高中数学1.4三角函数的图像与性质
- 格式:ppt
- 大小:1.37 MB
- 文档页数:71
三角函数的图像与性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。
本文将探讨三角函数的图像与性质,并通过图像展示它们的特点。
一、正弦函数(sine function)正弦函数是最基本的三角函数之一,常用符号为sin(x)。
它的图像是一条连续的曲线,表现出周期性的波动。
正弦函数的性质如下:1. 周期性:正弦函数的周期为2π,即在每个2π的区间内,函数的值会重复。
2. 对称性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。
这意味着它的图像关于原点对称。
3. 取值范围:正弦函数的值域在[-1, 1]之间,即函数的值不会超过这个范围。
二、余弦函数(cosine function)余弦函数是另一个常见的三角函数,常用符号为cos(x)。
它的图像也是一条连续的曲线,与正弦函数的图像非常相似。
余弦函数的性质如下:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 对称性:余弦函数是偶函数,即满足cos(-x)=cos(x)。
这意味着它的图像关于y轴对称。
3. 取值范围:余弦函数的值域也在[-1, 1]之间,与正弦函数相同。
三、正切函数(tangent function)正切函数是三角函数中的另一个重要概念,常用符号为tan(x)。
正切函数的图像也是一条连续的曲线,但与正弦和余弦函数有所不同。
正切函数的性质如下:1. 周期性:正切函数的周期为π,即在每个π的区间内,函数的值会重复。
2. 奇点:正切函数在π/2和-π/2处有奇点,即函数在这些点上无定义。
3. 取值范围:正切函数的值域为整个实数轴,即它可以取到任意的实数值。
四、其他三角函数除了正弦、余弦和正切函数,还有许多衍生的三角函数,如余切函数、正割函数和余割函数等。
它们的图像和性质与前面介绍的三角函数类似,只是在计算和应用中有一些特殊的情况。
五、图像展示为了更好地理解三角函数的图像与性质,下面是一些图像展示:(插入正弦函数、余弦函数和正切函数的图像)从图中可以清楚地看出正弦函数和余弦函数的周期性和对称性,以及正切函数的特殊性。
三角函数的图像与性质三角函数是数学中重要的概念之一,它们不仅在几何学和三角学中起着重要作用,还在物理学、工程学等领域有广泛的应用。
本文将探讨三角函数的图像和性质,帮助读者更好地理解和应用三角函数。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,记为y = sin(x)。
它的图像是一条连续的曲线,在坐标系中呈现周期性变化。
正弦函数的性质如下:1. 周期性:正弦函数的周期是2π,即在一个周期内,y = sin(x)的值在0到2π之间循环变化。
2. 奇偶性:正弦函数是奇函数,即满足y = sin(-x) = -sin(x)。
这意味着正弦函数在原点对称。
3. 取值范围:正弦函数的值域在[-1, 1]之间,即-1 ≤ sin(x) ≤ 1。
当x = 0时,sin(x) = 0,当x = π/2时,sin(x) = 1,当x = -π/2时,sin(x) = -1。
4. 单调性:在一个周期内,正弦函数先递增后递减。
当x = π/2 +2kπ(k为整数)时,取得极大值1;当x = -π/2 + 2kπ(k为整数)时,取得极小值-1。
二、余弦函数的图像与性质余弦函数是与正弦函数密切相关的三角函数,记为y = cos(x)。
它的图像也是一条连续的曲线,具有周期性变化。
余弦函数的性质如下:1. 周期性:余弦函数的周期同样为2π,即在一个周期内,y = cos(x)的值在0到2π之间循环变化。
2. 奇偶性:余弦函数是偶函数,即满足y = cos(-x) = cos(x)。
这意味着余弦函数关于y轴对称。
3. 取值范围:余弦函数的值域同样在[-1, 1]之间,即-1 ≤ cos(x) ≤ 1。
当x = 0时,cos(x) = 1,当x = π/2时,cos(x) = 0,当x = π时,cos(x) = -1。
4. 单调性:在一个周期内,余弦函数先递减后递增。
当x = 2kπ(k为整数)时,取得极大值1;当x = π + 2kπ(k为整数)时,取得极小值-1。
1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.正弦函数、余弦函数的性质: 函数 y =sin xy =cos x 图象定义域______ ______ 值域______ ______ 奇偶性______ ______ 周期性最小正周期:______ 最小正周期:______ 单调性在__________________________________ 上单调递增;在__________________________________________________上单调递减 在__________________________________________上单调递增;在______________________________上单调递减 最值 在________________________时,y max =1;在________________________________________时,y min =-1在______________时,y max =1;在__________________________时,y min =-1 一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 题 号 1 2 3 4 5 6 答 案二、填空题7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________. 9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>π B .α+β<πC .α-β≥-32πD .α-β≤-32π 14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .31.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二)答案知识梳理 R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z ) 作业设计1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54; 当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°,cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.]7.⎣⎡⎦⎤π2,π8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3. ∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b <c <a解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)由题意得cos 2x >0且y =cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z . ∴k π<x <k π+π4,k ∈Z . ∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5. 由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。