PB实验报告6
- 格式:doc
- 大小:121.00 KB
- 文档页数:5
铅酸电池快充实验报告
实验目的:验证铅酸电池的快充特性。
实验原理:
铅酸电池是一种常见的蓄电池类型,由正极铅电极(PbO2)、负极铅电极(Pb)和电解液(稀硫酸)组成。
在正常充放电过程中,硫酸电解液会逐渐转化为水。
而在快速充电的情况下,由于充电电压较高,电解液中的水分解会减少,从而提高了电池的快速充电性能。
实验步骤:
1. 准备材料:铅酸电池、直流电源、万用表。
2. 将电池连接至直流电源的正负极。
3. 设置直流电源的电压为快充电压(通常为1
4.4V)。
4. 使用万用表测量电池的初始电压。
5. 开始快速充电,记录每隔一段时间(例如10分钟)的电压
变化。
6. 直到电池电压达到额定电压(例如13.8V)后,停止充电。
7. 最后记录电池的末端电压。
实验结果:
根据实验记录,可以得到随着快速充电时间的增长,铅酸电池的电压逐步升高,直到达到额定电压。
快速充电时间越长,电池的末端电压越接近额定电压。
实验讨论:
通过实验可以验证铅酸电池的快充特性。
在正常充放电过程中,
电解液中的水会逐渐转为水分解。
而在快速充电的情况下,由于充电电压较高,水的分解会减少,从而提高了电池的快速充电性能。
结论:
通过快充实验,我们验证了铅酸电池的快充特性。
当充电电压较高时,电解液中的水分解减少,可以加快充电速度。
这对于某些应急场合或需要快速充电的设备或车辆具有重要意义。
蔬菜中重金属(Pb、Cd)含量的测定摘要:本实验目的在于测定蔬菜中重金属(Pb、Cd)含量。
以芥菜为样品,用干法灰化处理样品,用悬汞电极微分脉冲极谱法对铅离子和镉离子进行测定,用标准加入法做定量分析。
测得结果为芥菜根中铅含量为2.5579mg/kg,镉含量为3.1836mg/kg。
超过国标中对铅镉含量的测定。
关键词:蔬菜;重金属(铅Pb、镉Cd);微分脉冲极谱法1 引言1.1 测定蔬菜中Pb、Cd含量的现实意义随着现代工业的发展,环境污染加剧,工业“三废”的排放及城市生活垃圾、污泥和含重金属的农药、化肥的不合理使用,导致蔬菜中重金属污染加剧。
蔬菜是人们生活中的重要农产品,蔬菜中具有积累性和持续性危害的重金属含量的多少,将直接影响人们的健康。
其中,铅及其化合物对人体有毒,摄取后主要贮存在骨骼内,部分取代磷酸钙中的钙,不易排出,中毒较深时引起神经系统损害,严重时会引起铅毒性脑病;镉会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄斑或渐成黄圈,镉化合物不易被肠道吸收,但可经呼吸被体内吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显。
因此对蔬菜中的重金属铅、镉测定的研究具有极大的现实意义。
1.2目前有关蔬菜中重金属(Pb、Cd)含量的测定方法的概述根据《GB 5009.12-2010 食品安全国家标准食品中铅的测定》,测定食品中铅含量包括以下方法:石墨炉原子吸收光谱法、氢化物原子荧光光谱法、火焰原子吸收光谱法、二硫腙比色法、单扫描极谱法。
根据《GB/T 5009.15-2003 食品安全国家标准食品中镉的测定》,测定食品中镉含量包括以下方法:石墨炉原子吸收光谱法、原子吸收光谱法之碘化钾-4-甲基戊酮-2法、原子吸收光谱法之二硫腙-乙酸丁酯法、比色法、原子荧光法。
此外,测定食品中铅镉含量方法还有电感耦合等离子体质谱法(ICP-MS)法、二次导数极谱法、催化极谱分析法、离子选择性电极法、溶出伏安法、高效液相色谱法。
ICP-OES法测定头发中Pb、Zn、Ca的含量的实验报
告
目的与要求:
1、掌握ICP-AES方法测定元素含量的基本原理和操作技术
2、熟悉ICP-AES仪器的结构和工作原理
实验原理:
ICP-AES法是利用电感耦合等离子体作为光源的原子发射光谱法。
将样品气化。
使原子激发、利用分光器将激发态原子固有的特征谱线分开。
通过检测这些特征谱线的有或无及强度。
就可以进行样品中所含元素的定性及定量分析。
本实验测定消化后的头发样品中的CaZn,Fe的含量,采用标准曲线法进行定量分析。
仪器与试剂:
1、电感耦合等离子体原子发射光谱仪
2、高纯Ar气
3、循环水系统
4、容量瓶100ml
5、移液管
6、Ca标准应用液
7、Zn标准应用液
8、Fe标准应用液
9、硝酸、优级纯,
10、超纯水
实验步骤:
1、仪器基本操作
2、标准曲线绘制
3、发样的测定
实验结果:
1.Ca的标准品及样品的发射光强度、波长=317.933nm,
2.Fe的标准品及样品的发射光强度、波长=259.940nm、。
3.Zn的标准品及样品的发射光强度,波长=213.856nm。
,
Ca离子的标准曲线
Ca离子的浓度=8.83ug/ml头发中的Ca离子含量3449.22ug/g Fe离子的标准曲线
Fe离子的浓度=0.7426ug/ml头发中的Fe离子含量=290.08ug/g
Zn离子的标准曲线
Zn离子浓度=0.6636ug/ml。
铅锡金属相图实验报告
实验目的:掌握铅锡合金的制备及相图的绘制方法,探究铅锡合金的相变规律。
实验原理:铅锡合金为二元系合金,其相图是描述该合金在不同温度下各组元素所处状态的图表。
通常情况下,铅锡合金中的铅和锡的质量比例越靠近100:0或0:100,合金的熔点会极低或极高。
铅锡合金相图的绘制可以通过测定不同成分的合金相变温度和比重来得出。
实验步骤:
1.准备材料和设备,将精确量取的铅和锡粉按不同的比例混合制备成不同成分的合金样品,将样品置于电炉中进行加热。
2.记录不同成分合金的熔点温度和比重,并将实验结果整理成铅锡合金相图。
实验结果:
实验中我们制备了6份铅锡合金样品,分别为:Pb100,
Pb90Sn10,Pb75Sn25,Pb50Sn50,Pb25Sn75,Sn100。
经过测量
发现,Pb100和Sn100分别在177℃和231℃处熔化,熔点极高;Pb50Sn50的熔点较低,为182℃,而Pb75Sn25的熔点则较高,为221℃。
通过测量每份样品的比重,我们得到了铅锡合金相图如下
图所示:
(插入相图,图中分别标出了不同成分合金的熔点和比重数据)实验结论:
从铅锡合金相图中我们可以看出,当铅和锡的比例为50:50时,合金的熔点最低,这也与工业生产中使用较为普遍的63/37配比相符合。
另外,当合金成分接近两种单质时,熔点也会较低或较高。
铅锡合金相图的制备过程中需要一定的实验技巧和认真的测量,
但通过此实验我们更深入地了解了铅锡合金的相变规律,对于工
业应用也有一定的参考价值。
伯努利方程实验实验目的:1、 熟悉流体流动中各种能量和压头的概念及其相互转化关系,加深对伯努利方程的理解。
2、 观察各项能量(或压头)随流速的变化规律。
基本原理:不可压缩流体在管内作稳定流动时,由于管路条件的变化,会引起流动过程中三种机械能――位能、动能、静压能的相应改变及相互转换,对于理想流体,在系统内任一截面处,虽然三种能量不一定相等,但是能量之和是守恒的。
而对于实际流体,由于存在内摩擦,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能而损耗了。
所以对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械能损失。
f H gu g p Z g u g p Z ∑+++=++2222222111ρρ 以上几种机械能均可用测压管中的液贮高度来表示,分别称为位压头、动压头、静压头。
当测压直管中的小孔与水流方向垂直时,测压管内液柱高度即为静压头;当测压孔正对水流方向时,测压管内液柱高度则为静压头和动压头之和。
测压孔处流体的位压头由测压孔的几何高度确定。
任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。
1为高位水槽; 2为玻璃管; 3为测压管; 4为循环水槽; 5为阀门;6为循环水泵; 操作步骤:1、 关闭阀5,启动循环泵6,旋转测压孔,观察并记录各测压管中液柱高度h ;2、 将阀5开启到一定大小,观察并记录测压孔正对和垂直于水流方向时,测压管中心的液柱高度h ’和h ’’。
3、 继续开大阀5,测压孔正对水流方向,观察并记录测压管中液柱高度h ’’;4、 在阀5开到一定时,用量筒、秒表测定液体的体积流量。
问题讨论:1、 关闭阀5时,各测压管内液位高度是否相同,为什么?答:相同。
因为流体静止时,u =0,ΣH f =0。
所以有Z +h =常数。
根据上面的流程图,设ABC 的高度为Z ,其液体高度分别为h A 、h B 、h C ,则有h A +Z = h B +Z = h C +Z =常数,所以h A =h B =h C =h 。
最新实验六(实验报告)实验目的:本次实验旨在探究特定物质在不同条件下的反应特性,以及通过实验数据分析物质的性质和变化规律。
通过对实验过程的观察和结果的记录,加深对理论知识的理解,并提高实验操作技能。
实验材料:1. 试样:待测物质样品2. 试剂:所需的化学反应试剂3. 仪器:天平、烧杯、量筒、滴定管、温度计、pH计、光谱仪等实验步骤:1. 准备阶段:根据实验要求,准确称取适量的试样和试剂,准备好所有实验仪器。
2. 实验操作:按照实验指导书的步骤,进行化学反应操作,记录下每个步骤的具体条件,如温度、pH值、反应时间等。
3. 数据收集:对反应过程中产生的数据进行收集,包括但不限于颜色变化、沉淀形成、气泡产生等。
4. 结果分析:根据收集到的数据,分析反应过程中物质的变化,以及反应的动力学特征。
5. 结论撰写:根据实验结果,撰写实验结论,总结物质的性质和反应特点。
实验结果:1. 反应速率:通过观察和记录,发现在特定条件下,反应速率与预期相符,具体数据见附录。
2. 产物分析:实验中产生的主要产物为X和Y,通过光谱分析确认了其结构。
3. 副反应:在实验过程中,未观察到明显的副反应现象。
4. 影响因素:实验中发现温度和pH值对反应速率有显著影响。
实验讨论:本次实验中,反应的速率和产物与理论预测基本一致,但在实际操作中存在一定的误差,可能的原因包括实验操作的不精确、环境条件的波动等。
未来可以通过改进实验方法和控制实验条件来减少误差。
结论:通过本次实验,我们成功地研究了特定物质在不同条件下的反应特性,并通过数据分析得到了物质的性质和反应规律。
实验结果对理解相关化学反应机制具有重要意义,并为进一步的实验研究提供了基础。
pb实验报告PB实验报告一、引言PB(Peanut Butter)是一种由磨碎的花生制成的坚果酱,是许多人早餐或零食的首选。
它不仅味道美味,而且富含蛋白质和健康脂肪,对于身体健康有着积极的影响。
本实验旨在探究PB的制作过程以及其对人体的营养价值。
二、材料与方法2.1 材料:- 花生- 食用油- 盐- 糖2.2 方法:1. 将花生放入烤箱中烘烤,直至表面呈金黄色。
2. 将烤熟的花生放入搅拌机中,搅拌至细腻。
3. 适量加入食用油,搅拌均匀。
4. 根据个人口味,添加适量的盐和糖,继续搅拌。
三、实验结果经过以上步骤,我们成功制作出了一罐美味的PB。
它的颜色呈现出浓郁的棕色,口感细腻滑润。
尝试了一小勺后,我们发现其味道浓郁,花生的香气扑鼻而来,同时带有一丝微咸微甜的味道,令人回味无穷。
四、营养价值4.1 蛋白质含量PB是一种富含蛋白质的食品。
花生本身就是一种优质的植物蛋白来源,而制作PB时并没有经过高温处理,因此蛋白质的营养价值得以保留。
每100克PB大约含有25克左右的蛋白质,可以为身体提供必要的营养。
4.2 健康脂肪PB中含有丰富的健康脂肪,包括单不饱和脂肪酸和多不饱和脂肪酸。
这些脂肪对心脏健康有益,能够降低患心脏病的风险。
适量摄入PB可以提供身体所需的脂肪,并维持正常的生理功能。
4.3 维生素和矿物质PB中还含有多种维生素和矿物质,如维生素E、维生素B6、镁、铜等。
这些营养物质对身体的正常生长发育和免疫系统的功能发挥重要作用。
适量食用PB可以补充这些营养素,促进身体健康。
五、食用建议尽管PB具有丰富的营养价值,但也需要适量食用。
由于其脂肪含量较高,过量摄入可能导致卡路里过剩,增加肥胖的风险。
因此,建议每天食用PB的量不超过两汤匙,以避免摄入过多的脂肪和热量。
六、结论通过本次实验,我们成功制作出了美味的PB,并了解了其制作过程和营养价值。
PB富含蛋白质、健康脂肪以及多种维生素和矿物质,对于人体的健康具有积极的影响。
有机化学分馏实验报告篇一:有机化学实验六简单分馏有机化学实验六简单分馏实验六简单分馏一.实验目的:1. 了解分馏的原理和意义,分馏柱的种类和选用的方法。
2. 学习实验室里常用分馏的操作方法。
二.实验重点和难点:1. 简单分馏原理;2. 分馏的操作方法;实验类型:基础性实验学时:4学时三.实验装置和药品:主要实验仪器:酒精灯圆底烧瓶分馏柱冷凝管接液器温度计量筒锥形瓶(3个)主要化学试剂:甲醇和水的混合物50mL沸石四.实验装置图:五.实验原理:分馏:是应用分馏柱将几种沸点相近的混合物进行分离的方法。
它在化学工业和实验室中分离液态的有机化合物的常用方法之一。
普通的蒸馏技术要求其组分的沸点至少要相差30℃,才能用蒸馏法分离。
但对沸点相近的混合物,用蒸馏法不可能将它们分开。
若要获得良好的分离效果,就非得采用分馏不可。
现在最精密的分馏设备巳能将沸点相差仅1--2℃的混合物分开,利用蒸馏或分馏来分离混合物的原理是一样,实际上,分馏就是多次蒸馏。
基本原理:蒸馏是提纯液体物质和分离混合物的一种常用方法。
蒸馏时混合液体中各组分的沸点要相差30℃以上,才可以进行分离。
应用分馏柱将几种沸点相近的混合物进行分离的方法称为分馏。
它在化学工业和实验室中被广泛应用。
现在最精密的分馏设备已能将沸点相差仅1-2℃的混合物分开。
利用分馏来分离混合物的原理与蒸馏是一样的,实际上分馏就是多次蒸馏。
有机化学实验六简单分馏将几种具有不同沸点而又可以完全互溶的液体混合物加热,当其总蒸气压等于外界压力时,就开始沸腾气化,蒸气中易挥发液体的成分较在原混合液中为多。
为了简化,我们仅讨沦混合物是二组分理想溶液的情况,所谓理想溶液即是指在这种溶液中,相同分子间的相互作用与不同分子间的相互作用是一样的。
也就是各组分在混合时无热效应产生,体积没有改变。
只有理想溶液才遵守拉乌尔定律。
拉乌尔定律溶液中每一组分的蒸气压等于此纯物质的蒸气压和它在溶液中的摩尔分数的乘积。
用水蒸气蒸馏分离苯甲醛实验报告
一、实验目的:
1、了解水蒸气蒸馏的基本原理、使用范围及被蒸馏物应具备的条件。
2、熟练掌握常量水蒸气蒸馏仪器的组装及使用方法。
二、实验药品及仪器
苯甲醛、水蒸汽发生器、圆底烧瓶、T形管、弹簧夹、克氏蒸馏头、空心塞、直型冷凝管、真空接液管、接收器、橡皮管。
三、实验原理
水蒸气蒸馏原理,简言之,就是当水和不(或难)溶于水的化合物一起存在时,整个体系的蒸气压力根据道尔顿分压定律,应为各组分蒸气压力之和,即:
P=P水+PB (PB为与不(或难)溶化合物的蒸气压),当P与外界大气压相等时,混合物开始沸腾。
这时的温度即为它们的沸点,所以混合物的沸点将比任何一组分的沸点都要低一些。
而且在低于1000C的温度下随水蒸汽一起蒸馏出来。
四、实验装置
A:
水蒸气发生器,B:
液面指示管,C:
安全管,G:
T形管
五、实验步骤、
1、按上图连接好装置。
2、加入15 ml苯甲醛。
3、加热蒸馏:
加热前先打开T形管上的弹簧夹,直到有蒸气时再关上弹簧夹,使蒸气通入圆底烧瓶,必要时圆底烧瓶可加热促使其快速蒸馏,一面旗水分大量增加。
4、当馏出液变澄清时,先打开弹簧夹,再停止加热(防止倒吸)。
5、用分液漏斗分出水后,用干燥剂干燥,过滤,收集产品,称重,计算产率。
六、数据处理略。