2013湖南湘潭中考数学
- 格式:doc
- 大小:381.00 KB
- 文档页数:11
2013年湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)﹣5的相反数是()A.5B.C.﹣5 D.2.(3分)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3 3.(3分)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.4.(3分)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形5.(3分)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣26.(3分)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角7.(3分)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.8.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)|﹣3|=.10.(3分)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=.11.(3分)到2012年底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为.12.(3分)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.13.(3分)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.14.(3分)函数:中,自变量x的取值范围是.15.(3分)计算:=.16.(3分)如图,根据所示程序计算,若输入x=,则输出结果为.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)解不等式组..18.(6分)先化简,再求值:,其中x=﹣2.19.(6分)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B 处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?20.(6分)2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?21.(6分)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a 1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?22.(6分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.23.(8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.24.(8分)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.25.(10分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.26.(10分)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.2013年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD 为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)到2012年底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为3.02×106.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专题:计算题.分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B 处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC 交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;。
湖南长沙2013年初中毕业学业水平测试数学卷一、选择题:1.(2013湖南长沙 第1题 3分)下列实数是无理数的是( ) A.-1 B.0 C 。
21D.3 【答案】D.2.(2013湖南长沙 第2题 3分)小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为( )A 。
617×105 B.6.17×106 C.6。
17×107 D 。
0.617×108【答案】C 。
3。
(2013湖南长沙 第3题 3分)如果一个三角形的两边长分别是2和4,则第三边可能是( )A 。
2 B.4 C 。
6 D 。
8 【答案】B 。
4.(2013湖南长沙 第4题 3分)已知⊙O 1的半径为1cm,⊙O 2的半径为3cm,两圆的圆心距O 1O 2为4cm ,则两圆的位置关系是( )A 。
外离B 。
外切 C.相交 D 。
内切 【答案】B. 5。
(2013湖南长沙 第5题 3分)下列计算正确的是( )A 。
a 6÷a 3=a 3 B.(a 2)3=a 8 C 。
(a —b)2=a 2—b 2 D.a 2+a 2=a 4【答案】A 。
6。
(2013湖南长沙 第6题 3分)某校篮球队12名同学的身高如下表:则该校篮球队12名同学的身高的众数是(单位:cm ) A.192 B 。
188 C.186 D 。
180 【答案】B.7.(2013湖南长沙 第7题 3分)下列个图中,∠1大于∠2的是( )【答案】D8.(2013湖南长沙 第8题 3分)下列多边形中,内角和与外角和相等的是( )ABCA 1 2 (AB=AC)1 2 abB12 a bcCABCD 2 1 DA.四边形 B 。
五边形 C 。
六边形 D.八边形 【答案】A 。
9。
(2013湖南长沙 第9题 3分)在下列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )【答案】C.10.(2013湖南长沙 第10题 3分)二次函数y=ax 2+bx+c 的图像如图所示,则下列关系式错误..的是( ) A 。
第二讲实数的运算【重点考点例析】考点一:实数的大小比较。
A.6个B.5个C.4个D.3个点评:本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.对应训练1.(2013•内江)下列四个实数中,绝对值最小的数是()A.-5 B.C.1 D.4考点二:估算无理数的大小A.1与2之间B.2与3之间C.3与4之间D.4与5之间点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.对应训练考点三:有关绝对值的运算例3 (2013•咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为-671.点评:本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.对应训练.考点四:实数的混合运算。
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.对应训练考点五:实数中的规律探索。
例5 (2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.-1 D.i点评:本题考查了实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.对应训练【聚焦山东中考】A.- B.- C.-2 D.-1A.5B.-5C.6D.-63.(2013•日照)计算-22+3的结果是()A.7 B.5 C.-1 D.-5 4.(2013•聊城)(-2)3的相反数是()A.-6 B.8 C.- 16D.165.(2013•菏泽)如果a的倒数是-1,那么a2013等于()A.1 B.-1 C.2013 D.-2013 【备考真题过关】一、选择题1.(2013•广州)比0大的数是()A.-1 B.-12C.0 D.12.(2013•重庆)在-2,0,1,-4这四个数中,最大的数是()A.-4 B.-2 C.0 D.1 3.(2013•天津)计算(-3)+(-9)的结果等于()A.12 B.-12 C.6 D.-6 4.(2013•河北)气温由-1℃上升2℃后是()A.-1℃B.1℃C.2℃D.3℃5.(2013•自贡)与-3的差为0的数是()A.3 B.-3 C.13D.-136.(2013•温州)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6 7.(2013•厦门)下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1 8.(2013•南京)计算:12-7×(-4)+8÷(-2)的结果是()A.-1 B.1 C.D.710.(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④二、填空题...20.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=11按此方式,将二进制(1101)2换算成十进制数的结果是13.三、解答题。
2013年全国各地中考数学解析汇编第一章有理数1.1 正数和负数1.(2013浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作―+2℃‖,则零下3℃记作―-3℃‖,故选A.【答案】A【点评】本题考查相反意义的量.2.(2013山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2, 17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2013安徽,1,4分)下面的数中,与-3的和为0的是 ( )A.3B.-3C.31D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2013山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2013浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2013重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。
湖南省湘潭市2013年中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)3.(3分)(2013•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()D2=,7.(3分)(2013•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()D)是反比例函数(,8.(3分)(2013•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(2013•湘潭)|﹣3|=3.10.(3分)(2013•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.11.(3分)(2013•湘潭)到2012年底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.12.(3分)(2013•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.13.(3分)(2013•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.14.(3分)(2013•湘潭)函数:中,自变量x的取值范围是x≠﹣1.15.(3分)(2013•湘潭)计算:=2.×16.(3分)(2013•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.据>y=三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(2013•湘潭)解不等式组..解:18.(6分)(2013•湘潭)先化简,再求值:,其中x=﹣2.÷×,﹣19.(6分)(2013•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?CD==30BC=30×=6020.(6分)(2013•湘潭)2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?﹣=221.(6分)(2013•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?22.(6分)(2013•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.,解得23.(8分)(2013•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.,,.24.(8分)(2013•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.DG=OG=OEDG=OG=OE的边长为,OE=×=2DG=OG=OE=×AD=,CF=AD=25.(10分)(2013•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.,得出=OP=得出=,得出,求出=,=,OP=,÷,为=,=,BD==2=,=R=6+126+12626.(10分)(2013•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.Sy=1=y=x x.AB.,,x+2y=﹣x+2)﹣(x)﹣xS即:S(﹣x=×,或x=3+﹣y=x。
湘潭江声实验学校2012届中考模拟试题数学试题卷时量:120分钟;满分:120分;一、选择题.(下列各小题均有四个选项,其中只有一个是正确的,请把它选出来填在题后的括号内,每小题3分,共18分)1. -13的倒数是().A. 3B. -3C. -13D.132. 已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是()A.ac<0 B. b2 -4ac<0 C. b>0 D. a>0、b<0、c>03. 如图, 通过折纸可以得到好多漂亮的图案, 观察下列用纸折叠成的图案, 其中轴对称图形和中心对称图形的个数分别是( ).A. 3、1B. 4、1C. 2、2D. 1、34. 信息时代,“网上冲浪”已成为人们生活中不可缺少的一部分,预计到2010年,我国网民数有望突破2亿人,下面关于“2亿”的说法错误的是()A.这是一个精确数B.这是一个近似数C.2亿用科学计数法可表示为2×108D.2亿精确到亿位5.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=450,将△ADC绕点A顺时针旋转900后,得到△AFB,连接EF,下列结论:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正确的是()A.(2)(4) B.(1)(4 ) C. (2 ) (3 ) D. (1 ) (3 )6. 如图, 正方形ABCD中, E是BC上一点, 以E为圆心、EC为半径的半圆与以A为圆心、AB为半径的圆弧外切,则sin∠EAB的值为()A.34B.43C.45D.35二. 填空题. (请把答案填在题中的横线上, 每小题3分, 满分27分)7. 方程x2-x=0的解为。
8. 已知直线y=mx与双曲线y=kx的一个交点A的坐标为(-1,-2)。
则它们的另一个交点坐标是。
9. 某药品经过两次降价,每瓶零售价由100元降为81元。
湘潭中考数学知识点归纳
湘潭中考数学知识点归纳涵盖了初中数学的各个重要领域,包括代数、几何、统计与概率等。
以下是对这些知识点的详细归纳:
一、数与代数
1. 数的认识:理解实数的概念,包括有理数和无理数,掌握数轴上的
表示方法。
2. 代数式:掌握代数式的运算,包括加减、乘除以及幂的运算。
3. 方程与不等式:解一元一次方程、一元二次方程、不等式组,理解
方程的解法和不等式的性质。
4. 函数:理解函数的概念,包括一次函数、二次函数、反比例函数等,并能进行简单的函数图像绘制。
二、几何
1. 平面图形:掌握线段、角、三角形、四边形、圆等平面图形的性质
和计算。
2. 立体图形:了解立体图形如立方体、长方体、圆柱、圆锥等的体积
和表面积的计算。
3. 图形的变换:理解平移、旋转、反射等几何变换的性质和应用。
三、统计与概率
1. 数据的收集与处理:掌握数据的收集、整理和描述方法,包括条形图、折线图、饼图等。
2. 统计量:理解平均数、中位数、众数、方差、标准差等统计量的概
念和计算。
3. 概率:了解概率的基本概念,包括事件的独立性、互斥性以及概率
的计算方法。
四、综合应用
1. 数学建模:能够将实际问题转化为数学问题,并使用数学方法进行
求解。
2. 问题解决:培养解决实际问题的能力,包括分析问题、提出解决方案、验证结果等。
结束语
湘潭中考数学知识点的归纳不仅要求学生掌握数学的基础知识和技能,还要求学生能够运用这些知识解决实际问题。
希望以上的归纳能够帮
助学生系统地复习和准备中考,提高数学思维能力和解决问题的能力。
湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(•湘潭)下列等式成立是( )A 、|﹣2|=2B 、﹣(﹣1)=﹣1C 、1÷(﹣3)=13D 、﹣2×3=6考点:有理数的混合运算。
分析:A ,﹣2的绝对值为2,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.解答:解:A 、﹣2的绝对值为2,故本选项正确;B 、负负得正,得数应为1,故本选项错误;C 、正负乘除得正,故本选项错误;D 、同选项C ,故本选项错误.故选A .点评:本题考查了有理数的混合运算,选项A ,负数的绝对值为正数,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.本题很容易选得A .2、(•湘潭)数据:1,3,5的平均数与极差分别是( )A 、3,3B 、3,4C 、2,3D 、2,4考点:极差;算术平均数。
专题:计算题。
分析:根据极差和平均数的定义即可求得.解答:解:x =1+3+53=3, 由题意可知,极差为5﹣1=4.故选B .点评:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(•湘潭)不等式组{x >1x ≤2的解集在数轴上表示为( ) A 、 B 、 C 、 D 、 考点:在数轴上表示不等式的解集;解一元一次不等式组。
专题:存在型。
分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可. 解答:解:不等式组{x >1x ≤2在数轴上表示为:故选A .点评:本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 4、(•湘潭)一个几何体的三视图如下图所示,这个几何体是( )A 、球B 、圆柱C 、长方体D 、圆锥考点:由三视图判断几何体。
2013年湘潭市初中毕业学业考试数 学 试 题 卷考试时量:120分钟满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.-5的相反数是 A .5 B .51 C . -5 D .-51 【答案】A2.一组数据1,2,2,3.下列说法正确的是A .众数是3B .中位数是2C .极差是3D .平均数是3 【答案】B3.右图是由三个小正方体叠成的一个立体图形,那么它的俯视图是A B C D (第3题图) 【答案】B4.下列图形中,是中心对称图形的是A .平行四边形B .正五边形C .等腰梯形D .直角三角形 【答案】A5.一元二次方程护x 2+x -2=0的解为x 1,x 2,则x 1·x 2= A .1 B .一1 C .2 D.-2 【答案】D6.下列命题正确的是A .三角形的中位线平行且等于第三边B .对角线相等的四边形是等腰梯形C .四条边都相等的四边形是菱形D .相等的角是对顶角 【答案】C7.如图,点P (-3,2)是反比例函数xky =(0≠k )的图象上一点,则反比例函数的解析式为 A .x y 3-= B . x y 12-= C .x y 32-= D .xy 6-=【答案】D8.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连结AD 、 AE.如果只添加一个条件使∠DAB =∠EAC ,则添加的条件为A .BD =CEB .AD =AEC .DA =DED .BE =CD【答案】C二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.3-= .【答案】310.如图,已知:AB //CD , ∠C =25°, ∠E =30°,则∠A = .B DECA(第8题图)(第7题图)【答案】55°11.到2012年底,湘潭地区总人口约为 3 020 000人,用科学记数法表示这一数为 . 【答案】3.02×106 12.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x 位老人,依题意可列方程为 . 【答案】2x +16=3x13.“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状、大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案.他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案的明信片的概率是 . 【答案】5214.函数1+=x xy 中,自变量x 的取值范围为 . 【答案】x ≠-115.计算:2sin45°+0)2013(-= . 【答案】216.如下图,根据所示程序计算,若输入x =3,则输出结果为 .ABD EB(第10题图)【答案】2三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)解不等式组⎩⎨⎧≤--≥-5)1(211x x x【答案】解:⎪⎩⎪⎨⎧≤--≥-②①5)1(211x x x ,由①,得x≥2,由②,得512≤+-x x ,4≤x ,∴不等式组的解集为42≤≤x .18.(本题满分6分)先化简,再求值:xx x x x +÷++--224)1111(,其中x=-2. 【答案】解:原式=[)1)(1(1-+-x x x +11+x ]·4)4(+x x =12+x ·4)4(+x x =2x =-119.(本题满分6分)如图,C 岛位于我南海A 港口北偏东60°方向,距A 港口260海里处.我海监船从A 港口出发,自西向东航行至B 处时,接上级命令赶赴C 岛执行任务,此时C 岛在B 处北偏西45°的方向上,海监船立刻改变航向以每小时60海里的速度沿BC 行进,则从B 处到达C 岛需要多少小时?【答案】解:过点C 作CD ⊥AB 于点D ,由题意,得∠CAD =30°,∠CDB = 45°,∴CD =AC ·sin ∠CAD =260×21=230,∴BC =︒45sin CD=60,∴t =60÷60=1(h )答:从B 处到达C 岛需要1小时. 20.(本题满分6分)2013年4月20日8时,四川省芦山县发生7.0级地震. 某市派出抢险救灾工程队赶赴芦山支援.工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?【答案】解:设原计划每小时抢修道路x 米,则实际每小时修(x +40)米,24024002400=+-x x ,去分母,得048000402=-+x x ,解之得x 1=200,x 2=-240, 经检验,x 1=200,x 2=-240都是原方程的根,∵x 2=-240<0,∴x 2=-240舍去.答:原计划每小时抢修道路200米.21.(本题满分6分)6月5日是世界环境日.今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息. 小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项). 图1和图2是他收集数据后,绘制的不完整的统计图表,请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a = . (2)请你将图2补充完整; (3)如果小文所在的学校有1200名学生,那么请你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?关注问题AB CD 图2东(第19题图)图1【答案】解:(1)a =60,(2)(3)1200×6018=360人 答:估计该校关注“全球变暖”的学生大约有360人.22.(本题满分6分)莲城超市以10元/件的价格调进一批商品.根据前期销售情况,每天销售量y (件)与该商品定价x (元)是一次函数关系,如图所示.(1)求销售量y 与定价x 之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所能获得的利润.【答案】解:(1)设y 与x 的函数关系式为b kx y +=,则⎩⎨⎧=+=+2151011b k b k ,解之,得⎩⎨⎧=-=322b k ,∴322+-=x y ,(2)当x=13时,(13-10)y=(13-10)×)32132(+⨯-=18元∴超市每天销售这种商品所能获得的利润为18元.23.(本题满分8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花.已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.关注问题A B C D 图2(元)2 O11 15x 第22题图(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率 【答案】解:(1)设小明购买x 支康乃馨,y 支兰花,则⎪⎩⎪⎨⎧+≤≤+②①y x y x 73035,①+②×3,得y x y x 33302135++≤++,∴29≤x ,所以291≤≤x ,当x =1时,5×1+3y ≤30,∴325≤y ,∴y =8,7,6,所以购买1支康乃馨,8支兰花;1支康乃馨,7支兰花;1支康乃馨,6支兰花;2支康乃馨,8支兰花;1支康乃馨,7支兰花;1支康乃馨,6支兰花; 当x =2时,5×2+3y ≤30,∴320≤y ,∴y =6,5,所以购买2支康乃馨,6支兰花;2支康乃馨,5支兰花;当x =3时,5×3+3y ≤30,∴5≤y ,∴y =5,4,所以购买3支康乃馨,5支兰花;3支康乃馨,4支兰花;当x =4时,5×4+3y ≤30,∴310≤y ,∴y =3,所以购买4支康乃馨,3支兰花;(2)如果小明先购买一张2元的祝福卡,则2835≤+y x ,所以从(1)中任选一种方案购花,他能实现购买愿望的概率为85.24.(本题满分8分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD 、CF ,经测量发现AD =CF .(1)他将正方形ODEF 绕O 点逆时针旋转一定的角度,如图2,试判断AD 与CF 还相等吗?说明你的理由;(2)他将正方形ODEF 绕O 点逆时针旋转,使点E 旋转至直线l 上,如图3,请你求出CF 的长.【答案】解:(1)AD 与CF 还相等, 理由:∵四边形ODEF 、四边形ABCO 为正方形,∴∠DOF =∠COA = 90°,DO =OF ,CO =OA ,∴∠COF =∠AOD ,∴△COF ≌△AOD (SAS ),∴AD =CF . (2)如图4,连接DF ,交EO 于G ,则DF ⊥EO ,DG =OG =21EO =1,∴GA =4,∴AD =22GA DG +=241+=17;25.(本题满分10分)如图,在坐标系xoy 中,已知D (-5,4),B (-3,0),过D 点分别作DA 、DC 垂直于x 轴、y 轴,垂足分别为A 、C 两点.动点P 从O 点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t 秒.(1)当t 为何值时,PC //DB ; (2)当t 为何值时,PC ⊥BC ; (3)以点P 为圆心,PO 的长为半径的⊙P 随点P 的运动而变化,当⊙P 与△BCD 的边(或边所在的直线)相切时,求t 的值.BAlCD EFO图4GA B CO D EF图3BAlCODFE图2 C AlOBDEF 图1图2【答案】解:(1)假设PC//DB,则∠CPO=∠DBA,∵DA⊥x轴,DC⊥y轴,∴∠COP=∠DAB=∠COA=∠DCO = 90°,∴四边形ADCO为矩形,∴DA=CO,AO=DC=5,∴△COP ≌△DAB (AAS ),∴OP =AB =5-3=2,∴当t =2时,PC //DB ; (2)假设PC ⊥BC ,则∠BCP =∠BOC =90°,∵∠CBP =∠OBC ,∴△CBP ∽△OBC ,∴BCBOBP BC =,∵BC =522=+OC OB ,∴535=BP ,∴325=BP ,∴3163325=-==OP t (3)①当⊙P 与直线CD 相切时,过点P 作PE ⊥直线CD 于点E ,则PE =OC =4,∴OP =OC =4,∴t =4;②当⊙P 与直线BC 相切时,过点P 作PF ⊥BC 于点F ,则PF =PO =t,同①,得PF CO BP BC =,∴tt 435=+,∴t =12; ③当⊙P 与直线BD 相切时,过点P 作PG ⊥直线BD 于点G ,则PG =PO =t,同①,得PG DA BP DB =,∴tt 4352=+,∴t =12+56; 综上所述,t =4,t =12或t =12+56.26.(本题满分10分)如图,在坐标系xoy 中,△ABC 是等腰直角三角形,∠BAC = 90°,A (1,0),B (0,2).抛物线2212-+=bx x y 的图象过C 点. (1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l ,当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?(3)点P 是抛物线上一动点,是否存在点P ,使四边形P ACB 为平行四边形?若存在,求出P 点坐标,若不存在,说明理由.【答案】解:(1)如图1,过点C 作CD ⊥x 轴于点D ,则∠BOA = ∠ADC = 90°,∵∠BAC = 90°,∴∠CAD +∠BAO = 90°,∠CAD +∠ACD = 90°,∴∠BAO =∠ACD ,∵AB =AC ,∴△BAO ≌△ACD (AAS ),∴CD =AO =1,AD =BO =2,∴C (3,1),∴1233212=-+⨯b ,∴21-=b ,∴221212--=x x y(备用图)(2)当直线l 在点A 左侧时,△ABC 在直线l 左侧的面积显然小于直线l 右侧的面积,∴直线l 应在点A 右侧,如图2,设直线l 交BC 于点E ,交AC 于点F ,设直线AC 的解析式为b kx y +=,则⎩⎨⎧=+=+130b k b k ,解之,得⎪⎪⎩⎪⎪⎨⎧-==2121b k ,∴2121-=x y ,同理:直线BC 的解析式为231+-=x y ,设直线l 的解析式为x =m ,则点E 的坐标为(m ,231+-m ),点F 的坐标为(m ,2121-m ),∴EF =(231+-m )-(2121-m )=2565+-m ,假设直线l 恰好将△ABC 的面积分为相等的两部分,则2)5(2121⨯⨯=∆CEF S =45,∴21×(2565+-m )×(3-m )=45,∴331+=x (舍去),332-=x ,∴直线l 的解析式为33-=x(3)如图3,过点C 作CK ⊥y 轴于点K ,过点P 作PH ⊥x 轴于点H ,则∠PHA = ∠BKC = 90°,PH ∥BO ,∵四边形P ACB 为平行四边形,∴P A =BC ,P A ∥BC ,∴∠AMO =∠CBK ,∵PH ∥BO ,∴∠AMO =∠PHO ,∴∠PHO =∠CBK ,∴△P AH ≌△BCK (AAS ),∴AH =CK =3,PH =BK =1,∵A (1,0),∴P (-2,1),当x =-2时,12)2(21)2(212=--⨯--⨯=y ,∴抛物线存在点P ,使四边形P ACB 为平行四边形,此时P (-2,1).图3图2 图1。
2013年湘潭市初中毕业学业考试数 学 试 题 卷考试时量:120分钟满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.-5的相反数是 A .5 B .51 C . -5 D .-51 【答案】A2.一组数据1,2,2,3.下列说法正确的是A .众数是3B .中位数是2C .极差是3D .平均数是3 【答案】B3.右图是由三个小正方体叠成的一个立体图形,那么它的俯视图是A B C D (第3题图) 【答案】B4.下列图形中,是中心对称图形的是A .平行四边形B .正五边形C .等腰梯形D .直角三角形 【答案】A5.一元二次方程护x 2+x -2=0的解为x 1,x 2,则x 1·x 2= A .1 B .一1 C .2 D.-2 【答案】D6.下列命题正确的是A .三角形的中位线平行且等于第三边B .对角线相等的四边形是等腰梯形C .四条边都相等的四边形是菱形D .相等的角是对顶角 【答案】C7.如图,点P (-3,2)是反比例函数xky =(0≠k )的图象上一点,则反比例函数的解析式为A .x y 3-= B . x y 12-= C .x y 32-= D .xy 6-=【答案】D8.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连结AD 、 AE.如果只添加一个条件使∠DAB =∠EAC ,则添加的条件为A .BD =CEB .AD =AEC .DA =DED .BE =CD【答案】C二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.3-= .【答案】310.如图,已知:AB //CD , ∠C =25°, ∠E =30°,则∠A = .【答案】55°B DECA(第8题图)(第7题图)ABD EB(第10题图)11.到2012年底,湘潭地区总人口约为 3 020 000人,用科学记数法表示这一数为 . 【答案】3.02×106 12.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x 位老人,依题意可列方程为 . 【答案】2x +16=3x13.“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状、大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案.他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案的明信片的概率是 . 【答案】5214.函数1+=x xy 中,自变量x 的取值范围为 . 【答案】x ≠-115.计算:2sin45°+0)2013(-= . 【答案】216.如下图,根据所示程序计算,若输入x =3,则输出结果为 .【答案】2三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)解不等式组⎩⎨⎧≤--≥-5)1(211x x x【答案】解:⎪⎩⎪⎨⎧≤--≥-②①5)1(211x x x ,由①,得x≥2,由②,得512≤+-x x ,4≤x ,∴不等式组的解集为42≤≤x .18.(本题满分6分)先化简,再求值:xx x x x +÷++--224)1111(,其中x=-2. 【答案】解:原式=[)1)(1(1-+-x x x +11+x ]·4)4(+x x =12+x ·4)4(+x x =2x =-119.(本题满分6分)如图,C 岛位于我南海A 港口北偏东60°方向,距A 港口260海里处.我海监船从A 港口出发,自西向东航行至B 处时,接上级命令赶赴C 岛执行任务,此时C 岛在B 处北偏西45°的方向上,海监船立刻改变航向以每小时60海里的速度沿BC 行进,则从B 处到达C 岛需要多少小时?【答案】解:过点C 作CD ⊥AB 于点D ,由题意,得∠CAD =30°,∠CDB = 45°,∴CD =AC ·sin ∠CAD =260×21=230,∴BC =︒45sin CD=60,∴t =60÷60=1(h )答:从B 处到达C 岛需要1小时. 20.(本题满分6分)2013年4月20日8时,四川省芦山县发生7.0级地震. 某市派出抢险救灾工程队赶赴芦山支援.工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?【答案】解:设原计划每小时抢修道路x 米,则实际每小时修(x +40)米,24024002400=+-x x ,去分母,得048000402=-+x x ,解之得x 1=200,x 2=-240, 经检验,x 1=200,x 2=-240都是原方程的根,∵x 2=-240<0,∴x 2=-240舍去.东(第19题图)答:原计划每小时抢修道路200米.21.(本题满分6分)6月5日是世界环境日.今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息. 小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项). 图1和图2是他收集数据后,绘制的不完整的统计图表,请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a = . (2)请你将图2补充完整; (3)如果小文所在的学校有1200名学生,那么请你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人? 【答案】解:(1)a =60,(2)(3)1200×6018=360人 答:估计该校关注“全球变暖”的学生大约有360人.22.(本题满分6分)莲城超市以10元/件的价格调进一批商品.根据前期销售情况,每天销售量y (件)与该商品定价x (元)是一次函数关系,如图所示.(1)求销售量y 与定价x 之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所能获得的利润.关注问题A B C D 图2关注问题AB CD 图2图1【答案】解:(1)设y 与x 的函数关系式为b kx y +=,则⎩⎨⎧=+=+2151011b k b k ,解之,得⎩⎨⎧=-=322b k ,∴322+-=x y ,(2)当x=13时,(13-10)y=(13-10)×)32132(+⨯-=18元∴超市每天销售这种商品所能获得的利润为18元.23.(本题满分8分)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花.已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率 【答案】解:(1)设小明购买x 支康乃馨,y 支兰花,则⎪⎩⎪⎨⎧+≤≤+②①y x y x 73035,①+②×3,得y x y x 33302135++≤++,∴29≤x ,所以291≤≤x ,当x =1时,5×1+3y ≤30,∴325≤y ,∴y =8,7,6,所以购买1支康乃馨,8支兰花;1支康乃馨,7支兰花;1支康乃馨,6支兰花;2支康乃馨,8支兰花;1支康乃馨,7支兰花;1支康乃馨,6支兰花; 当x =2时,5×2+3y ≤30,∴320≤y ,∴y =6,5,所以购买2支康乃馨,6支兰花;2支康乃馨,5支兰花;当x =3时,5×3+3y ≤30,∴5≤y ,∴y =5,4,所以购买3支康乃馨,5支兰花;3支康乃馨,4支兰花;当x =4时,5×4+3y ≤30,∴310≤y ,∴y =3,所以购买4支康乃馨,3支兰花; 综上所述,共有8种购买方案,方案如下表(元)2 O11 15x 第22题图(2)如果小明先购买一张2元的祝福卡,则2835≤+y x ,所以从(1)中任选一种方案购花,他能实现购买愿望的概率为85.24.(本题满分8分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD 、CF ,经测量发现AD =CF .(1)他将正方形ODEF 绕O 点逆时针旋转一定的角度,如图2,试判断AD 与CF 还相等吗?说明你的理由;(2)他将正方形ODEF 绕O 点逆时针旋转,使点E 旋转至直线l 上,如图3,请你求出CF 的长.【答案】解:(1)AD 与CF 还相等, 理由:∵四边形ODEF 、四边形ABCO 为正方形,∴∠DOF =∠COA = 90°,DO =OF ,CO =OA ,∴∠COF =∠AOD ,∴△COF ≌△AOD (SAS ),∴AD =CF . (2)如图4,连接DF ,交EO 于G ,则DF ⊥EO ,DG =OG =21EO =1,∴GA =4,∴AD =22GA DG +=241+=17;BAlCD EFO图4GA B CO D EF图3BAlCODFE图2 C AlOBDEF 图125.(本题满分10分)如图,在坐标系xoy中,已知D(-5,4),B(-3,0),过D点分别作DA、DC垂直于x轴、y轴,垂足分别为A、C两点.动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC//DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.图2【答案】解:(1)假设PC //DB ,则∠CPO =∠DBA ,∵DA ⊥x 轴,DC ⊥y 轴,∴∠COP =∠DAB =∠COA =∠DCO = 90°,∴四边形ADCO 为矩形,∴DA =CO ,AO =DC =5,∴△COP ≌△DAB (AAS ),∴OP =AB =5-3=2,∴当t =2时,PC //DB ; (2)假设PC ⊥BC ,则∠BCP =∠BOC =90°,∵∠CBP =∠OBC ,∴△CBP ∽△OBC ,∴BC BO BP BC =,∵BC =522=+OC OB ,∴535=BP ,∴325=BP ,∴3163325=-==OP t (3)①当⊙P 与直线CD 相切时,过点P 作PE ⊥直线CD 于点E ,则PE =OC =4,∴OP =OC =4,∴t =4;②当⊙P 与直线BC 相切时,过点P 作PF ⊥BC 于点F ,则PF =PO =t,同①,得PF CO BP BC =,∴tt 435=+,∴t =12; ③当⊙P 与直线BD 相切时,过点P 作PG ⊥直线BD 于点G ,则PG =PO =t,同①,得PG DA BP DB =,∴tt 4352=+,∴t =12+56; 综上所述,t =4,t =12或t =12+56.26.(本题满分10分)如图,在坐标系xoy 中,△ABC 是等腰直角三角形,∠BAC = 90°,A (1,0),B (0,2).抛物线2212-+=bx x y 的图象过C 点. (1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l ,当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?(3)点P 是抛物线上一动点,是否存在点P ,使四边形P ACB 为平行四边形?若存在,求出P 点坐标,若不存在,说明理由.【答案】解:(1)如图1,过点C 作CD ⊥x 轴于点D ,则∠BOA = ∠ADC = 90°,∵∠BAC = 90°,(备用图)∴∠CAD +∠BAO = 90°,∠CAD +∠ACD = 90°,∴∠BAO =∠ACD ,∵AB =AC ,∴△BAO ≌△ACD (AAS ),∴CD =AO =1,AD =BO =2,∴C (3,1),∴1233212=-+⨯b ,∴21-=b ,∴221212--=x x y(2)当直线l 在点A 左侧时,△ABC 在直线l 左侧的面积显然小于直线l 右侧的面积,∴直线l 应在点A 右侧,如图2,设直线l 交BC 于点E ,交AC 于点F ,设直线AC 的解析式为b kx y +=,则⎩⎨⎧=+=+130b k b k ,解之,得⎪⎪⎩⎪⎪⎨⎧-==2121b k ,∴2121-=x y ,同理:直线BC 的解析式为231+-=x y ,设直线l 的解析式为x =m ,则点E 的坐标为(m ,231+-m ),点F 的坐标为(m ,2121-m ),∴EF =(231+-m )-(2121-m )=2565+-m ,假设直线l 恰好将△ABC 的面积分为相等的两部分,则2)5(2121⨯⨯=∆CEF S =45,∴21×(2565+-m )×(3-m )=45,∴331+=x (舍去),332-=x ,∴直线l 的解析式为33-=x(3)如图3,过点C 作CK ⊥y 轴于点K ,过点P 作PH ⊥x 轴于点H ,则∠PHA = ∠BKC = 90°,PH ∥BO ,∵四边形P ACB 为平行四边形,∴P A =BC ,P A ∥BC ,∴∠AMO =∠CBK ,∵PH ∥BO ,∴∠AMO =∠PHO ,∴∠PHO =∠CBK ,∴△P AH ≌△BCK (AAS ),∴AH =CK =3,PH =BK =1,∵A (1,0),∴P (-2,1),当x =-2时,12)2(21)2(212=--⨯--⨯=y ,∴抛物线存在点P ,使四边形P ACB 为平行四边形,此时P (-2,1).图2图1图3。