图形的旋转图形的旋转(旋转作图)
- 格式:pptx
- 大小:1.17 MB
- 文档页数:7
第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。
图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。
利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。
学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。
旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。
本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。
二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。
教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。
三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。
在学习新课之前,我们先来回顾已知。
图形的旋转及旋转作图知识点总结和重难点精析在九年级数学中,图形的旋转及旋转作图是一个重要知识点,它不仅在几何学中有着广泛应用,也在实际生活中具有许多应用场景。
本文将对该知识点进行总结,并针对重难点进行精析,以帮助学生更好地掌握这一部分内容。
一、知识点总结1.旋转条件:图形旋转需要确定一个中心点,同时需指定绕该中心点旋转的角度。
2.旋转性质:旋转前后的图形是全等的;对应点到旋转中心的距离相等;对应点与旋转中心连线所成的角相等。
3.作图方法:先确定旋转中心和旋转角度,然后作出图形旋转后的对应点,最后连接对应点形成旋转后的图形。
二、重难点精析1.确定旋转中心:旋转中心的选择可以是图形上的任意一点,但不同的选择会影响到旋转后图形的形状和大小,因此需要学生有一定的空间感知能力。
2.旋转角度的确定:旋转角度的确定是影响旋转作图的关键因素,角度错误会导致旋转后的图形与原图形不一致。
学生需要熟练掌握角度的测量和计算方法。
3.对应点的确定:对应点的确定是旋转作图的重点之一,学生需要细心观察图形,通过对应点到旋转中心距离相等的特点,正确作出旋转后的对应点。
4.连接对应点:连接对应点时,要注意对应点与旋转中心连线所成的角相等的特点,正确作出旋转后的图形。
特别是在作较复杂的图形旋转时,需要有一定的空间思维能力。
三、题目解析【例题】如图所示,已知三角形ABC,请以点A为中心,将三角形ABC逆时针旋转90度,作出旋转后的三角形AB'C'。
【解析】1.确定旋转中心:本题中旋转中心为点A。
2.确定旋转角度:本题中要求将三角形ABC逆时针旋转90度。
3.确定对应点:根据对应点到旋转中心距离相等的性质,可以作出旋转后的对应点B'和C'。
4.连接对应点:根据对应点与旋转中心连线所成的角相等的性质,可以作出旋转后的三角形AB'C'。
具体步骤如下:(1) 画出点A的水平线和垂直线,作为辅助线。