七年级下册数学不等式复习汇总
- 格式:ppt
- 大小:1006.50 KB
- 文档页数:15
一元一次不等式知识点1.不等式不等式的概念:用不等号),,,,(≠≤<≥>表示不等关系的式子叫做不等式。
常用的表示不等关系的语言及符号:(1)大于、比……大、超过:>; (2)小于、比……小、低于:<;(3)不大于、不超过、至多:≥; (4)不小于、不低于、至少:≤;(5)正数:0>; (6)负数:0<;(7)非负数:0≥;(8)非正数:0≤【例1】下列式子中:① 21>-;② 13-≥x ;③ 3-x ;④ vt s =;⑤ y x 243<- ⑥ 2253+=-x x ;⑦ 022≥+a ;⑧ 222c b a ≠+.是不等式的有_________________.【例2】下列语句不能用不等式表示的是( )A. 1+m 是负数B. 2a 是正数C.n m +等于xD. 1-m 是非负数【练习1】下列式子:①05>;②043>+b a ;③2=x ;④1-x ;⑤53≠+x ;⑥732≤+a ;⑦812≥+x ,其中,不等式有______________.【练习2】符号“≥”的含义是“大于或等于”,即“不小于”;符号“≤”的含义是“小于或等于”,即“不大于”.请用文字语言翻译下列不等式:(1)02≥x :____________.(2)0≤-x :_____________.知识点2.不等式的基本性质不等式性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 即如果b a >,那么c b c a c b c a ->-+>+,不等式的性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即 如果0,>>c b a ,那么cb c a bc ac >>,.不等式的性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.即 如果0,<>c b a ,那么cb c a bc ac <<,. 不等式的性质4 如果b a >,那么a b <.不等式的性质5 如果c b b a >>,,那么c a >.【例1】由13+<-b a ,可得到的结论( )A. b a <B. 13-<+b aC. 31+<-b aD. 31-<+b a【例2】如果b a >,那么下列变形错误的是( )A. b a 33->-B. b b a 2>+C.b a 2222-<-D.b a +->+-11【例3】下列判断中,正确的是( )A. 若b a <,则c b c a <B. 若b a <,则22bm am <C. 若22bm am <,则b a <D. 若b a <,则22b a <【例4】 若0<<b a ,则下列式子:① 21+<+b a ;② 1>ba ;③ ab b a <+;④ba 11<. 其中正确的有_______________. 【例5】已知关于x 的不等式()21>-x a 可化为ax -<12,试化简:21++-a a .【练习1】若b a >,则下列不等式成立的是( )A . b a 22-<-B .b m a m 22<C .21-<-b aD .21+<+b a 【练习2】已知y x >,则下列不等式不成立的是( )A .66->-y xB .y x 33>C .y x 22-<-D .6363+->+-y x【练习3】下列叙述正确的是( )A .若b a =,则b a =B .若b a >,则b a >C .若b a <,则b a <D .若b a =,则b a ±= 【练习4】有理数n m ,在数轴上的位置如图示,则下列关系式中正确的个数( )0<+n m ;0>-m n ;n m 11>;02>-n m ;0>--m n A .1个 B .2个 C .3个 D .4个【练习5】如果0>+b a ,且0>b ,那么b a b a --,,,的大小关系为( )A .b a b a -<-<<B .b a a b <-<<-C .b a b a <-<-<D .a b b a -<<-<知识点3.不等式的解集1.使不等式成立的未知数的值,叫做这个不等式的解。
一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a 、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【详解】解:∵点P (a ,b )在第二象限,∴a <0,b >0,∴-a >0,b+1>0,∴点B (﹣a ,b+1)在第一象限.故选A .【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- C 解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D . A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D . A解析:A【分析】 先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】 解:3114x x +>⎧⎨-≤⎩①② 解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2C解析:C【解析】 ∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.8.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D . A 解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x , 在数轴上表示为:故答案为A.【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.9.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- C 解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意;B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意.故选:C .【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-2D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.二、填空题11.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x+⎡⎤=⎢⎥⎣⎦,则x的取值可以是______________(任写一个).50(答案不唯一)【分析】由于规定表示不大于x的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x的最大整数表示不大于的最大整数又可列不等式组x的取值可以是范围内解析:50(答案不唯一)【分析】由于规定[]x表示不大于x的最大整数,则410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,接下来根据4510x+⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可.【详解】解:[]x表示不大于x的最大整数,∴410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,又45 10x+⎡⎤=⎢⎥⎣⎦,∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩, ∴4656x x ≥⎧⎨<⎩,∴4656≤<x , ∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.12.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.13.a b ≥,1a -+_____1b -+≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.【分析】根据题意列出代数式解答即可【详解】解:故答案为:【点睛】此题考查解一元一次不等式关键是根据题意列出代数式解答解析:1.1【分析】根据题意列出代数式解答即可.【详解】解:{}{}{}3.9 1.81+--()()()()39318211⎡⎤=-+-----⎣⎦..0902=+..11=.故答案为:11.. 【点睛】此题考查解一元一次不等式,关键是根据题意列出代数式解答.15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.16.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键.18.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 19.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________-1【分析】先分别解两个不等式求出它们的解集再求两个不等式解集的公共部分然后找出解集中的整数相加即可【详解】解①得x>-2;解②得x≤∴原不等式组的解集是-2<x≤∴其中的整数有:-10∴-1+0=解析:-1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后找出解集中的整数相加即可.【详解】20210x x +>⎧⎨-≤⎩①②, 解①得,x >-2;解②得,x ≤12, ∴原不等式组的解集是-2<x ≤12. ∴其中的整数有:-1,0,∴-1+0=-1.故答案为-1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大三、解答题21.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可;(2)根据甲商场和乙商场的方案列出式子即可;(3)令100140008015000,a a ++=解方程即可;(4)列出不等式分别求解即可.【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元.根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元;(3)由100140008015000,a a ++=得:50a =,所以:当50a =时,两家花费一样。
一、选择题1.不等式()2533x x ->-的解集为( ) A .4x <-B .4x >C .4x <D .4x >-2.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .5.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .266.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >-B .2m >C .3m >D .2m <-7.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-28.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.13.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.18.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分. 19.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限20.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 . 21.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题22.解方程组与不等式组.(1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 23.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩24.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩.25.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:湖州五中根据实际情况,计划租用A,B型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.一、选择题 1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .104.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .5.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-27.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥ D .56x ≤8.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( )A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-9.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .1110.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m11.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 13.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.14.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 15.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.16.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.17.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.18.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 19.已知a 为整数,且340218a <+<,则a 的值为____________. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题22.解不等式组253(2)13212x x xx +≤+⎧⎪⎨+-≤⎪⎩, 并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?24.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.25.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥)(2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x的代数式表示该班买票最少应付多少元?一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤C .3a <D .3a ≥3.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解4.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤85.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分 D .某参赛选手得分可能为负数6.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤7.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .8.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( )A .12a ≤≤B .12a ≤<C .12a <≤D .12a <<9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x > B .若x y >,则22x y -<- C .若x y >,则22x y >D .若x y >,则2222x y --<--11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y> 二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则a b 的值为___________. 15.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__. 16.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.不等式2x+9>3(x+4)的最大整数解是_____.19.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 20.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______21.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______. 三、解答题22.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.23.(1)解方程组:432 20 x yx y+=⎧⎨+=⎩(2)解不等式组:3(2)211124x xx x-<-⎧⎪⎨-≥-⎪⎩24.某校购买了A型课桌椅100套和B型课桌椅150套供学生使用,共付款53000元.已知每套A型课桌椅比每套B型课桌椅多花30元.(1)求该校购买每套A型课桌椅和每套B型课桌椅的钱数.(2)因学生人数增加,该校需再购买A、B型课桌椅共100套,只有资金22000元,求最多能购买A型课桌椅的套数.25.某商店需要购进A型、B型两种节能台灯共160盏,其进价和售价如下表所示.(1)若商店计划销售完这批台灯后能获利1100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.。
七年级数学下册不等式与不等式组必须掌握几道典型题单选题1、已知关于x的不等式(3−a)x>3−a的解集为x<1,则()A.a⩽3B.a⩾3C.a>3D.a<3答案:C解析:根据不等式的解集与原不等式,发现x系数化为1时,不等式两边同除以一个负数,即3−a<0,解出即可得出答案.∵不等式(3−a)x>3−a的解集为x<1,∴3−a<0,解得:a>3.故选:C.小提示:本题考查不等式的性质和不等式的解集,熟练掌握不等式的性质是解题关键.2、如果关于x的不等式组{x−m2≥2x−4≤3(x−2)的解集为x≥1,且关于x的方程m−(1−x)3=x−2有非负整数解,则所有符合条件的整数m的值有()个.A.2个B.3个C.4个D.5个答案:A解析:表示出不等式组的解集,由已知解集确定出m的范围,表示出方程的解,由方程的解为非负整数,确定出整数m的值即可.解:不等式组整理得:{x ≥m +4x ≥1, ∵不等式组的解集为x ≥1,∴m +4≤1,即m ≤-3,方程去分母得:m -1+x =3x -6,解得:x =5+m 2,∵方程有非负整数解,∴5+m ≥0,且5+m 能被2整除,∴-5≤m ≤−3,∴当m=-5时,符合题意,当m=-3时,符合题意,则符合条件的整数m 的值有2个,故选:A .小提示:本题考查一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.3、已知关于x 的分式方程m−2x+1=1的解是负数,则m 的取值范围是( )A .m≤3B .m≤3且m≠2C .m <3D .m <3且m≠2答案:D解析:解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围. m−2x+1=1,解得:x=m ﹣3,∵关于x 的分式方程m−2x+1=1的解是负数,∴m ﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .小提示:本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.4、若方程3m(x +1)+1=m(3−x)−5x 的解是正数,则m 的取值范围是( )A .m >54B .m <54C .m >−54D .m <−54答案:D解析:本题首先要解这个关于x 的方程,然后根据解是正数,就可以得到一个关于m 的不等式,最后求出m 的范围. 原方程可整理为:3mx +3m +1=3m −mx −5x ,(3m +m +5)x =−1,两边同时除以(4m +5)得,x =−14m+5,∵方程3m (x +1)+1=m (3−x )−5x 的解是正数,∴−14m+5>0,∴4m +5<0,解得:m <−54.故选:D小提示:本题考查一次方程与不等式,解关于x 的不等式是解题的关键.5、为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只.A .55B .72C .83D .89答案:C解析:设该村共有x 户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x 的不等式组,解之求得整数x 的值,再进一步计算可得.设该村共有x 户,则母羊共有(5x +17)只,由题意知,{5x +17−7(x −1)>05x +17−7(x −1)<3解得:212<x <12,∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选C .小提示:本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.6、已知关于x 的不等式(3−a)x >3−a 的解集为x <1,则( )A .a ⩽3B .a ⩾3C .a >3D .a <3答案:C根据不等式的解集与原不等式,发现x系数化为1时,不等式两边同除以一个负数,即3−a<0,解出即可得出答案.∵不等式(3−a)x>3−a的解集为x<1,∴3−a<0,解得:a>3.故选:C.小提示:本题考查不等式的性质和不等式的解集,熟练掌握不等式的性质是解题关键.7、ax>b的解集是()A.x>ba B.x<baC.x=baD.无法确定答案:D解析:根据不等式的性质,先确定a的符号,再确定不等号的方向即可解答.解:由于a的符号不能判断,所以不等号的方向也不确定,所以解集无法确定.故选D.小提示:本题考查了不等式的性质:在不等式两边同加或减一个数或式子,不等号方向不变;在不等式两边同乘或除以一个正数或式子,不等号的方向不变;在不等式两边同乘或除以一个负数或式子不等号方向改变.8、“x的2倍与3的和是非负数”列成不等式为()A.2x+3≥0B.2x+3>0C.2x+3≤0D.2x+3<0解析:非负数就是大于或等于零的数,再根据x的2倍与3的和是非负数列出不等式即可.解:“x的2倍与3的和是非负数”列成不等式为:2x+3≥0,故选:A.小提示:本题考查的是列不等式,掌握“非负数是正数或零,用不等式表示就是大于或等于零”是解题的关键. 填空题9、已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是________________.答案:53<x≤6解析:解:依题意有{3x>512x−1≤2,解得53<x≤6.故x的取值范围是:53<x≤6.所以答案是:53<x≤6.10、若a<b<0,则a2____ab.答案:>解析:根据不等式的基本性质:不等式的两边同时乘以一个负数,不等号的方向改变,即可判断.解:∵a<b,a<0∴a2>ab.所以答案是:>.小提示:本题考查了不等式的性质,熟练掌握不等式的基本性质是解决本题的关键.11、定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是_____.(写出所有正确结论的序号)答案:①②③.解析:根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=0时,a2=2[a]=0;当a=√2时,a2=2[a]=2;原题说法是错误的.故答案为①②③.小提示:本题考查新定义,解答本题的关键是明确题目中的新定义,可以判断出各个小题中的结论是否正确.12、已知关于x的不等式3x-5k>-7的解集是x>1,则k的值为________.答案:2解析:试题分析:不等式可变形为:3x>5k-7,,x>5k−73∵关于x 的不等式3x -5k >-7的解集是x >1,∴5k−73=1,解得:k =2.故答案为2.点睛:本题考查了不等式的解集,利用不等式的解集得出关于k 的方程是解题关键.13、不等式组{−2x +3≥0x −1>0的解集是_____. 答案:1<x ≤32 解析:{−2x +3≥0①x −1>0② ,由①得:x ≤32, 由②得:x >1,∴1<x ≤32.故答案为1<x ≤32.解答题14、为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;(3)学校共有几种租车方案?最少租车费用是多少?答案:(1)参加此次研学活动的老师有16人,学生有234人.(2)8;(3)学校共有4种租车方案,最少租车费用是2720元.解析:(1)设参加此次研学活动的老师有x 人,学生有y 人,根据题意列出方程组即可求解;(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;(3)设租35座客车m 辆,则需租30座的客车(8−m )辆,根据题意列出不等式组即可求解.解:(1)设参加此次研学活动的老师有x 人,学生有y 人,依题意,得:{14x +10=y 15x −6=y, 解得:{x =16y =234. 答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为8.(3)设租35座客车m 辆,则需租30座的客车(8−m )辆,依题意,得:{35m +30(8−m)≥234+16400m +320(8−m)≤3000, 解得:2≤m ≤512.∵m 为正整数,∴m =2,3,4,5,∴共有4种租车方案.设租车总费用为w 元,则w =400m +320(8−m)=80m +2560,∵80>0,∴w 的值随m 值的增大而增大,∴当m =2时,w 取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.小提示:本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.15、解方程组或不等式组:(1){3x +2y =6y =x −2 ; (2){3x −1≥x +1x +4<4x −2. 答案:(1){x =2y =0; (2)x >2.解析:(1)利用代入消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.(1)解:{3x +2y =6①y =x −2② ; ②代入①,得:3x +2(x -2)=6,解得x =2,将x=2代入②,得:y=2-2=0,∴方程组的解为{x=2y=0;(2)解:{3x−1≥x+1①x+4<4x−2②,解不等式①得:x≥1,解不等式②得:x>2,则不等式组的解集为x>2.小提示:本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11。
专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。
(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
第九章 不等式与不等式组一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>"“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式.5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 .用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式.(注:①传递性:若a >b ,b >c ,则a >c 。
学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………第八章 二元一次方程组本章知识结构图:知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
第11章《一元一次不等式》考点+易错知识梳理重难点分类解析考点1 不等式及其性质【考点解读】理解实数的运算法则,确定相关量的取值范围,然后用不等式来表示;要熟练掌握不等式的性质,特别注意当不等式两边同时乘(或除以)同一个负数时,不等号方向要改变.例1 下列说法不一定成立的是( ) A.若a b >,则a c b c +>+ B.若a c b c +>+,则a b > C.若a b >,则22ac bc > D.若22ac bc >,则a b >分析:在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,故选项A 一定成立;在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,故选项B 一定成立;当0c =时,若a b >,则不等式22ac bc >不成立,故选项C 不一定成立;因为22ac bc >,所以0c ≠,所以20c >.在不等式22ac bc >的两边同时除以2c ,该不等式仍成立,即a b >,故选项D 一定成立. 答案:C【规律·技法】应用不等式的性质解决问题时,特别要注意当不等式的两边同乘或同除以同一个负数时不等号要改变方向. 【反馈练习】1. (2018·南京期末)若x y >,则下列式子错误的是( ) A.33x y ->- B.33x y >C.33x y +>+D.33x y ->-点拨:在不等式两边同时乘(或除以)同一个负数时,不等号方向要改变. 2.下列不等式变形正确的是( )A.由a b >,得ac bc >B.由a b >,得22a b ->-C.由a b >,得a b -<-D.由a b >,得22a b -<- 点拨:注意各选项中,不等号的方向是否需要改变. 考点2 解一元一次不等式【考点解读】解一元一次不等式时,先认真分析不等式的特点,然后确定求解的步骤,在易错环节中要认真细致,紧扣变形依据. 例2 解小等式: 31212x x -->,并把它的解集在数轴上表示出来.分析:根据不等式的性质可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 解答:去分母,得4231x x ->-.移项,得4321x x ->-. 合并同类项,得1x >.将不等式解集表示在数轴上如图:【规律·技法】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键. 【反馈练习】 3.解下列不等式: (1)123(2)2x x -≤+; (2)13(1)42x x +≥--.点拨:先去分母,再去括号、移项、合并同类项,最后系数化为“1”. 考点3 解一元一次方程组【考点解读】根据解一元一次不等式组的步骤,先求两个不等式的解集,然后借助数轴求得两个解集的公共部分.例3 (2017·南京)解不等式组: 2623(1)1x x x x -≤⎧⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答:(1)解不等式①,得 ,依据是 ; (2)解不等式③,得 ;(3)把不等式①②和③的解集在数轴上表示出来:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为 .分析:分别解不等式①③,再将不等式①②③的解集表示在数轴上,它们的公共部分即为不等式组的解集.解答:(1) 3x ≥ 不等式两边都乘(或除以)同一个负数,不等号的方向改变(2) 2x < (3)如图所示:(4)22x -<<【规律·技法】本题考查一元一次不等式组的解法,确定一元一次不等式组的解集可以借助于数轴,也可以利用口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解). 【反馈练习】4. 解不等式组:253(1)121035x x x +≤+⎧⎪⎨-+>⎪⎩①②,并把解集表示在数轴上.点拨:先分别求解两个不等式,并在数轴上表示两个解集,寻找公共部分即可. 考点4 用一元一次不等式解决实际问题【考点解读】要明确列不等式解决实际问题的步骤与方法:理解题意,找出一个能表示实际问题意义的不等关系,然后设未知数,根据不等关系列出不等式,解这个不等式,检验并写出答案.例4 每年5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息如图.若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,则这份快餐最多含有多少克的蛋白质? 分析:设这份快餐含有x g 的蛋白质,根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式求解即可. 解答:设这份快餐含有x g 的蛋白质.由题意,得440070%x x +≤⨯,解得56x ≤.故这份快餐最多含有56 g 的蛋白质.【规律·技法】读懂题意,找出题目中的数量关系,列出不等式.本题的数量关系是快餐所含的蛋白质与破水化合物的质量之和不高于快餐总质量的70%.例5某校需购买一批课桌椅供学生使用,已知A 型课桌椅230元/套,B 型课桌椅200元/套.(1)该校购买了A ,B 型课桌椅共250套,付款53 000元,则A ,B 型课桌椅各买了多少套? (2)因学生人数增加,该校需再购买100套A ,B 型课桌椅,现只有资金22 000元,则最多能购买A 型课桌椅多少套?分析:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套,根据“A ,B 型课桌椅共250套”“A 型课桌椅230元/套,B 型课桌椅200元/套,付款53 000元”列出方程组并解答;(2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套.根据“只有资金22 000元”列出不等式并解答即可.解答:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套.由题意,得25023020053000x y x y +=⎧⎨+=⎩,解得100150x y =⎧⎨=⎩.故购买A 型课桌椅100套,B 型课桌椅150套. (2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套. 由题意,得230200(100)22000a a +-≤, 解得2003a ≤. 因为a 是正整数, 所以66a =最大.故最多能购买A 型课桌椅66套.【规律·技法】本题考查列二元一次方程组和一元一次不等式解决实际问题,找准题中的数量关系是解题的关健, 【反馈练习】5.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?点拨:设购买球拍x 个,列不等式求解,注意取整数值.6.某校在开展“校园献爱心”活动中,准备向西部山区学校捐赠男、女两种款式的书包.已知男款书包的单价为50元/个,女款书包的单价为70元/个.(1)原计划募捐3 400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4 800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?点拨:(1)可列方程求解;(2)设女款书包购买y 个,则男款书包购买(80)y -个,列不等式求解即可.易错题辨析易错点1 符号意义理解不清导致错误例1 给出下列不等式:①2a a >;②210a +>; ③86≥;④20x ≥.其中成立的是( ) A.②③ B.② C.①②④ D.②③④ 错误解答:A错因分析:导致本题错误的原因是对符号“≥”理解不透切,“≥”的意义是“>”或“=”,有选择功能,二者之一成立即可,事实上也只能两者取一,“>”与“=”不能同时成立,所以对“86≥”的理解应是“8大于6”,对20x ≥的理解应是当0x =时,20x =;当0x ≠时,20x >.正确答案:D易错辨析:“≥”的含义是“>”或“=”,且二者不能同时成立. 易错点2 对非负整数的概念理解不清导致错误例2 (2018·苏州期末)写出不等式3x ≤的所有非负整数解:x = . 错误解答:1,2,3错因分析:错解在于不理解非负整数的含义,非负整数包括零和正整数. 正一答案:0,1,2,3易错辨析:非负整数包括零和正整数. 易错点3 忽略不等号的方向是否变化例3 若1a <,则下列各式中,错误的是( )A. 1a ->-B. 10a -<C. 30a +>D. 22a < 错误解答:A错因分析:根据不等式的性质2,不等式两边同乘一个负数,不等号的方向改变,故选项A 正确;根据不等式的性质1可知选项B 正确;根据不等式的性质2,不等式的两边同乘一个正数,不等号的方向不变,故选项D 正确;取41a =-<,则34310a +=-+=-<,故选项C 不正确. 正确答案:C易错辨析:在运用“不等式的两边都乘(或除以)同一个负数,不等号的方向改变”这一性质时,关键是要注意乘的数是否是负数,如果是负数,不等号方向必须改变.这类题易出现的错误是运用此性质时,忽略了改变不等号的方向而导致选错答案,如本题容易误选A. 易错点4 去分母时,忽略分数线的括号作用而出错例4 解不等式:329251234x x x --+-≥. 错误解答:去分母,得182362151x x x --+≥+,即539x ≥5x,39,所以395x ≥. 错因分析:去分母时,分数线具有括号的作用,错解恰好忽视了这一点,正确的做法应在去括号时把分子视为一个整体用括号括起来.正确解答:去分母,得6(32)4(92)3(51)x x x ---≥+,即1151x ≥,所以5111x ≥. 易错辨析:分数线有两重功能:其一是表示分数线;其二有括号的作用.反馈练习1.若a b >,则下列不等式成立的是( )A. 22a b +<+B. 22a b -<-C. 22a b <D. 22a b -<- 点拨:注意不等式两边同时乘或除以一个负数时不等号方向改变.2.不等式组312114x x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示正确的是()点拨:分别解两个不等式,并将解集表示在数轴上,注意空心圆圈和实心圆点的使用.3. 对于不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解为3,2,1x =---D.此不等式组的解集为522x -<≤ 点拨:先解不等式组,根据解集判断即可.4.不等式组210312123x x x +>⎧⎪-+⎨≤⎪⎩的所有整数解是x = .点拨:先解不等式组,再根据解集分析出所有整数解.5.满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数解为x = .点拨:先解不等式组,再根据解集分析出所有整数解.探究与应用探究1 确定不等式(组)中的参数取值范围 例1 若不等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,求不等式0ax b +<的解集.点拨:求出每个不等式的解集,根据每个不等式的解集的规律找出不等式组的解集,即可求出,a b 的值,代入0ax b +<中求出不等式的解集即可.解答: 200x b x a -≥⎧⎨+≤⎩①②解不等式①,得2b x ≥; 解不等式②,得x a ≤-.因为部等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,所以324b a ⎧=⎪⎨⎪-=⎩,解得46a b =-⎧⎨=⎩.将46a b =-⎧⎨=⎩代入0ax b +<,得360x -+<, 解得32x >. 故不等式0ax b +<的解集为32x >. 规律·提示确定不等式(组)中参数的取值范围的常用方法:(1)根据不等式(组)的解集确定;(2)分类讨论确定;(3)借助数轴确定. 【举一反三】1.已知关于,x y 的方程组3133x y k x y +=+⎧⎨+=⎩的解满足01x y <+<,求k 的取值范围.2.若不等式组x a bx a b +<⎧⎨->⎩的解集是13x -<<,求不等式0ax b +<的解集.探究2 根据解集或整数解来确定系数的值或取值范围 例 2 如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3x =,那么适合这个不等式组的整数,a b 的有序数对(,)a b 共有( )A. 17对B. 6 4对C. 72对D. 81对点拨:分别求出满足题意的整数,a b 的个数即可.因为9080x a x b -≥⎧⎨-<⎩,所以98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩.因为不等式组的整数解仅为1,2,3x =,所以019a <≤,348b<≤,即09a <≤,2432b <≤,所以a 的整数值有9个,b 的整数值有8个,所以有序数对(,)a b 共有9×8=72(对).【举一反三】3.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .4.已知不等式30x a -≤的正整数解为1,2,3x =,求a 的取值范围.探究3 求含有多个未知数的式子的最值例 3 已知,,a b c 是三个非负数,并且满足325a b c ++=,231a b c +-=,设37m a b c =+-,若x 为m 的最大值,y 为m 的最小值,求xy 的值.点拨:本题考查了方程组、不等式组的综合应用,解题的关键是通过解方程组,用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求出,x y 的值.解答:由条件,得325213a b ca b c+=-⎧⎨+=+⎩,解得73711a c b c =-⎧⎨=-⎩.将73711a c b c=-⎧⎨=-⎩代入37m a b c =+-,得32m c =-.由000a b c ≥⎧⎪≥⎨⎪≥⎩,得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩, 解得37711c ≤≤. 所以71321111x =⨯-=-,353277y =⨯-=-,所以577xy =.规律·提示要求含有多个未知数的式子的最值,把多个未知数转化为含一个未知数的式子,再由题目的约束条件求出这个未知数的取值范围,最后求出最值.【举一反三】5.已知,,x y z 均为非负数,且满足30350x y z x y z ++=⎧⎨+-=⎩,求542u x y z =++的最大值和最小值.探究4 优惠方案的选择问题例4甲、乙两商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1 000元的电器,超出的金额按90%实收;乙商场规定:凡购买超过500元的电器,超出的金额按95%实收.顾客怎样选择商场购买电器才能获得最大的优惠?点拨:获得最大优惠是选择商场的前提,由于顾客购买电器金额不是具体的,因此应分类讨论解决问题.解答:设购买电器的金额为x 元,甲商场的实收金额为y 甲元,乙商场的实收金额为y 乙元.由题意,得,010001000(1000)0.9,1000x x y x x <≤⎧=⎨+-⨯>⎩甲,,0500500(500)0.95,500x x y x x <≤⎧=⎨+-⨯>⎩乙,①当0500x <≤时,两家均不优惠,所以任选一家;②当1000≤时,乙商场有优惠而甲商场没有,所以选择乙商场; ③当1000x >时,若y y =乙甲,即1000(1000)0.9500(500)0.95x x +-⨯=+-⨯,解得1500x =; 若y y >乙甲,即1000(1000)0.9500(500)0.95x x +-⨯>+-⨯,解得1500x <;当y y <乙甲,即1000(1000)0.9500(500)0.95x x +-⨯<+-⨯,解得1500x >. 综上所述,顾客对商场的选择可参考如下:①当0500x <≤或1500x =时,可任选一家;②当5001500x <<时,可选择乙商场;③当1500x >时,可选择甲商场.规律·提示寻找不等关系的方法:(1)利用事实不等关系,这里指的是不需要题设的表述就已经存在的不等关系.如生产用量≤供给量;(2)利用明确表达的不等关系,如常见的“不少于”“最多”“不超过”“最小”等;(3)利用题中隐藏的不等关系,如“哪一种方式更优惠”“如何安排运输的方案”等,其字里行间便隐藏着不等关系. 【举一反三】6.某商场响应“家电下乡”的惠农政策,决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的数量是乙种电冰箱的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的数量不超过丙种电冰箱的数量,则有哪些购买方案?探究5 不空不满类型问题例5 学校为离家远的同学安排住宿,现有房间若干间.若每间住5人,则还有14人安排不下;若每间住7人,则最后一间房间里还余一些床位.学校可能有几间房间可以安排同学住宿?住宿的同学可能有多少人?点拨:本题是典型的不空不满类型问题,关健是弄清题中有两个量,住宿人数和房间安排方式不同,就有不同的结果,依据题中给出的安排方式,列出不等式组,从而求解. 解答:解法一:设房间有x 间,则住宿的同学有(514x +)人.由题意,得07(514)7x x <-+<, 解得710.5x <<. 因为x 取正整数, 所以x 取8,9,10.当8x =时,住宿的同学有54人; 当9x =时,住宿的同学有59人; 当10x =时,住宿的同学有64人. 解法二:设住宿的同学有x 人,则房间有145x -间. 由题意,得7(14)75x x x -<<+, 解得4966.5x <<.因为x 是正整数,所以x 取50,51,52,53,…,64,65,66.因为145x -为整数,所以x 可以取54,59,64,则房间对应可能有8,9或10间.综上所述,房间数与住宿的同学人数有3种可能的情况:①房间8间,同学54人;②房间9间,同学59人;③房间10问,同学 64人.规律·提示放缩法,即将代数式的某些部分恰当地放大或缩小,从而得到相应的不等式,以达到解决问题的目的.放缩法的实质是构造不等式,通过缩小范围逼近求解,放缩法体现了化“相等”为“不等”,以“不等”求“相等”的策略和思想.【举一反三】7.将若干只鸡放入若干个笼子中,若每个笼子里放4只,则有一只鸡无笼可放;若每个笼子里放5只,则有一笼无鸡可放.问:至少有多少只鸡,多少个笼子?参考答案知识梳理不等号 不等关系 成立 解 一个 1 不等于0括号 系数化为1 元 不等式 同一个未知数 成立未知数的值 解集 公共部分重难点分类解析【反馈练习】1. D2. C3. (1)83x ≤(2)3x ≤ 4. 不等式组的解集为415x -≤<,表示在数轴上如图所示:5. 孔明应该买7个球拍.6. (1)原计划购买男款书包40个,女款书包20个.(2)女款书包最多能买40个.易错题辨析反馈练习1. D2.C3. B4. 0,15. 2-,1-,0,1探究与应用【举一反三】1. 40k -<<2. 12x >3. 32a -<≤-4. 912a ≤<5. 542u x y z =++的最大值为130,最小值为120.6. (1)至少购进乙种电冰箱14台.(2)有3种购买方案.方案一:甲种电冰箱购进28台,乙种电冰箱购进14台,丙种电冰箱购进38台; 方案二:甲种电冰箱购进30台,乙种电冰箱购进15台,丙种电冰箱购进35台; 方案三:甲种电冰箱购进32台,乙种电冰箱购进16台,丙种电冰箱购进32台.7. 至少有25只鸡,6个笼子。
5.ri<K<s已知不等式组左的解集为a<x<5.则a的范围是6. 不等式组且-3K<5的解集是3<x<a+2, 若a是整数,则a等于考点一:不等式性质1.若a〉b,且c为实数,有下列各式:①ac>bc;②ac V bc;③ac2〉bc2;④ac2三be2;>—CC其中,正确的有(填序号).2.下列命题中:①若a>b,c HO,则ac>bc;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<bb<0,贝W;⑤若则a>b.正确的有(填序号).bcc3.对于命题“a,b是有理数,若a>b,则a2>b2”,若结论保持不变,怎样改变条件,命题才是真命题,给出下列以下四种说法:①a,b是有理数,若a>b>0,则a2>b2;②a,b是有理数,若a>b,且a+b>0,则a2>b2;③a,b是有理数,若a<b<0,则a2>b2;④a,b是有理数,若a<b且a+b<0,则a2>b2.其中,真命题的有(填序号).4.有下列说法:(1)若a<b,则-a>-b;(2)若xy<0,则x<0,y<0;(3)若x<0,y<0,则xy<0;(4)若a<b,则2a<a+b;(5)若a<b,贝亘〉当;(6)若<,则x>y.ab22其中正确的说法有(填序号).考点二:不等式的解集1•要使关于x的方程5x-2m=3x-6m+1的解满足-3<x<4,则m的取值范围是2. _________________________________________________ 已知x-y=3,且x>2,y<1,则x+y的取值范围是.3.已知关于x的不等式(5a-2b)x>3b-a的解集是x<g~,则6ax>7b的解集是a4.当1W x W2时,ax+2>0,则a的取值范围是.考点三:不等式的整数解1.不等式5x-2>3(x+1)的最小整数解为()不等式总复习A.3B.2D.-2C.1A.3W a V4B.3W a W4 2K <3C K -3)+1C.8W a V12D.8W a W12 4. 已知关于x 的方程9x -3=kx +14有整数解,且关于x 的不等式组 2 口■,n 有且只有4个整数解,则满足 5. A .1 B .2 C .3D .0 已知整数k 使得关于x 、y 的二元一次方程组 ks-y=12 3x-y=3的解为正整数,且关于x 的不等式组 r3s-k>0号*有且仅 A .4B .9C .10D .122.已知关于x 的不等式4x -a W0的非负整数解是0,1,2,则a 的取值范围是()条件的整数k 有()个.有四个整数解,则所有满足条件的k 的和为() 考点四:不等式组的应用1. 开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A 种货物和396件B 种货物.已知甲种物流货车每辆最多能载30件A 种货物和24件B 种货物,乙种物流货车每辆最多能载20件A 种货物和30 件B 种货物.设安排甲种物流货车x 辆,你认为下列符合题意的不等式组是.2. 现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等式组为.3. 用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C 含量及购买这两种原料的价格如表所示:现配制这种饮料10kg ,要求至少含有4200单位的维生素C ,且购买原料的费用不超过72元.设所需甲种原料x (kg ),则可列不等式组为.原料甲 乙 维生素 600单位 100单位3. 4 关于x 的不等式组3X -有三个整数解,则a 的取值范围是()1千米按1千米计算,小明某次花费14.6元.若设他行驶的路为x千米,则x应满足的关系式为.5.按图中程序计算,规定:从“输入一个值x”到“结果是否214”为一次程序操作,如果程序操作进行了两次才停止,则x的取值范围为.6.母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?7.某旅游景点的一个商场为了抓住国庆节长假这一旅游旺季的商机,决定购进甲,乙两种纪念品.若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品共100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时甲种纪念品又不能超过60件,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?1. F 列说法不一定成立的是()A .若a >b ,则a +c >b +cC .若>,则2.当0<x <1时,x ,,x 2的大小顺序是( A.丄V x V x 22 B .x <x 2<— K3. 列不等式变形正确的是(A .由a >b , 得a -2V b -2 4. C .由a >b , 列结论中, A .若a >b ,C .若a >b ,得-2a V -2b 正确的是(则丄 ab 则1-a Vl -b课后作业 B .若a +c >b +c . D .若ac 2>bc 2, C .x 2<x <— B . D .B . D . 则a >b 则a >bD.丄V x 2V x 由a >b ,得l a l >l b l由a >b ,得a 2>b 2若a >b ,则a 2>b 2 若a >b ,ac 2>bc 2 5. 6. 已知a >b ,贝9-4a +5. -4b +5.(填>、=或V)7. 已知x =3-2a 是不等式2(x -3)V x -1的一个解,那么a 的取值范围是.8. 、4、若关于x 的不等式(2m -n )x +3m -4n V0的解集是x >,则关于x 的不等式(m -4n )x +2m -3n V0的解集是9. 若不等式组 y 肯一3/=二] 10. 若不等且ni 、□的解集为-1<x V1,那么(a -3)(b +3)的值等于11. 若不等式组 无解,则m 的取值范围是.x-nrC :212.13. 的整数解共有5个,则a 的取值范围是—. 若干名学生住宿舍,每间住4人,2人无处住;每间住6人,空一间还有一间不空也不满,问多少学生多少宿 已知关于x 的不等式组 若点P (1-m ,m )在第一象限,则(m -1)x >1-m 的解集为.舍?设有x 间宿舍,则可列不等式(组)为.14. 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件 A 产品需要甲种原料9千克,乙种原料3千克;生产一件B 产品,需要甲种原料4千克,乙种原料10千克.设 生产x 件A 种产品,x 应满足的不等式组是:.15. 有一个两位数,它的个位数字是十位数字的2倍小1,并且这个两位数不大于35,设十位数字为x ,那么满足x的不等式组是.16.某企业次定购买A,B两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,列不等式组为.17.为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?。