2016年秋遵义市人教版九年级数学上名师测控练习24.1.2垂直于弦的直径.doc
- 格式:doc
- 大小:82.19 KB
- 文档页数:7
24.1.2 垂直于弦的直径1.下列命题错误的是( B )A .平分弧的直径平分这条弧所对的弦B .平分弦的弦垂直于这条弦C .垂直于弦的直径平分这条弦D .弦的中垂线经过圆心2.如图24-1-13,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P ,若CD =8,OP =3,则⊙O 的半径为( C )图24-1-13A .10B .8C .5D .33.如图24-1-14,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( D )图24-1-14 A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MD【解析】∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,∴M 为CD 的中点,即CM =DM ,选项A 成立;B 为CD ︵的中点,即CB ︵=DB ︵,选项B 成立;在△ACM 和△ADM 中,∵⎩⎪⎨⎪⎧AM =AM ,∠AMC =∠AMD =90°,CM =DM ,∴△ACM ≌△ADM (SAS),∴∠ACD =∠ADC ,选项C 成立;而OM 与MD 不一定相等,选项D 不成立. -1-15,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =23,OC =1,则半径OB 的长为__2__.15【解析】 ∵AB 是⊙O 的弦,OC ⊥AB 于C ,AB =23,∴BC =12AB = 3.∵OC =1,∴在Rt △OBC 中,OB =OC 2+BC 2=12+(3)2=2.5.如图24-1-16,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24__.【解析】 如图,连接OD ,∵AM =18,BM =8,∴OD =AM +BM 2=18+82=13,∴OM =13-8=5. 在Rt △ODM 中,DM =OD 2-OM 2=132-52=12,∵直径AB 丄弦CD ,∴CD =2DM =2×12=24.第56.如图24-1-17,在半径为13的⊙O 中,OC 垂直弦AB 于点D ,交⊙O 于点C ,AB =24,则.图24-17第6题答图【解析】 如图,连接OA ,∵OC ⊥AB ,AB =24,∴AD =12AB =12. 在Rt △AOD 中,∵OA =13,AD =12,∴OD =OA 2-AD 2=132-122=5,∴CD =OC -OD =13-5=8.7.如图24-1-18,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O ,OD ⊥PB 于点D ,则CD 的长为__4__.【解析】 ∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得AC =PC ,PD =BD ,∴CD 是△APB 的中位线,∴CD =12AB =12×8=4. 8.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm ,测得钢珠顶端离零件,如图24-1-19所示,则这个小圆孔的宽口AB 的长度为__8__mm.第8题答图【解析】如图,连接OA,过点O作OD⊥AB于点D,则AB=2AD.∵钢珠的直径是10 mm,∴钢珠的半径是5 mm.∵钢珠顶端离零件表面的距离为8 mm,∴OD=3 mm.在Rt△AOD中,∵AD=OA2-OD2=52-32=4(mm),∴AB=2AD=2×4=8(mm).9.如图24-1-20所示,AB是⊙O的弦(非直径),C,D是AB上的两点,并且AC=BD.求证:OC=OD.图24-1-20第9题答图证明:如图,过O作OE⊥AB于E,则AE=BE,又∵AC=BD,∴CE=DE,∴OE是CD的中垂线,∴OC=OD.10.绍兴是著名的桥乡,如图24-1-21,圆拱桥的拱顶到水面的距离CD为8 m,桥拱半径OC 为5 m,则水面宽AB为(D)图24-1-21A.4 m B.5 mC.6 m D.8 m11.如图24-1-22,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为(B)图24-1-22A.2 B.3C.4 D.5【解析】连接OD.∵直径AB⊥CD于H,∴DH=12CD=12×22= 2.在Rt△BDH中,BH=BD2-DH2=(3)2-(2)2=1.设⊙O的半径为R,则在Rt△ODH中,OH2+DH2=OD2,∴(R -1)2+(2)2=R 2,∴2R =3,故选B.12.[2013·吉林]如图24-1-23,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,OB .点P 是半径OB 上任意一点,连接AP .若OA =5 cm ,OC =3 cm ,则AP 的长度可能是__答案不唯一,5≤AP ≤8__cm(写出一个符合条件的数值即可).图24-1-2313.如图24-1-24,两个圆都以点O 为圆心.求证:AC =BD .图24-1-24第13题答图证明:过点O 作OE ⊥AB 于E ,在小⊙O 中,∵OE ⊥AB ,∴EC =ED ,在大⊙O 中,∵OE ⊥AB ,∴EA =EB ,∴AC =BD .14.某居民小区一处圆柱形的输水管道破裂,维修人员为了更换管道,需要确定管道圆形截面的半径,图24-1-25是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16 cm ,水面最深地方的高度为4 cm ,求这个圆形截面的半径.图24-1-25第14题答图解:(1)作出图形,如图所示;(2)如图,过O 作OC ⊥AB 于D ,交弧AB 于C ,连接OB ,∵OC ⊥AB ,∴BD =12AB =12×16=8(cm). 由题意可知CD =4 cm.设这个圆形截面的半径为x cm,则OD=(x-4)cm.在Rt△BOD中,由勾股定理得OD2+BD2=OB2,即(x-4)2+82=x2,解得x=10,∴这个圆形截面的半径为10 cm.15.如图24-1-26,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A,B和C,D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若弦AB=102,求点O到直线PF的距离;(3)若以图中已标明的点(即P,A,B,C,D,O)构造四边形,则能构成菱形的四个点为第15题答图解:(1)∵PG平分∠EPF,∴∠DPO=∠BPO.∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴AP=AO.(2)如图,过点O作OH⊥AB于点H,则AH=HB,∵AB=102,∴AH=52∵OA=10,∴OH=OA2-AH2=102-(52)2=5 2.(3)P,A,O,C A,B,D,C或P,A,O,D或P,C,O,B。
前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步练习题)
基础导练
1.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()
A.3 B.4 C.5 D.
7
2.如图,AB为圆O的弦,圆O的半径为5,OC⊥AB于点D,交圆
O于点C,
且CD=2,则AB的长是 .
能力提升
3.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()
A.4m
B.5m
C.6m
D.8m
4.已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD之间的距离是多少?
1。
人教版九年级数学上册第24章 24.1.2垂直于弦的直径 同步练习题一、选择题1.下列说法中,不正确的是(D)A .圆既是轴对称图形,又是中心对称图形B .圆绕着它的圆心旋转任意角度,都能与它自身重合C .圆的对称轴有无数条,对称中心只有一个D .圆的每一条直径都是它的对称轴2.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦3.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是(D)A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则OE =(C)A .4 cmB .5 cmC .3 cmD .2 cm5.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是(B)A.7 B.27 C.6 D.86.如图,⊙O的半径为10,M是AB的中点,且OM=6,则⊙O的弦AB等于(D)A.8 B.10 C.12 D.167.一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为(B)A.6 dm B.5 dm C.4 dm D.3 dm8.已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB 与CD的距离为(D)A.1 B.7 C.4或3 D.7或1二、填空题9.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.10.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8 cm,AC=6 cm,那四边形OEAD的周长为14cm.11.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.12.如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=23,则⊙O 的半径是2.13.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.14.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为1 2.15.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).三、解答题16.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,则圆拱形门所在圆的半径是多少米?解:连接OA.∵CD⊥AB,且CD过圆心O,∴AD=12AB=1米,∠CDA=90°.设⊙O的半径为R,则OA=OC=R,OD=5-R.在Rt△OAD中,由勾股定理,得OA2=OD2+AD2,即R2=(5-R)2+12,解得R=2.6.故圆拱形门所在圆的半径为2.6米.17.已知⊙O的直径是50 cm,⊙O的两条平行弦AB=40 cm,CD=48 cm,求弦AB与CD之间的距离.解:过点O作直线OE⊥AB于点E,直线OE与CD交于点F.又∵AB∥CD,∴OF⊥CD.①当AB,CD在点O两侧时,如图1.连接AO,CO,则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE+OF=22 cm,即AB与CD之间的距离为22 cm;图1 图2②当AB,CD在点O同侧时,如图2.连接AO,CO.则AO=CO=25 cm,AE=20 cm,CF=24 cm.由勾股定理知OE=AO2-AE2=15 cm,OF=CO2-CF2=7 cm.∴EF=OE-OF=8 cm,即AB与CD之间的距离为8 cm.综上所述,AB与CD之间的距离为22 cm或8 cm.。
九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径同步检测(含解析)(新版)新人教版的全部内容。
24.1.2 垂直于弦的直径测试时间:30分钟一、选择题1.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,选择的是( )A。
① B.②C。
③D。
④2。
(2017贵州黔西南州中考)如图,在☉O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A.3 B。
2。
5 C.2 D.13.在某岛A的正东方向有台风,且台风中心B距离该岛40 km,台风中心正以30 km/h的速度向西北方向移动,距离台风中心50 km以内(包括边界)都受影响,则该岛受到台风影响的时间为()A.不受影响B。
1 h C.2 h D.3 h二、填空题4.(2017湖南长沙中考)如图,AB为☉O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则☉O的半径为.5。
(2017四川雅安中考)☉O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.三、解答题6。
如图,AB为☉O的弦,☉O的半径为5,OC⊥AB于点D,交☉O于点C,且CD=1.(1)求线段OD的长;(2)求弦AB的长.7.(2018福建龙岩新罗期末)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD为☉O 的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,那么直径CD的长为多少寸?”请你求出CD的长.24。
人教版九年级数学上册24.1.2垂直于弦的直径一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.32.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.64.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或46.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.8.半径等于16的圆中,垂直平分半径的弦长为.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=cm.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.人教版九年级数学上册24.1.2垂直于弦的直径参考答案一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.3【解答】解:过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90°,∴AB=OA=4,∴OC=AB=2,故选:C.2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)【解答】解:该圆弧所在圆的圆心坐标是:(1,0).故选:D.3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6【解答】解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:C.4.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm【解答】解:作OC⊥AB于C,根据题意:OA=OB=AB=50mm,∴△AOB是等边三角形,∴∠AOC=30°,∴OC=OA•cos30°=25cm.故选:B.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.6.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【解答】解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为12cm.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.8.半径等于16的圆中,垂直平分半径的弦长为16.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=2cm.【解答】解:连接OA,如图,∵CE=3,DE=7,∴CD=10,∴OC=OA=5,OE=2,∵AB⊥CD,∴AE=BE,在Rt△AOE中,AE==,∴AB=2AE=2(cm).故答案为2.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是3.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.【解答】解:连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为﹣1,1.∵⊙O与抛物线y=x2交于A,B两点,点A,B的坐标分别为(﹣1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为4.【解答】解:对于直线y=kx﹣2k+3=k(x﹣2)+3,当x=2时,y=3,故直线y=kx﹣2k+3恒经过点(2,3),记为点D.过点D作DH⊥x轴于点H,则有OH=2,DH=3,OD==.∵点A(5,0),∴OA=5,∴OB=OA=5.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=4.故答案为4.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.【解答】解:如图,过点O作OF⊥DE于点F,则EF=DF=DE,假设DE=6m,则DF=3m,∵圆的半径为5m,∴OD=5m,∴OF===4>3.8,∴这条船能过桥洞.。
CA P ODCE OA D B24.1.2 垂直于弦的直径1. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?2. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
6003. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。
你认为图中有哪些相等的线段?为什么?B4. 如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。
6. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。
(4)题图(5)题图(6)题图7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM 的长的取值范围是()A. 3≤OM≤5B. 4≤OM≤5C. 3<OM<5D. 4<OM<5(7)题图(8)题图(9)题图10.下列说法中,正确的是()A. 到圆心的距离大于半径的点在圆内B. 圆的半径垂直于圆的切线C. 圆周角等于圆心角的一半D. 等弧所对的圆心角相等11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A. 45°B. 90°C. 135°D. 270°12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;A B16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
2018-2019学年度人教版数学九年级上册同步练习24.1.2垂直于弦的直径一•选择题(共15小题)1 .下列说法中正确的是()A. 平分弦的直径一定垂直于弦B. 长度相等的弧是等弧C•平行弦所夹的两条弧相等D.相等的圆心角所对的弦相等2. 如图O的半径为6,直径CD过弦EF的中点G,若/ EOD=60,则弦CF的长等于()A. 6B. 6 —C. 3 —D. 93. 如图,在。
O中,直径AB丄弦CD,垂足为M,则下列结论一定正确的是()ABA. AC=CDB. OM=BMC.Z A= . / ACDD.Z A=. / BOD4 .如图,AB是。
O 的直径,AB丄CD于E, AB=10, CD=8,则BE%( )A. 2B. 3C. 4D. 3.55. 如图,在O O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则O O截面圆心O 到水面的距离OC 是(10.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一B . 10cm C. 8cm D . 20cm6. 在半径为25cm 的。
O 中,弦AB=40cm,则弦AB 所对的弧的中点到 AB 的距 离是( )A . 10cmB . 15cmC. 40cm 7.下列说法中正确的个数有()① 相等的圆心角所对的弧相等; ②平分弦的直径一定垂直于弦;③ 圆是轴对称图形,每一条直径都是对称轴; ④ 直径是弦;⑤ 长度相等的弧是等弧.D . 10cm 或 40cmD . 4个8 .如图,O O 过点B C,圆心O 在等腰Rt A ABC 的内部,/ BAC=90, OA=2 BC=8则O O 的半径为(B . 5C.下 D . 69.一条排水管的截面如图所示,已知排水管的半径 OB=1O,水面宽 AB=16,则B . 5 D . 6的半径是(A . 6cm A . 4千多年,其中有这样一个问题:今有圆材埋在壁中,不知大小•以锯锯之,深一寸,锯道长一尺•问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1 尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A. 13 寸B. 6.5 寸C. 26 寸D. 20 寸11•如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A. 10 cmB. 16 cmC. 24 cmD. 26 cm 12 .把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm则球的半径长是();I\ /\ /* _* I8 CA. 2 cmB. 2.5 cmC. 3 cmD. 4 cm13.如图,圆弧形桥拱的跨度AB=16m,拱高CD=4m,则圆弧形桥拱所在圆的半径为()疋—L_____ 卫A D BA. 6 mB. 8 mC. 10 mD. 12 m14.如图,在半径为10cm的圆形铁片上切下一块咼为4cm的弓形铁片,则弓形弦AB的长为()15.圆材埋壁”是我国古代《九章算术》中的一个问题,今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何? ”用现代的数学语言表示是: 如图,CD 为O O 的直径,弦 AB 丄CD,垂足为E, CE=1寸,AB=10 寸,求直径CD 的长”依题意,CD 长为( )二.填空题(共10小题)16.如图,在O O 中,半径0C 丄弦AB,垂足为点D ,AB=12, CD=2则O O 半 径的长为 ___________ .17 .如图,AB 是O O 的弦,OC 丄AB 于点C ,且AB > OC,若OC 和AB 是方程x 2 -11x+24=0的两个根,则O O 的半径OA= _______ .19.在平面直角坐标系中,过三点 A (0, 0), B (2, 2), C (4, 0)的圆的圆 心坐标为 _____________ .B . 12cm C. 16cm D . 20cm △ 寸 A .寸 B. 13 寸 C. 25 寸 D. 26 寸 DA . 8cm320.如图,AB是。
人教版九年级上册24.1.2 垂直于弦的直径(153) 1.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,则OP的长度范围是.2.如图,点A,B,C,D在⊙O上,AB是⊙O的直径,BE=CE.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.3.如图,一条公路的转弯处是一段圆弧AB⌢.(1)用直尺和圆规作出AB⌢所在圆的圆心O(要求保留作图痕迹,不写作法);(2)若AB⌢的中点C到弦AB的距离为20m,AB=80m,求AB⌢所在圆的半径.4.某地有一座弧形的拱桥,桥下的水面宽度为7.2米,拱顶高出水面2.4米,现有一艘宽3米,船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?5.如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D两点.求证:AC=BD.6.如图,已知AB,CD是⊙O的两条弦,OE⊥AB于点E,OF⊥CD于点F,OE=OF.求证:AB=CD.7.下列说法正确的是()A.垂直于弦的直线平分弦所对的两条弧B.平分弦的直径垂直于弦C.垂直于直径的弦平分这条直径D.弦的垂直平分线经过圆心8.如图所示,⊙O的直径CD=10cm,AB是⊙O的弦,AM=BM,OM∶OC=3∶5,则AB的长为()A.8cmB.√91cmC.6cmD.2cm9.如图所示,AB是⊙O的直径,∠BAC=42∘,点D是弦AC的中点,则∠DOC的度数是度.10.如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB的距离是()A.6√2B.9−√2C.√7D.25−3√211.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cmB.7cmC.12cmD.17cm或7cm12.如图,AB是⊙O的弦,AB的长为8,P是⊙O上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为.13.下列说法中,不正确的是()A.圆既是轴对称图形,又是中心对称图形B.圆绕着它的圆心旋转任意角度,都会与自身重合C.圆的对称轴有无数条,对称中心只有一个D.圆的每一条直径都是它的对称轴14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DMB.CB⌢=DB⌢C.∠ACD=∠ADCD.OM=MB15.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON的长度为()A.5B.7C.9D.1116.如图,⊙O的直径CD⊥AB于点E,且CE=2,DE=8,则AB的长为()A.2B.4C.6D.817.如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为.18.如图是一圆形水管的截面图,已知⊙O的半径OA=10,水面宽AB=16,则水的深度CD=.19.如图,在△ABC中,已知∠ACB=130∘,∠BAC=20∘,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.参考答案1.【答案】:3cm≤OP≤5cm【解析】:作直径MN⊥弦AB,交AB于点D.由垂径定理,得AD=DB=12AB=4cm.又⊙O的直径为10cm,连接OA,则OA=5cm.由勾股定理,得OD=√OA2−AD2= 3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm2(1)【答案】不同类型的正确结论有:BE=12BC,BD=CD,BD=CD,OD⊥BC,△BOD是等腰三角形,△BDE≌△CDE,OB2=OE2+BE2等(2)【答案】∵AB是⊙O的直径,∴OA=OB.∵BE=CE,∴OD⊥BC,OE为△ABC的中位线,∴OE=12AC=12×6=3.在Rt△OBE中,由勾股定理,得OB=√OE2+BE2=√32+42=5,∴OD=OB=5,∴DE=OD−OE=5−3=23(1)【答案】如图①,连接AC,BC,作线段AC,BC的垂直平分线交于点O,点O即为所求.(2)【答案】如图②,连接OA,AB,OC,OC交AB于点D.∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40m.设⊙O的半径为rm,则OA=rm,OD=OC−CD=(r−20)m.在Rt△OAD中,∵OA2=OD2+AD2,∴r2=(r−20)2+402,解得r=50.即AB所在圆的半径是50m.4.【答案】:如图,设弧形拱桥AB所在圆的圆心为O,连接OA,OB,作OD⊥AB于点D,交⊙O于点C,交MN于点H.由垂径定理可知,D为AB的中点.设OA=r米,AB=3.6米.在Rt△AOD中,OA2=AD2+OD2,即则OD=OC−DC=(r−2.4)米,AD=12r2=3.62+(r−2.4)2,解得r=3.9. 在Rt△OHN中,OH=√ON2−NH2=√3.92−1.52=3.6(米),所以FN=DH=OH−OD=3.6−(3.9−2.4)=2.1(米).因为2.1米>2米,所以此货船能顺利通过这座拱桥【解析】:如图,设弧形拱桥AB所在圆的圆心为O,连接OA,OB,作OD⊥AB于点D,交⊙O于点C,交MN于点H.由垂径定理可知,D为AB的中点.设OA=r米,AB=3.6米.在Rt△AOD中,OA2=AD2+OD2,即则OD=OC−DC=(r−2.4)米,AD=12r2=3.62+(r−2.4)2,解得r=3.9. 在Rt△OHN中,OH=√ON2−NH2=√3.92−1.52=3.6(米),所以FN=DH=OH−OD=3.6−(3.9−2.4)=2.1(米).因为2.1米>2米,所以此货船能顺利通过这座拱桥5.【答案】:过点O作OH⊥AB于点H,如图,则AH=BH,CH=DH,∴AH−CH=BH−DH,即AC=BD【解析】:过点O作OH⊥AB于点H,如图,则AH=BH,CH=DH,∴AH−CH=BH−DH,即AC=BD6.【答案】:∵OE⊥AB,OF⊥CD,∴AE=BE,CF=DF.在Rt△OBE与Rt△ODF中,{OB=OD,OE=OF∴Rt△OBE≌Rt△ODF(HL),∴BE=DF,∴2BE=2DF,即AB=CD【解析】:略7.【答案】:D【解析】:A选项中没有说直线过圆心,故得不到这条直线平分弦所对的两条弧;B选项中被平分的弦必须不是直径;C选项中垂直于直径的弦可能平分直径也可能不平分直径;D选项正确.故选D8.【答案】:A【解析】:如图所示,连接OA.∵⊙O的直径CD=10cm,∴⊙O的半径为5cm,即OA=OC=5cm.∵OM∶OC=3∶5,∴OM=3cm.∵AM=BM,∴AB⊥CD.在Rt△AOM中,AM=√52−32=4(cm),∴AB=2AM=2×4=8(cm).故选A.9.【答案】:48【解析】:∵AD=CD,∴OD⊥AC,∴∠CDO=90∘,∴∠DOC+∠ACO=90∘.∵OA=OC,∴∠ACO=∠A=42∘,∴∠DOC=90∘−∠ACO=48∘10.【答案】:C【解析】:如图,过点O作OG⊥AB于点G.根据垂径定理,得AG=BG.设AC=2a,则CB=4a,CG=a,GB=3a.在Rt△OCG中,OC2=OG2+CG2=OG2+a2.①在Rt△OBG 中,OB2=OG2+GB2=OG2+9a2.②又OC=3,OB=5,将其分别代入①②中,解方程得a2=2,OG2=7. 所以圆心O到弦AB的距离为√711.【答案】:D【解析】:①当弦AB和CD在圆心同侧时,如图,过点O作OE⊥AB于点E,延长OE交CD于点F,则OF⊥CD.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm.∵OA=OC=13cm,∴OE=5cm,OF=12cm,∴EF=12−5=7(cm).②当弦AB和CD在圆心异侧时,如图,过点O作OE⊥AB于点E,延长EO交CD于点F,则OF⊥CD.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm.∵OA=OC=13cm,∴OE=5cm,OF=12cm,∴EF=OF+OE=17(cm).∴AB与CD之间的距离为7cm或17cm12.【答案】:4【解析】:∵OC⊥AP,OD⊥PB,∴AC=PC,PD=BD,∴CD是△ABP的中位线.∵AB=4AB的长为8,∴CD=1213.【答案】:D14.【答案】:D【解析】:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立.由已知得B为CD⌢的中点,即CB⌢=DB⌢,选项B成立.在△ACM和△ADM中,∵AM=AM,∠AMC=∠AMD=90∘,CM=DM,∴△ACM≌△ADM,∴∠ACD=∠ADC,选项C成立.而OM与MB不一定相等,选项D不成立.故选 D15.【答案】:A【解析】:因为ON⊥AB,所以AN=12AB=12×24=12,∠ANO=90∘.在Rt△AON中,由勾股定理得ON=√OA2−AN2=√132−122=5.故选A16.【答案】:D【解析】:如图,连接OB.∵CE=2,DE=8,∴CD=CE+DE=10,则OC=OB=5,∴OE=OC−CE=3.在Rt△OBE中,由勾股定理,得BE=√OB2−OE2=√52−32=4.∵CD是⊙O的直径,CD⊥AB,∴AB=2BE=8.故选D.17.【答案】:√13【解析】:∵弦AB=6,圆心O到AB的距离OC为2,∴AC=BC=3,∠ACO=90∘.在Rt△AOC中,由勾股定理,得OA=√AC2+OC2=√32+22=√1318.【答案】:4【解析】:∵AB是⊙O的弦,OC⊥AB于点C,AB=16,∴AC=12AB=8.∵AO=10,∴在Rt△OAC中,OC=√OA2−AC2=√102−82=6,人教版九年级上册24.1.2 垂直于弦的直径(153)第 11 页,共11 页 ∴CD =OD −OC =10−6=419.【答案】:2√3 【解析】:如图,作CE ⊥AB 于点E . ∠B =180∘−∠A −∠ACB =180∘−20∘−130∘=30∘. 在Rt △BCE 中,∵∠CEB =90∘,∠B =30∘,BC =2, ∴CE =12BC =1,BE =√BC 2−CE 2=√3. ∵CE ⊥BD ,∴BD =2EB =2√3.。
人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。
本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。
通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。
因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。
2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。
3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。
四. 教学重难点1.重点:垂径定理的理解和运用。
2.难点:圆中特殊位置关系的判断和证明。
五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。
2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。
3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。
4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。
六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。
提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。
让学生理解并掌握垂径定理。
3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。
教师引导学生思考和探究,解答学生的疑问。
C
A P O
D
C
E O
A D B
24.1.2 垂直于弦的直径
1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?
2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽
AB=600mm,
求油面的最大深度。
600
3. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?
B
4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。
6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。
(4)题图(5)题图(6)题图
7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。
8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。
9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM 的长的取值范围是()
A. 3≤OM≤5
B. 4≤OM≤5
C. 3<OM<5
D. 4<OM<5
(7)题图(8)题图(9)题图
10.下列说法中,正确的是()
A. 到圆心的距离大于半径的点在圆内
B. 圆的半径垂直于圆的切线
C. 圆周角等于圆心角的一半
D. 等弧所对的圆心角相等
11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于()
A. 45°
B. 90°
C. 135°
D. 270°
12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()
A. 140°
B. 110°
C. 120°
D. 130°
13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离
等于_____________;
15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;
A B
16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D 。
已知:AB cm 24=,CD cm 8=。
(1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径。
17. 已知:如图所示,Rt △ABC 的两直角边BC=3cm ,AC=4cm ,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm ,为半径作圆,试判断点D 与这三个圆的位置关系。
B
18. 在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以点C 为圆心,4cm 为半径作圆。
则A 、B 、C 、D 四点在圆内有_____________。
19. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。
(1)顶角A 等于多少度时,A 在圆D 上? (2)顶角A 等于多少度时,A 在圆D 内部? (3)顶角A 等于多少度时,A 在圆D 外部?
20. 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,求弦AB 与CD 之间的距离。
21. 如图所示,圆O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠
CEA=30°,求CD 。
A
B
22. 圆O 中若直径为25cm ,弦AB 的弦心距10cm ,求弦长。
23. 若圆的半径2cm ,圆中一条弦长1cm ,则此弦中点到此弦所对劣弧中点之间的距离?
24. 圆内一条弦与直径的交角为30°,且分直径为1cm 和5cm 两段,求弦心距,弦长?
25. 半径为5cm 的圆O 中有一点P ,OP=4,则过P 的最短弦长_________,最长弦是__________,
26. 如图所示,已知O 是∠EPF 的平分线上的一点,以O 为圆心的圆心角的两边分别交于点A 、B 、C 、D 求证:PB=PD ,若角的顶点P 在圆上或圆内,上述还成立吗?请说明。
参考答案
1. 过点O 作OE CD ⊥于E ∴=CE ED
∴=∴≅∴=AD DB
AOE BOE
AO OB ∆∆ 2. 175mm
3. 略
4. 8
5.
2
6. 42
7. 3.6
8. 120
9. B 10. D 11. A 12. D
13. 内部、外部 14. 13cm cm 或 15. BC=4cm 16. (1)图略
(2)13cm
17. 外、上、内 18. C 、D
19. (1)∠=A 90°;
(2)∠A 为钝角; (3)∠A 为锐角。
20. 71cm cm 或
21.
CD cm =215()22. 15cm
23. 415
2-cm
24. 142cm cm ;
25. 610cm cm ,
26. (1)证明:过O 作OE PB E OF PD F ⊥⊥于,于
OP EPF OE OF PE PF AB CD BE DF PE BE PF DF
PB PD
平分,,则∠∴==∴==∴+=+∴=
(2)上述结论仍成立: 如下图所示 证明略。
A A
E E
P O P O
F F
C C
PA=PC PA=PC。