直观地表现了正弦函数数的各种性态,因此要熟悉图像,掌握五点法作图并能应用图像解决有关问题.“五点”即y=sinx 的图像在一个最小正周期内的最高点、最低点及与x 轴的交点,一般地,观察y=sinx 的一个周期,常常作区间[0,2π]或[-2π,23π]上的图像. 变式训练1求函数y=x sin -的定义域.思路分析:转化为解不等式-sinx≥0.利用图像法解不等式.解:在平面直角坐标系中画出函数y=-sinx 的图像,如图1-4-6所示. 在[0,2π]内,当-sinx≥0,记函数的图像位于x 轴上方时,π≤x≤2π. 所以函数y=x sin -的定义域是[2kπ+π,2kπ+2π]k∈Z . 变式训练2函数y=|sinx|的周期是__________.思路解析:画函数y=|sinx|的图像,观察图像得函数周期为π. 答案:π 问题探究问题1(1)正弦曲线关于原点、(π,0)、(-π,0)成中心对称图形.结合正弦函数的图像,你发现正弦曲线还有其他对称中心吗? (2)正弦曲线关于直线x=-2π、x=-2π、x=23π成轴对称图形.结合正弦函数的图像,你发现正弦曲线还有其他对称轴吗?导思:探究思路是由特殊到一般,利用归纳推理:先归纳,再猜想出结论,最后利用对称的定义作出证明.探究:(1)由于正弦函数是奇函数,则其图像关于原点对称. 设点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点,则y 0=sinx 0. 那么点P(x 0,y 0)关于点(π,0)的对称点为M(2π-x 0,-y 0),∵sin(2π-x 0)=-sinx 0, ∴sin(2π-x 0)=-y 0,即点M(2π-x 0,-y 0)也在正弦函数y=sinx 的图像上. 又∵点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点, ∴正弦曲线关于(π,0)成中心对称图形. 同理可证正弦曲线关于(-π,0)成中心对称图形.图1-4-7如图1-4-7所示,观察正弦函数的图像,可归纳,得原点、(±π,0)都是正弦曲线与x 轴的交点,可猜想正弦曲线与x 轴的交点(kπ,0)(k∈Z )都是正弦曲线的对称中心. 证明:设点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点,则y 0=sinx 0. 则点P(x 0,y 0)关于点(kπ,0)的对称点M(2kπ-x 0,-y 0), ∵sin(2kπ-x 0)=-sinx 0, ∴sin(2kπ-x 0)=-y 0,即点M(2kπ-x 0,-y 0)也在正弦函数y=sinx 图像上. ∵点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点, ∴正弦曲线关于(kπ,0)成中心对称图形.综上可得,正弦曲线的对称中心是正弦曲线与x 轴的交点,即此时的正弦值为0;并且任意相邻的两个对称中心正好相差半个周期.(2)设点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点,则y 0=sinx 0. 则点P(x 0,y 0)关于直线x=2的对称点为M(π-x 0,y 0), ∵sin(π-x 0)=sinx 0, ∴sin(π-x 0)=y 0,即点M(π-x 0,y 0)也在正弦函数y=sinx 图像上.∵点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点,∴正弦曲线关于直线x=2π成轴对称图形. 同理可证:正弦曲线关于直线x=-2π、x=23π成轴对称图形.观察正弦函数的图像,可归纳得:直线x=2π、x=-2π、x=23π都过正弦曲线最高或最低点,可猜想过正弦曲线最高或最低点的直线x=kπ+2π(k∈Z )都是正弦曲线的对称轴.证明:设点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点,则y 0=sinx 0, 则点P(x 0,y 0)关于直线x=kπ+2π的对称点M(2kπ+π-x 0,y 0), ∵sin(2kπ+π-x 0)=sin(π-x 0)=sinx 0, ∴sin(2kπ-x 0)=y 0,即点M(2kπ+π-x 0,y 0)也在正弦函数y=sinx 图像上. ∵点P(x 0,y 0)是正弦函数y=sinx 图像上任意一点, ∴正弦曲线关于直线x=kπ+2π(k∈Z )成轴对称图形. 综上可得,正弦曲线的对称轴过正弦曲线的最高或最低点且垂直于x 轴的直线,即此时的正弦值为最大值或最小值;并且任意相邻的两条对称轴正好相差半个周期.。
1.5 正弦函数性质与图像1.正弦线及五点法(1)正弦线设任意角α终边与单位圆交于点P,过点P作x轴垂线,垂足为M,我们称线段MP为角α正弦线.(2)五点法用“五点法〞作正弦函数y=sin x,xx轴交点与函数取最大值、最小值时点.预习交流1用“五点法〞作y=sin x,x∈[0,2π]图像应注意哪些问题?2.正弦函数图像与性质R[-1,1]正弦曲线是中心对称图形,其对称中心坐标为(kπ,0)(k∈Z);正弦曲线是轴对称图形,其对称轴方程是x=kπ+π2(k∈Z).预习交流2(1)用五点法作函数y=-sin x图像时,首先应描出五点横坐标是______________________.(2)函数y=11+sin x定义域是__________;函数y=-3sin x+1值域是______,单调递减区间是______.答案:1.(2)(0,0) ⎝⎛⎭⎪⎪⎫π2,1 (π,0) ⎝ ⎛⎭⎪⎪⎫3π2,-1 (2π,0) 预习交流1:提示:(1)明确正弦曲线构造特征.由于用“五点法〞作图时准确度较差,因此画图之前要做到心中有图,明确正弦曲线变化趋势与规律.(2)弄清五个关键点意义.其中,平衡点是正弦曲线凹凸方向改变位置.最高点与最低点是正弦曲线上升或下降变化趋势改变位置. (3)熟练画图步骤.首先选取正弦函数一个周期[0,2π],再将其四等分,确定五个关键点位置,最后用平滑曲线连接.预习交流2:(1)0,π2,π,3π2,2π(2)⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x ≠3π2+2k π,k ∈Z [-2,4]⎢⎢⎡⎥⎥⎤2k π-π2,2k π+π2(k ∈Z )1.正弦函数图像(1)从函数y =sin x ,x ∈[0,2π)图像来看,对应于sin x =12x 有( ).A .1个值B .2个值C .3个值D .4个值(2)用“五点法〞作函数y =-1+sin x (x ∈[0,2π])简图. 1.正弦函数y =sin x (x ∈R )图像一条对称轴是( ). A .x 轴B .y 轴C .直线x =π2D .直线x =π2.用“五点法〞作出y =2sin x ,x ∈[0,2π]简图.作函数y =a sin x +b 图像步骤2.正弦函数定义域问题 求函数y =log 21sin x-1定义域.思路分析:由于所求函数定义域解析式中含有根号,又含有对数,须保证被开方数大于等于0,且真数大于0,解答此题时可采用不等式组形式由里向外把使函数有意义式子罗列,然后求交集.求以下函数定义域: (1)y =1-2sin x ; (2)y =log 2sin x ; (3)y =log 122sin x -1.求函数定义域通常是解不等式组,在求解综合性强含三角函数复合函数定义域时,那么常利用数形结合,在函数图像或单位圆中表示,然后取各局部公共局部(即交集).3.正弦函数值域、最值问题 求以下函数值域:(1)y =3-2sin 2x ;(2)y =sin 2x -sin x +1,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π3,3π4. 思路分析:对于(1),直接利用y =sin x 值域为[-1,1]分析求解;对于(2),利用换元法,转化为二次函数区间最值求解.求函数y =74+sin x -sin 2x (x ∈R )值域.求正弦函数最值或值域常用方法是:①利用sin x 有界性,即|sin x |≤1; ②利用换元法转化为二次函数区间最值问题; ③化为sin x =f (y )形式,通过|f (y )|≤1求解. 4.正弦函数单调性及应用利用正弦函数单调性,比拟以下各对正弦值大小. (1)sin 190°与sin 200°;(2)sin ⎝ ⎛⎭⎪⎪⎫-π10与sin ⎝⎛⎭⎪⎪⎫-π11; (3)sin 15π8与sin 10π9.思路分析:解答此题关键是对函数解析式恰当化简,利用y =sinx 在区间⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2上是增加来判断函数值大小. 不通过求值,指出以下各式大于零还是小于零. (1)sin 135°-sin 144°;(2)sin ⎝ ⎛⎭⎪⎪⎫-π18-sin ⎝⎛⎭⎪⎪⎫-π10;(3)sin ⎝ ⎛⎭⎪⎪⎫-23π5-sin ⎝ ⎛⎭⎪⎪⎫-17π4.解:(1)正弦函数在定义域R 上不是单调函数.(2)因为正弦函数是周期函数,周期为2π,所以研究正弦函数单调性,只要研究一个周期内(如[0,2π])单调性即可.2.利用单调性比拟三角函数值大小步骤: (1)异名函数化为同名函数.(2)利用诱导公式把角化到同一单调区间上. (3)利用函数单调性比拟大小.3.求函数单调区间时,要充分利用正弦函数递增、递减区间. 在求复合函数单调区间时,要先求定义域,同时还要注意内层、外层函数单调性.5.三角函数奇偶性问题 判断以下函数奇偶性. (1)f (x )=x sin(π+x ); (2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ).思路分析:解答此题要注意以下两个关键问题:(1)先判断定义域是否关于原点对称.(2)注意用诱导公式及对数运算性质变形,判断f (x )与f (-x )关系.f (x )=ax +b sin 3x +1(a ,b 为常数).(1)假设g (x )=f (x )-1,试证明g (x )为奇函数;(2)假设f (5)=7,求f (-5).(1)判断函数奇偶性方法特别提醒:对于正弦函数要注意诱导公式sin(-x )=-sin x 应用.(2)正弦函数奇偶性问题求解方法是:首先在所求区间上设自变量,然后转化到条件上来解决.答案:活动与探究1:(1)B解析:由图像可知,在[0,2π)内直线y =12与函数y =sin x 有两个交点,故sin x =12在[0,2π)内有两个解.(2)解:方法一:按五个关键点列表方法二:可先用“五点法〞画y =sin x (x ∈[0,2π])图像(如上图中虚线图),再将其向下平移1个单位也可得到y =-1+sin x ,x ∈[0,2π]图像.2.解:①列表:活动与探究2:解:为使函数有意义,需满足⎩⎪⎨⎪⎧ log 21sin x -1≥0,sin x >0,即⎩⎪⎨⎪⎧sin x ≤12,sin x >0,由正弦函数图像(见图(1))或单位圆(见图(2))可得,如下图.所以函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪2k π<x ≤2k π+π6或2k π+5π6≤x <2k π+π,k ∈Z . 迁移与应用:解:(1)由⎩⎪⎨⎪⎧1-2sin x ≥0,-1≤sin x ≤1,得-1≤sin x ≤12.由正弦函数图像可得,所求函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪2k π-7π6≤x ≤2k π+π6,k ∈Z . (2)由sin x >0,得2k π<x <2k π+π,k ∈Z .∴所求函数定义域是{x |2k π<x <2k π+π,k ∈Z }.(3)由2sin x -1>0,得2sin x -1>0,∴sin x >12.由正弦函数图像可得,所求函数定义域是⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫2k π+π6<x <2k π+5π6,k ∈Z .活动与探究3:解:(1)∵-1≤sin 2x ≤1, ∴-2≤-2sin 2x ≤2.∴1≤3-2sin 2x ≤5.∴函数值域为[1,5].(2)y =sin 2x -sin x +1=⎝⎛⎭⎪⎪⎫sin x -122+34.设t =sin x ,∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤π3,3π4, ∴由正弦函数图像知22≤t ≤1.而函数y =⎝ ⎛⎭⎪⎪⎫t -122+34在⎣⎢⎢⎡⎦⎥⎥⎤22,1上单调递增,∴当t =22,即x =3π4时,y min =3-22,当t =1,即x =π2时,y max =1.∴函数值域是⎣⎢⎢⎡⎦⎥⎥⎤3-22,1.迁移与应用:解:设sin x =t ,那么t ∈[-1,1].∴y =-t 2+t +74=-⎝ ⎛⎭⎪⎪⎫t -122+2. ∴当t =-1时,y min =-14;当t =12时,y max =2.∴所求函数值域为⎣⎢⎢⎡⎦⎥⎥⎤-14,2. 活动与探究4:解:(1)sin 190°=sin(180°+10°)=-sin 10°,sin 200°=sin(180°+20°)=-sin 20°. ∵y =sin x 在(0°,90°)上单调递增,∴sin 10°<sin 20°,从而-sin 10°>-sin 20°, ∴sin 190°>sin 200°.(2)∵y =sin x 在⎝ ⎛⎭⎪⎪⎫-π2,π2上单调递增, 且-π2<-π10<-π11<π2,∴sin ⎝ ⎛⎭⎪⎪⎫-π10<sin ⎝⎛⎭⎪⎪⎫-π11. (3)sin 15π8=sin ⎝⎛⎭⎪⎪⎫2π-π8=-sin π8,sin 10π9=sin ⎝⎛⎭⎪⎪⎫π+π9=-sin π9,∵π2>π8>π9>0,∴sin π8>sin π9. ∴-sin π8<-sin π9.∴sin 15π8<sin 10π9.迁移与应用:解:(1)∵90°<135°<144°<180°,且y =sin x 在(90°,180°)上单调递减,∴sin 135°>sin 144°.∴sin 135°-sin 144°>0.(2)∵0>-π18>-π10>-π2,且y =sin x 在⎣⎢⎢⎡⎦⎥⎥⎤-π2,0上单调递增,∴sin ⎝ ⎛⎭⎪⎪⎫-π18>sin ⎝⎛⎭⎪⎪⎫-π10. ∴sin ⎝ ⎛⎭⎪⎪⎫-π18-sin ⎝⎛⎭⎪⎪⎫-π10>0. (3)sin ⎝ ⎛⎭⎪⎪⎫-235π=sin ⎝⎛⎭⎪⎪⎫-4π-3π5 =-sin 3π5=-sin 2π5,sin ⎝ ⎛⎭⎪⎪⎫-174π=sin ⎝⎛⎭⎪⎪⎫-4π-π4=-sin π4.∵0<π4<2π5<π2,且y =sin x 在⎝⎛⎭⎪⎪⎫0,π2上单调递增,∴sin π4<sin 2π5.∴-sin π4>-sin 2π5,即sin ⎝ ⎛⎭⎪⎪⎫-174π>sin ⎝ ⎛⎭⎪⎪⎫-23π5. ∴sin ⎝ ⎛⎭⎪⎪⎫-23π5-sin ⎝ ⎛⎭⎪⎪⎫-17π4<0. 活动与探究5:解:(1)f (x )=-x ·sin x ,定义域为R .∵f (-x )=x ·sin(-x )=-x ·sin x =f (x ), ∴函数f (x )为偶函数.(2)由2sin x -1≥0得sin x ≥12,∴x ∈⎣⎢⎢⎡⎦⎥⎥⎤2k π+π6,2k π+5π6(k ∈Z ). 定义域不关于原点对称,故f (x )为非奇非偶函数. (3)∵1+sin 2x >|sin x |≥-sin x , ∴sin x +1+sin 2x >0.∴函数定义域为R ,关于原点对称. 又f (-x )+f (x )=lg(-sin x +1+sin 2x )+lg(sin x +1+sin 2x )=lg[(-sin x +1+sin 2x )(sin x +1+sin 2x )] =lg(1+sin 2x -sin 2x )=lg 1=0, ∴f (-x )=-f (x ).∴f (x )为奇函数.迁移与应用:解:(1)g (x )=f (x )-1=ax +b sin 3x ,定义域为R . ∵g (-x )=a (-x )+b sin 3(-x )=-ax -b sin 3x =-g (x ), ∴g (x )为奇函数. (2)∵f (x )=g (x )+1,∴f (5)=g (5)+1=7,∴g (5)=6,∴f (-5)=g (-5)+1=-g (5)+1=-6+1=-5. 1.函数f (x )=1+sin x 最小正周期是( ).A.π2B .πC.3π2D .2π2.函数y =sin x3定义域是( ).A .RB .[-1,1] C.⎣⎢⎢⎡⎦⎥⎥⎤-13,13D .[-3,3]3.函数y =sin x ⎝⎛⎭⎪⎪⎫π6≤x ≤2π3值域是( ). A .[-1,1]B.⎣⎢⎢⎡⎦⎥⎥⎤12,1 C.⎣⎢⎢⎡⎦⎥⎥⎤12,32D.⎣⎢⎢⎡⎦⎥⎥⎤32,1 4.以下两种说法:①y =sin x 在⎣⎢⎢⎡⎦⎥⎥⎤2k π-π2,2k π(k ∈Z )上是增函数;②y =sin x 在第一象限内是增函数( ).A .均正确B .①对②错C .②对①错D .都错5.令a =sin ⎝ ⎛⎭⎪⎪⎫-π18,b =sin 1110π,那么a 与b 大小关系是__________.6.用五点法作出函数y =sin x -2在x ∈[-2π,2π]上图像. 答案:1.D2.A 解析:∵y =sin x 定义域是R ,即x3∈R ,∴x ∈R .3.B 解析:利用函数y =sin x 图像易知y ∈⎣⎢⎢⎡⎦⎥⎥⎤12,1.4.B 解析:单调性是针对某个取值区间而言,所以①对②错.5.b <a 解析:a =sin ⎝ ⎛⎭⎪⎪⎫-π18=-sin π18,b =sin ⎝⎛⎭⎪⎪⎫π+π10=-sin π10,∵sin π10>sin π18,∴-sin π10<-sin π18,∴b <a .6.解:先作y =sin x -2在[0,2π]上图像,列表如下:∵y =∴y =sin x -2,x ∈[0,2π]与y =sin x -2,x ∈[-2π,0]上图像一样,得y =sin x -2,x ∈[-2π,2π]图像.如以下图所示.。
1.5 正弦函数的性质与图像问题导学1.正弦函数的图像活动与探究1(1)用“五点法”作y =2-sin x 的图像时,首先描出的五个点的纵坐标是( ). A .0,1,0,-1,0 B .0,2,0,-2,0 C .2,1,2,3,2 D .2,3,2,-3,2(2)用“五点法”作函数y =-1+sin x (x ∈[0,2π])的简图.迁移与应用1.正弦函数y =sin x (x ∈R )的图像的一条对称轴是( ). A .x 轴 B .y 轴C .直线x =π2D .直线x =π2.用“五点法”作出y =2sin x ,x ∈[0,2π]的简图.作函数y =a sin x +b 的图像的步骤2.正弦函数的定义域问题活动与探究2求函数y =log 21sin x-1的定义域.迁移与应用求下列函数的定义域: (1)y =1-2sin x ; (2)y =log 2sin x ;(3)y =log 122sin x -1.含正弦函数的复合函数的定义域的求法: (1)常见的限制条件有①分式的分母不等于0;②对数的真数大于0;③二次根式的被开方数大于等于0.(2)列出含正弦函数的不等式组,化简为含sin x 的不等式,利用数形结合,在正弦曲线或单位圆中表示,然后取各部分的交集.3.正弦函数的值域、最值问题活动与探究3求下列函数的值域: (1)y =3-2sin 2x ;(2)y =sin 2x -sin x +1,x ∈⎣⎢⎡⎦⎥⎤π3,3π4.迁移与应用求函数y =74+sin x -sin 2x (x ∈R )的值域.有关正弦函数的值域或最值的常见类型及求法:(1)形如y =A sin(ωx +φ)+k 的求最值或值域问题,利用正弦函数的有界性,即|sin x |≤1;(2)形如y =p sin 2x +q sin x +r (p ≠0)的函数求最值或值域问题,通过换元法转化为给定区间[m ,n ]上的二次函数的最值问题,必要时要分区间讨论转化成常见的“轴变区间定”或“轴定区间变”问题求解;(3)形如y =a sin x +bc sin x +d的函数求最值或值域问题,可化为sin x =f (y )的形式,通过|f (y )|≤1求解,或利用分离常数法求解.4.正弦函数的单调性及应用活动与探究4利用正弦函数的单调性,比较下列各对正弦值的大小. (1)sin 190°与sin 200°;(2)sin ⎝ ⎛⎭⎪⎫-π10与sin ⎝ ⎛⎭⎪⎫-π11; (3)sin 15π8与sin 10π9.迁移与应用不通过求值,指出下列各式大于零还是小于零. (1)s in 135°-sin 144°;(2)sin ⎝ ⎛⎭⎪⎫-π18-sin ⎝ ⎛⎭⎪⎫-π10; (3)sin ⎝ ⎛⎭⎪⎫-23π5-sin ⎝ ⎛⎭⎪⎫-17π4.1.对正弦函数单调性的理解:(1)正弦函数在定义域R 上不是单调函数.(2)因为正弦函数是周期函数,周期为2π,所以研究正弦函数的单调性,只要研究一个周期内(如[0,2π])的单调性即可.2.利用单调性比较三角函数值的大小的步骤: (1)异名函数化为同名函数.(2)利用诱导公式把角化到同一单调区间上. (3)利用函数的单调性比较大小.3.求函数的单调区间时,要充分利用正弦函数的递增、递减区间.在求复合函数的单调区间时,要先求定义域,同时还要注意内层、外层函数的单调性. 5.三角函数的奇偶性问题活动与探究5判断下列函数的奇偶性. (1)f (x )=x sin(π+x ); (2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ).迁移与应用已知f (x )=ax +b sin 3x +1(a ,b 为常数). (1)若g (x )=f (x )-1,试证明g (x )为奇函数; (2)若f (5)=7,求f (-5).(1)判断函数奇偶性的方法特别提醒:对于正弦函数要注意诱导公式sin(-x )=-sin x 的应用.(2)正弦函数的奇偶性问题的求解方法是:首先在所求的区间上设自变量,然后转化到已知条件上来解决.当堂检测1.函数f (x )=1+sin x 的最小正周期是( ). A .π2 B .π C .3π2D .2π2.函数y =sin x3的定义域是( ).A .RB .[-1,1]C .⎣⎢⎡⎦⎥⎤-13,13 D .[-3,3] 3.函数y =sin x ⎝ ⎛⎭⎪⎫π6≤x ≤2π3的值域是( ).A .[-1,1]B .⎣⎢⎡⎦⎥⎤12,1C .⎣⎢⎡⎦⎥⎤12,32D .⎣⎢⎡⎦⎥⎤32,1 4.函数f (x )=sin x -x3x是( ).A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数5.令a =sin ⎝ ⎛⎭⎪⎫-π18,b =sin 1110π,则a 与b 的大小关系是__________. 6.用五点法作出函数y =sin x -2在x ∈[-2π,2π]上的图像.答案:课前预习导学 【预习导引】1.(2)(0,0) ⎝ ⎛⎭⎪⎫π2,1 (π,0) ⎝ ⎛⎭⎪⎫3π2,-1 (2π,0) 预习交流1 略 预习交流2(1)⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π ⎣⎢⎡⎦⎥⎤-π2,π2 -π2 1 π2 -1(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈Z[-2,4] ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )课堂合作探究 【问题导学】活动与探究1 (1)C (2)略 迁移与应用 1.C 2活动与探究2 解:为使函数有意义,需满足⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,即⎩⎪⎨⎪⎧sin x ≤12,sin x >0,由正弦函数的图像(见图(1))或单位圆(见图(2))可得,如图所示.所以函数的定义域为⎩⎪⎨⎪⎧x ⎪⎪⎪ 2k π<x ≤2k π+π6或⎭⎪⎬⎪⎫2k π+5π6≤x <2k π+π,k ∈Z. 迁移与应用 解:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π-7π6≤x ≤2k π+π6,k ∈Z(2){x |2k π<x <2k π+π,k ∈Z }(3)⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π+π6<x <2k π+5π6,k ∈Z .活动与探究3 解:(1)∵-1≤sin 2x ≤1,∴-2≤-2sin 2x ≤2.∴1≤3-2sin 2x ≤5. ∴函数的值域为[1,5].(2)y =sin 2x -sin x +1=⎝⎛⎭⎪⎫sin x -122+34.设t =sin x ,∵x ∈⎣⎢⎡⎦⎥⎤π3,3π4,∴由正弦函数的图像知22≤t ≤1. 而函数y =⎝ ⎛⎭⎪⎫t -122+34在⎣⎢⎡⎦⎥⎤22,1上单调递增, ∴当t =22,即x =3π4时,y min =3-22,当t =1,即x =π2时,y max =1.∴函数的值域是⎣⎢⎡⎦⎥⎤3-22,1.迁移与应用 解:设sin x =t ,则t ∈[-1,1]. ∴y =-t 2+t +74=-⎝ ⎛⎭⎪⎫t -122+2.∴当t =-1时,y min =-14;当t =12时,y max =2.∴所求函数值域为⎣⎢⎡⎦⎥⎤-14,2. 活动与探究4 解:(1)sin 190°=sin(180°+10°)=-sin 10°, sin 200°=sin(180°+20°)=-sin 20°. ∵y =sin x 在(0°,90°)上单调递增, ∴sin 10°<sin 20°,从而-sin 10°>-sin 20°, ∴sin 190°>sin 200°.(2)∵y =sin x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增, 且-π2<-π10<-π11<π2,∴sin ⎝ ⎛⎭⎪⎫-π10<sin ⎝ ⎛⎭⎪⎫-π11. (3)sin 15π8=sin ⎝⎛⎭⎪⎫2π-π8=-sin π8,sin 10π9=sin ⎝⎛⎭⎪⎫π+π9 =-sin π9,∵π2>π8>π9>0, ∴sin π8>sin π9.∴-sin π8<-sin π9.∴sin 15π8<sin 10π9.迁移与应用 (1)>0 (2)>0 (3)<0活动与探究5 解:(1)f (x )=-x ·sin x ,定义域为R . ∵f (-x )=x ·sin(-x )=-x ·sin x =f (x ), ∴函数f (x )为偶函数.(2)由2sin x -1≥0得sin x ≥12,∴x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6 (k ∈Z ).定义域不关于原点对称, 故f (x )为非奇非偶函数.(3)∵1+sin 2x >|sin x |≥-sin x ,∴sin x +1+sin 2x >0.∴函数的定义域为R ,关于原点对称. 又f (-x )+f (x )=lg(-sin x +1+sin 2x )+lg(sin x +1+sin 2x )=lg[(-sin x +1+sin 2x )(sin x +1+sin 2x )]=lg(1+sin 2x -sin 2x ) =lg 1=0,∴f (-x )=-f (x ). ∴f (x )为奇函数.迁移与应用 (1)略 (2)-5 【当堂检测】1.D 2.A 3.B 4.B 5.b <a 6.略。
1.5 正弦函数的图像与性质
5分钟训练(预习类训练,可用于课前)
1.函数y=1-sinx,x∈[0,2π]的大致图像是( )
图1-4-2
解析:对于本题可按如下程序进行思考:
首先作出(或想象出)y=sinx,x∈[0,2π]的图像,如下图所示:
然后作出(或想象出)y=-sinx,x∈[0,2π]的图像(请同学自己画出);最后作出(或想象出)y=-sinx+1的图像(请同学自己画出). 易得图像应为B. 本题亦可验证(0,1)、(
2
π
,0)两点.
答案:B
2.在[0,2π]上画出函数y=sinx-1的简图. 解析:(1)第一步:按五个关键点列表;
第二步:描点;
第三步:画图,即用光滑的曲线将五个点连结起来.
3.分析y=sinx-1及y=2sinx 的图像与y=sinx 的图像在[0,2π]上的位置关系. 解:(1)在同一坐标系中画出y=sinx-1与y=sinx 的图像.
通过图像比较,y=sinx-1的图像是将y=sinx 的图像整个向下平行移动了1个单位得到的. (2)在同一坐标系中,画出y=2sinx 与y=sinx 的图像.
通过图像很容易看出,将y=sinx 的图像上所有的点的横坐标保持不变,纵坐标扩大到原来的2倍,就可以得到y=2sinx 的图像. 10分钟训练(强化类训练,可用于课中) 1.函数y=sin (-x ),x∈[0,2π]的简图是( )
图1-4-3
解析:y=f(x)的图像与y=f(-x)的图像关于y 轴对称,先作出y=sinx 的图像,再作此图像关于y 轴的对称图像即得y=sin(-x)的图像. 答案:B
2.函数y=4sinx 的图像( )
A.关于y 轴对称
B.关于直线x=
6
π
对称 C.关于原点对称 D.关于直线x=π对称
解析:先作出y=4sinx 的图像,通过图像可以看出y=4sinx 的图像关于原点对称. 答案:C
3.函数y=-sinx 图像上五个关键点的坐标是____________.
解析:函数y=-sinx 与y=sinx ,当x 取同一值时,函数值互为相反数 答案:(0,0),(
2
π,-1),(π,0),(23π
,1),(2π,0)
4.作出函数y=-sinx ,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图像,写出满足下列条件的x 的区间:①sinx>0;②sinx<0. (2)直线y=
2
1
与y=-sinx ,x∈[-π,π]的图像有几个交点? 解:利用五点法作图,
(1)根据图像可知:图像在x 轴上方的部分sinx>0,在x 轴下方的部分sinx<0,所以当x∈(-π,0)时,sinx>0;当x∈(0,π)时,sinx<0.
(2)画出直线y=
2
1
,得知有两个交点. 30分钟训练(巩固类训练,可用于课后)
1.函数y=x+sin|x|,x∈[-π,π]的大致图像是图1-4-4中的哪一项?( )
图1-4-4
解析:首先y=x+sin|x|在x∈[-π,π]上递增;其次y=x+sin|x|不是奇函数,故选C 答案:C 2.已知y=sinx(
2
π≤x≤25π)的图像和直线y=1围成一个封闭的平面图形,则这个封闭图形
的面积是_____________.
解析:如图:
y=sinx(
2
π≤x≤25π)的图像与直线y=1围成的封闭图形的面积为(
225π
π-)×2÷2=2π. 答案:2π
3.(2005高考上海卷,理10文11)函数f(x)=sinx+2|sinx|,x∈[0,2π]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围是___________. 解析:∵f(x)=⎩⎨
⎧∈-∈],
2,[,sin ),
,0[,sin 3πππx x x x
∴y=f(x)图像如图,
故若y=f(x)与y=k 的图像有且仅有两个交点 则k 的范围1<k<3. 答案:1<k<3 4.方程sinx=
10
x
的根的个数为____________. 解析:这是一个超越方程,无法直接求解,考虑利用数形结合思想,转化为求函数y=
10
x 的
图像与函数y=sinx 的图像交点个数,借助图形直观求解.
当x≥4π时,
10410π≥x >1≥sinx,当0<x<4π时,sin 25π=1>25π0=10
x ,从而x>0时,有3个交点.由对称性知x<0时,也有3个交点,加上原点,一共有7个交点.
答案:7 5.画出函数y=x sin 2
1
1-
在[0,2π]上的简图,求出y 的最大值和最小值,并写出y 取得最大值和最小值时x 的值的集合.
描点得y=x sin 2
1-
在[0,2π]上的图像(如下图).
由图可知y 的最大值为23,此时x 的取值集合是{23π};y 的最小值为2
1,此时x 的取值集合是{
2
π
}. 6.利用正弦函数的图像,求满足条件sinx≥
2
1
的x 的集合. 解:作出正弦函数y=sinx ,x∈[0,2π]的图像.
由图形可以得到,满足条件的x 的集合为[
6
π+2k π,65π+2k π],k∈Z .
7.根据正弦函数的图像求满足sinx≥
2
3
的x 的范围. 解:首先在同一坐标系内作出函数y=sinx 与y=
2
3
的图像
然后观察长度为2π(一个周期)的一个闭区间内的情形,如观察[0,2π]看到符合sinx≥
2
3
的x∈[3π,32π].
最后由正弦函数的周期为2k π(k∈Z ,k≠0),得x∈[2k π+3
π,2k π+32π
](k∈Z ).
8.作函数y=|sinx|与y=sin|x|的图像.
解:y=|sinx|=⎩
⎨⎧∈+<<+-∈+≤≤,,222,sin ,
,22,sin Z k k x k x Z k k x k x πππππππ其图像为
y=sin|x|=⎩⎨⎧<-≥,
0,sin ,
0,sin x x x x
其图像为。