最新人教版小学五年级数学上册知识点
- 格式:docx
- 大小:20.31 KB
- 文档页数:10
人教版五年级上册数学知识点
以下是人教版五年级上册数学的知识点:
1. 自然数计数:自然数的读法、书写和位置、百以内的读法和写法、数的前后关系等。
2. 十进制整数:数位及其位置、整数的读法和写法、整数的前后关系、百以内整数的
加减法运算等。
3. 基本的计算方法:列竖式计算增加的运算法则。
4. 几何图形:平行线、垂直线、直线、线段、尺、角、直角、锐角、钝角、平行四边形、长方形等。
5. 长度单位:米、分米、厘米、毫米的关系和换算,测量长度的仪器和方法。
6. 时间的计量:秒、分、时、天、星期、月、年的关系和换算,读表和时间的相加减。
7. 质数和合数:素数的概念、质数和合数的判断。
8. 分数:分数的概念、分数的读法和写法,分子分母的关系,分数的比较。
9. 分数的加减法:同分母的分数相加减,分数和整数相加减。
10. 面积的计算:平行四边形和长方形的面积计算,面积的换算。
11. 三角形与四边形:直角三角形、等腰三角形、等边三角形、四边形的概念和特点。
12. 角度和弧度:度的概念和读法,度的运算,角度的比较和度量。
以上是人教版五年级上册数学的一些主要知识点,具体的内容可能还会涉及到其他方面的知识,请根据教材内容进行学习。
人教版五年级上册全册数学知识点归纳人教版五年级上册全册数学知识点归纳第一单元:小数乘法。
1、小数乘整数------重点:理解小数乘整数的算理。
2、小数乘小数------重点:小数乘小数的计算方法。
3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。
难点:根据实际情况取近似值。
4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。
难点:引导学生理解解决问题中出现的解题思路。
5、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。
第二单元:小数除法。
1、小数除以整数------重点:小数除以整数的计算方法。
难点:让学生理解商的小数点是如何确定的。
2、一个数除以小数------重点:掌握除数是小数除法的计算方法。
3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。
难点:怎样判断除得的商是循环小数。
5、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。
第三单元:观察物体。
观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。
观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。
第四单元:简易方程。
1、用字母表示数------重点:会用字母表示数、运算定律及计算公式。
2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。
3、方程的意义------重点:初步理解方程的意义。
4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。
5、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。
6、稍复杂的方程(二)------重点:分析数量关系。
难点:列方程和解方程。
7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。
人教版小学五年级数学上册知识点总结人教版小学五年级数学上册知识要点总结一、数的认识1.1 万以上数的认识:学生需要掌握万、十万、百万、千万、亿等大数的读法和写法,了解十进制计数法,并能够解决相关问题。
1.2 数的读写方法:学生需要掌握任意一个数的读写方法,包括整数、小数和分数。
1.3 数的改写和近似数:学生需要掌握如何将一个数改写成指定单位,如将千米改写成米,以及如何求一个数的近似数。
二、数的运算2.1 四则运算的意义:学生需要理解加法、减法、乘法和除法的意义,并能够解决简单的四则运算问题。
2.2 运算定律和简便运算:学生需要掌握加法交换律、加法结合律、乘法交换律、乘法结合律等基本运算定律,并能够运用这些定律进行简便运算。
2.3 估算:学生需要掌握如何对一个数进行估算,并能够运用估算解决实际问题。
三、简易方程3.1 方程的意义:学生需要理解方程的意义,并能够根据题意列方程。
3.2 解方程:学生需要掌握一些基本的解方程的方法,如移项、合并同类项、系数化为1等。
3.3 应用问题:学生需要能够运用方程解决一些简单的应用问题。
四、多边形面积4.1 平行四边形和三角形面积:学生需要掌握平行四边形和三角形的面积计算公式,并能够解决相关问题。
4.2 梯形面积:学生需要掌握梯形的面积计算公式,并能够解决相关问题。
4.3 面积单位换算:学生需要掌握常用的面积单位之间的换算关系,并能够进行简单的单位换算。
五、简易代数5.1 代数式和表达式:学生需要了解什么是代数式和表达式,并能够用代数式表示简单的数量关系。
5.2 解方程组:学生需要掌握如何解二元一次方程组,并能够解决相关问题。
5.3 应用问题解方程组:学生需要能够运用方程组解决一些简单的应用问题。
六、统计与概率6.1 统计图表的认识和应用:学生需要了解各种常见的统计图表,如柱状图、折线图和饼图等,并能够运用这些图表解决实际问题。
同时,学生还需要了解一些基本的概率知识,如随机事件、概率的意义和计算方法等。
第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学五年级上册数学总复习知识点一、小数乘法和除法1、小数乘法的意义小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数乘小数的意义是求这个数的十分之几、百分之几、千分之几……2、小数乘法的计算法则计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。
3、小数除法的意义小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
4、除数是整数的小数除法计算法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在被除数的末尾添0再继续除。
5、除数是小数的除法计算法则除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。
6、循环小数的意义一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
循环小数是无限小数。
7、循环节的意义一个循环小数的小数部分中。
依次不断地重复出现的数字,叫做这个循环小数的循环节。
循环节从小数部分第一位开始的,叫做纯循环小数。
循环节不是从小数部分第一位开始的,叫做混循环小数。
例1 用简便方法计算下列各题①②③④例2 明明和乐乐去文具店买笔芯,明明买4支黑色的和5支蓝色的,共付5元钱,乐乐买4支黑色的和6支蓝色的共付5.6元。
每支黑色笔芯多少钱?例3 7.9468保留整数是,保留一位小数是,保留两位小数是。
知识回顾二、整数、小数四则混合运算和应用题1、四则混合运算顺序整数、小数四则混合运算的顺序与整数四则混合运算的顺序完全相同,整数四则混合运算的运算定律对小数同样适用。
(人教课标版)五年级数学上册【学问点】第一单元《小数乘法》具体内容重点知识小数乘整数的计算方法:小数乘整数,先按整数乘法的小数乘整数计算方法计算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。
积的小数末尾有0的把0去掉。
小数乘法的计算方法:把小数乘法转化为整数乘法进展小数乘小数计算;看因数中共有几位小数,就从积的右面起数出几位点上小数点,积的小数位数不够时,需要添0补位;末尾有0的要把0去掉。
求积的近似数的方法:用“四舍五入”法求积的近似数。
积的近似数首先明确要保存的小数位数;再看保存的小数位数下一位的数字,假设大于或等于5向前一位进一,假设小于5舍去。
连乘、乘加乘减1.小数连乘的运算挨次:依据从左往右的挨次依次运算。
2.乘加、乘减运算挨次:无括号的,先算乘法,再算加减;有括号的,先算括号里面的,再算括号外面的。
整数乘法运算定律推广到小数整数乘法运算定律对于小数乘法同样适用,应用乘法运算定律可以使一些计算简便。
其次单元《小数除法》具体内容重点知识1.小数除以整数,依据整数除法的计算法则计算,商的小数点要和被除数的小数点对齐,有余数时可在余数小数除法计后补0连续除。
算法则2.一个数除以小数,先去掉除数的小数点,看原来除数有几位小数,被除数的小数点也向右移动几位,然后依据除数是整数的计算法则计算。
计算商时,要比需要保存的小数位数多算出一位,然后商的近似数依据“四舍五入”法截取商的近似数。
1.循环小数:一个数的小数局部,从某一位起,一个数字或者几个数字依次不断重复消灭,这样的小数叫做循环小数循环小数。
2.有限小数:小数局部的位数是有限的小数。
3.无限小数:小数局部的位数是无限的小数。
用计算器探探究规律的步骤:1.用计算器计算。
2.观看觉察规律。
索规律3.依据规律写商。
1.连除解决问题:用总量依次除以另外两个量。
解决问题2.依据实际需要,有时要用“进一法”或“去尾法”截取商的近似数。
第三单元《观看物体》具体内容重点知识1.从不同方向观看同一物体,看到的外形可能是不同的。
人教版五年级上册数学知识点归纳一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
例如:0.72×5 = 3.6。
2. 小数乘小数。
- 意义:表示求一个数的几分之几是多少。
例如:2.5×0.8表示2.5的十分之八是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的小数位数不够,要在前面用0补足,再点小数点。
例如:0.3×0.2 = 0.06。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如:0.78×1.3 = 1.014,保留两位小数是1.01。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a× b=b× a,例如:0.8×1.2 = 1.2×0.8。
- 乘法结合律:(a× b)× c=a×(b× c),例如:(0.25×0.4)×0.8 = 0.25×(0.4×0.8)。
- 乘法分配律:(a + b)× c=a× c + b× c,例如:(1.2+0.8)×0.5 =1.2×0.5+0.8×0.5。
二、位置。
1. 数对。
- 用数对表示位置时,先表示列数,再表示行数。
例如:在方格纸上,点A 的位置用数对(3,2)表示,说明A点在第3列,第2行。
- 两个数对中第一个数相同,表示在同一列;第二个数相同,表示在同一行。
(人教課標版)五年級數學上冊【知識點匯總】第一單元《小數乘法》第三單元《觀察物體》第四單元《四簡易方程》解方程1.方程的解與解方程。
“方程的解”是一個數,是使等號左右兩邊相等的未知數的值;“解方程”是指演算過程。
2.解形如±a=b 和a=b 的方程。
依據等式性質來解此類方程。
解方程時要注意寫清步驟,等號對齊。
3.驗算。
把未知數的值代人原方程,看等號左邊的值是否等於等號右邊的值。
稍複雜的方程1.列方程解決問題的步驟。
(1)弄清題意,找出未知數,用表示;(2)分析、找出數量之間的相等關係,列方程;(3)解方程;(4)檢驗,寫出答語。
2.算術解法與方程解法的區別。
(1)列方程解決問題時,未知數用字母表示,參加列式;算術解法中未知數不參加列式。
(2)列方程解決問題是根據題中的數量關係,列出含有未知數的等式,求未知數的過程由解方程來完成。
算術解法是根據題中已知數和未知數問的關係,確定解答步驟,再列式計算。
3.驗算。
除了把未知數的值代人方程檢驗之外,還可以把求得的未知數的值代入原題進行檢驗,這樣驗算更有效,也更簡便。
具體內容重點知識平行四邊形的面積平行四邊形的面積=底×高用字母表示:S=ah 三角形的面積三角形的面積=底×高÷2用字母表示:S=ah÷2第六單元《統計與可能性》第七單元《數學廣角》【郵遞區號的意義和機構】1.郵遞區號的意義:郵遞區號是代表投送郵件的郵局的一種專用代號,也是這個局(所)投送範圍內的居民與單位的通信代號。
2.郵遞區號的結構:郵遞區號由六位元數位組成,前兩位元數字表示省(或自治區、直轄市);第三位數表示郵區;第四位數表示縣(市);最後兩位數表示投遞局(所)。
【身份證號碼蘊含的資訊和編碼的含義】1.公民身份證的意義:公民身份號碼是每個公民唯一的、終身不變的身份代碼,由公安機關按照公民身份號碼國家標準編制的。
2.身份證的作用:居民身份證是公民進行社會活動,維護社會秩序,保障公民合法權益,證明公民身份的法定證件。
人教版五年级数学上册知识点详解超全整
理
本文档旨在为五年级学生提供数学上册知识点的详细解释和整理,帮助学生对所学知识进行复和巩固。
数字的认识和应用
- 数的读法和写法
- 数的顺序、比较和排序
- 数的拆分和组成
- 数的大小和估算
- 数字的应用问题
四则运算
- 加法的计算和应用
- 减法的计算和应用
- 乘法的计算和应用
- 除法的计算和应用
- 四则运算的综合应用
小数
- 小数的认识和读法
- 小数的大小比较和排序- 小数的加法和减法计算- 小数和整数的转化
分数
- 分数的基本认识和读法- 分数的大小比较和排序- 分数的加法和减法计算- 分数的乘法和除法计算- 分数和整数的转化
数量的估算
- 长度的估算和比较
- 重量的估算和比较
- 容量的估算和比较
- 温度的估算和比较
- 时间的估算和比较
图形与分析
- 图形的基本认识和体验
- 图形的对称和平移
- 图形的旋转和变换
- 数据的调查和表示
- 数据的统计和分析
以上是人教版五年级数学上册的知识点详解超全整理,请同学们仔细阅读并结合课本进行学习和复习。
人教版五年级数学上册(全册)知识点汇总第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
五年級上冊必背知識點
●❶小數乘法計算法則:1.先按照整數乘法算出積, 2.
起數出幾位,點上小數點。
❷一個乘法算式中,一個數(03×1.2>3
一個數(03×0.8<3
❸
●❶小數除法計算法則:1. 2.
小數點也向右
移動幾位(位數不夠の,在被除數の末尾用;3.然後按除數是整數の小數除法進行計算。
❷
❸
❹商の變化規律:1.
2.0除外)
3.
❺
●❶
❷
❸
❹路程用
❺用a
用
❻
●
●
●、基本數量關係
1、單價、數量和總價
單價×數量=總價。
總價÷單價=數量。
總價÷數量=單價
2、路程、速度和時間
速度×時間=路程路程÷速度=時間路程÷時間=速度
3、工作總量、工作時間和工作效率
工作總量=工作效率×工作時間
工作時間=工作總量÷工作效率
工作效率=工作總量÷工作時間
4、總數和份數
每份數×份數=總數總數÷每份數=份數
總數÷份數=每份數
10、生活中常用の單位:
品質:1噸=1000千克;1千克=1000克
長度:1千米=1000米1分米=10釐米1釐米=10毫米
1分米=100毫米1米=10分米=100釐米=1000毫米面積:1平方米=100平方分米1平方分米=100平方釐米
1平方千米=100公頃 1公頃=10000平方米
人民幣:1元=10角1角=10分1元=100分。
最新人教版小学五年级数学上册知识点归纳总结
小学五年级数学上册主要包括以下知识点:
1. 数字的认识:认识万以内的整数,认识正数、负数、零以及它们在数轴上的位置关系。
2. 常见整数的运算:掌握整数的加法、减法,能够解决与整数运算相关的实际问题。
3. 分数的认识:认识真分数、假分数、整数,能够对分数进行比较大小。
4. 分数的运算:学习分数的加法、减法,了解几个同分母分数相加时分子不变分母相
加的规律。
5. 单位之间的转换:认识厘米、米、千米、毫升、升、毫克、克、千克等单位之间的
换算关系,能够进行简单的单位换算。
6. 顺序数的认识:学习顺序数的读法、表达及顺序数之间的比较。
7. 图形的认识:认识平面图形和立体图形的名称、性质及特征。
8. 图形的初步操作:能够正确使用直尺、量角器等工具进行测量和画图。
9. 关系和函数:学习集合和集合中元素的关系,了解数与数之间的函数关系。
10. 数据的整理和处理:学习用表格和图表整理和描述数据,能够进行简单的数据分析。
这些知识点是小学五年级数学上册的主要内容,通过学习这些知识点,可以帮助学生打好数学基础,为进一步学习打下坚实的基础。
小学五年级数学上册复习知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。
(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。
(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。
2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
3、求积的近似数:先求出积,在根据需要求近似数。
求近似数的方法一般有三种:⑴四舍五入法(常用) ;⑵进一法;⑶去尾法。
后两种多用于解决实际问题求近似数中。
$4、计算钱数,保留两位小数,表示精确到分。
保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。
)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。
)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。
常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律:a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a!乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。
4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。
二、小数乘小数的算理及计算方法:(1)按照整数乘法算出积,再点小数点;(2)点小数点时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;(3)积的小数位数如果不够,在前面用0补足,再点小数点;(4)积的小数部分末尾有0的要把0去掉。
三、积与因数的关系一个因数(0除外)乘大于1的数,积比原来的因数大;一个因数(0除外)乘小于1的数,积比原来的因数小。
四、求一个数的小数倍数是多少的问题的解题方法:用乘法计算,即用这个数乘小数倍数。
五、小数乘法的常用验算方法:(1)根据因数与积的大小关系检验;(2)交换两个因数的位置,重新计算;(3)用计算器验算。
六、用“四舍五入”法求积的近似数:1、先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2、用四舍五入法保留一定的小数位数。
四舍五入法:小于5,把它和右边的数全舍去,改写成0大于5,向前进1,再把它和右面的数全舍去,改写成0由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。
2.205≈2 (保留整数)2.205≈2.2 (保留一位小数)2.205≈2.21 (保留两位小数)3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。
如6.597 保留两位小数为6.60。
特别注意:在保留整数、(一位、两位、三位)小数、省略(亿···万···十分位、百分位···)后面的尾数、精确到(亿···万···十分位、百分位···)这类题目,都可以用划圆圈的方法来完成。
人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。
性质:整数可以进行加减乘除四则运算,但除以零没有意义。
特点:整数在数轴上表示为离散的点。
举例:1、2、3、0、-1、-2等都是整数。
2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。
性质:小数可以进行加减乘除四则运算,但小数点要对齐。
特点:小数可以表示比整数更精确的数量。
举例:0.5、1.23、4.567等都是小数。
3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。
性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。
特点:分数可以表示不可分割的数量关系。
举例:1/2、3/4、5/6等都是分数。
4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。
性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。
特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。
举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。
二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。
性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。
特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。
举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。
2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。
性质:面积可以用平方单位来衡量,如平方厘米、平方米等。
人教版五年级上册数学知识点归纳一、分数的认识1. 分数的概念:一个整体被平均分成若干份,表示这样的一份或几份的数。
2. 分数的读法:先读分母,再读分子,如1/4读作“四分之一”。
3. 分数的写法:先写分母,再画分数线,最后写分子。
4. 真分数与假分数:分子小于分母的分数为真分数,分子大于或等于分母的分数为假分数。
5. 带分数:由一个整数和一个真分数组成的分数,如1又2/3。
6. 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
二、分数的运算1. 同分母分数的加减法:分母不变,分子相加减。
2. 异分母分数的加减法:先找到公共分母,再将分子按比例调整,最后进行加减。
3. 分数的乘法:分子乘分子,分母乘分母。
4. 分数的除法:除以一个分数等于乘这个分数的倒数。
5. 分数的混合运算:先乘除后加减,括号内的运算优先。
三、小数的认识和运算1. 小数的概念:表示一个整体被平均分成10的幂次方份中的一份或几份的数。
2. 小数的读法和写法:小数点前是整数部分,按整数的读法读和写;小数点后是小数部分,依次读写作几就写几。
3. 小数的性质:小数的末尾添上0或去掉0,小数的大小不变。
4. 小数的四则运算:小数的加、减、乘、除运算法则与整数相同,注意小数点的对齐。
四、几何图形1. 平行四边形:对边平行且相等的四边形。
2. 三角形的特性:两边之和大于第三边,两边之差小于第三边。
3. 面积的计算:长方形面积=长×宽,正方形面积=边长×边长,三角形面积=底×高÷2。
4. 周长的计算:图形一周的长度和,长方形周长=(长+宽)×2,正方形周长=边长×4。
五、数据的收集和处理1. 统计表的认识:用表格形式收集、整理和展示数据。
2. 条形统计图:用直条的高度表示数据的大小。
3. 折线统计图:用折线连接各点,表示数据随时间变化的趋势。
4. 扇形统计图:用扇形的大小表示部分与整体的关系。
小学五年级数学上册知识点归纳整理人: 马艳芳第一单元小数乘法1.小数乘整数:意义——求几个相同加数的和的简便运算。
如: 1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数, 就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如: 1.5×0.8就是求1.5的十分之八是多少(或求1.5的0.8倍是多少)。
计算方法: 先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数, 就从积的右边起数出几位点上小数点。
注意: 按整数算出积后, 小数末尾的0要去掉, 也就是把小数化简;位数不够时, 要用0占位。
3、积与因数的大小关系:一个数(0除外)乘大于1的数, 积比原来的数大;一个数(0除外)乘小于1的数, 积比原来的数小。
4.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数, 保留两位小数, 表示计算到分;保留一位小数, 表示计算到角。
6.小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:加法交换律: a+b=b+a加法加法结合律:(a+b)+c=a+(b+c)减法性质: 从一个数里连续减去两个数,我们可以减去这两个数的和,或者交换两个减数的位置。
a-b-c=a-(b+c)a-(b+c)=a-b-c乘法乘法交换律: 两个数相乘交换因数的位置, 它们的积不变。
a×b=b×a乘法结合律:三个数相乘, 先把前两个数相乘, 再和最后一个数相乘, 或先把后两个数相乘, 再和第一个数相乘, 积不变。
(a×b)×c=a×(b×c).乘法分配律: 两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c除法的性质: 一个数连续除以数两个数,等于除以这两个除数的积,或者交换两个除数的位置。
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二单元位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)
2、图形左右平移行数不变;图形上下平移列数不变。
第三单元小数除法
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如
6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
第四单元可能性
1、有些事件的发生是确定的,有些是不确定的。
可能
(不能确定)
可能性不可能
一定
2、事件发生的机会(或概率)有大小。
大数量多
小数量少
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2读作a的平方。
注:2a表示a+a ;a2表示a×a
3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
(确定)
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@ 加法;
和=加数+加数;
一个加数=和-两一个加数
@ 减法:
差=被减数-减数;
被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数
@ 除法:
商=被除数÷除数;
被除数=商×除数;
除数=被除数÷商
第六单元多边形的面积
1、长方形:
@ 周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab
2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a2
3、平行四边形的面积=底×高
字母表示:S=ah
4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母表示:S=ah÷2
5、梯形的面积=(上底+下底)×高÷2
字母表示:S=(a+b)h÷2
上底=面积×2÷高-下底,
下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:剪拼、平移、割补法
7、三角形面积公式推导:旋转、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
8、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
10、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。
第七单元数学广角——植树问题
1、
如图:
间隔数=棵树间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
2、 两端都载:
如图:
间隔数
+1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长
3、 两端都不载
如图:
间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长。