图形的旋转(1)——简单的旋转作图
- 格式:doc
- 大小:248.00 KB
- 文档页数:4
第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。
教学过程一、课堂导入请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.二、复习预习图形的平移:把一个图形沿着某一直线方向移动,会得到一个新的图形,新图形与原图形的形状,大小完全相同。
图形的这种移动,叫做平移。
轴对称:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就是它的对称轴。
同轴对称、平移一样,图形的旋转也是一种常见的图形变换,从以下几个方面可全面把握图形的旋转。
三、知识讲解考点1图形的旋转(1)定义:在平面内,将一个圆形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转动的角称为旋转角。
(2)生活中的旋转现象大致有两大类:一类是物体的旋转运动,如时钟的时针、分针、秒针的转动,风车的转动等;另一类则是由某一基本图形通过旋转而形成的图案,如香港特别行政区区旗上的紫荆花图案。
(3)图形的旋转不改变图形的大小和形状,旋转是由旋转中心和旋转角所决定,旋转中心可以在图形上也可以在图形外。
(4)会找对应点,对应线段和对应角。
考点2旋转的基本特征(1)图形在旋转时,图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)图形在旋转时,对应点到旋转中心的距离相等,对应线段相等,对应角相等;(3)图形在旋转时,图形的大小和形状都没有发生改变。
几点说明:(1)在理解旋转特征时,首先要对照图形,找出旋转中心、旋转方向、对应点、旋转角。
(2)旋转的角度是对应线段的夹角或对应顶点与旋转中心连线的夹角。
(3)旋转中心的确定分两种情况,即在图形上或在图形外,若在图形上,哪一点旋转过程中位置没有改变,哪一点就是旋转中心;若在图形外,对应点连线的垂直平分线的交点就是旋转中心。
图形的平移与旋转(1)知识概述1、生活中的平移.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2、简单的平移作图.二、重点知识归纳及讲解1、图形的平移是日常生活中比较常见的几何图形变换形式,属全等变化的一种情况.平移不改变图形的大小和形状,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2、对于简单的平移作图,要注意选好一个“基本图形”,把基本图形中的每一个点都沿着相同的方向平行移动相同的距离,再连结相应线段,就可得到平移后的图形.三、难点知识剖析1、如图(1),将△ABC在图中平移,(平移时△ABC的三个顶点一定落在图中两线交点上),最多能平移几次?分析:抓住将三角形ABC平移,就是将顶点A、B、C向同一方向平移相同的单位.解答:能平移三次,具体做法见图(2).将△ABC先向下移一个单位得到△AˊBˊCˊ,再沿AˊCˊ向左上方平移到△A"B"C"处,然后向下平移到△位置.2、如图,经过平移,四边形的顶点A移到了点E,作出平移后的四边形EFGH.分析:根据平移的对应线为平行且相等的性质作图.解答:分别过B、C、D三点向右方作AE的平行线,并依次截取BH=AE,CG=AE,DF=AE,再连接成四边形EFGH,即为平移后的四边形.一、选择题1、如图,A、B、C、D是视力表中一行图案,可以通过平移图形①得到的是()A.B.C.D.2、下列各商标图案是利用平移来设计的个数是()A.1个B.2个C.3个D.4个3、在图中,由△ABC平移而得到的三角形共有()个A.2个B.3个C.4个D.5个4、下面A、B、C、D四个图案,那么平移图案(1),得到图案()A.B.C.D.5、如图,下列哪一项的右边图形是由左边图形平移而得()A.B.C.D.6、如图的图案中,可由一个“基本图案”平移而成的是()A.B.C.D.7、如图,△ABE沿射线XY的方向平移一定距离后成为△CDF,那么下面结论:①△CDF≌ABE;②AC∥EF;③∠AEB=∠CFD;④BD=EF,其中正确的有()A.1个B.2个C.3个D.4个B 卷二、解答题1、将图中的图案的一个顶点A移到了点F,请作出平移后的图案.2、将图中的正方形ABCD平移,顶点A移到了点E,作出平移后的正方形.3、如图,能由△AOB平移而得的图形是哪个?4、如图在正方体ABCD——AˊBˊCˊDˊ中,哪些线段可看做是由C ˊDˊ平移得到的?哪些线段可看做是由B Bˊ平移得到的?AˊDˊ是否也可由CˊDˊ或B Bˊ平移得到?5、如图,图中由△ABC平移而得的三角形共有多少个?如果照这个图沿AB、AC方向延伸平移下去,第n排有多少个平移而得的三角形?6、观察下面两幅图案,分析这两个图案是通过怎样的“基本图案”变化而成.答案:1、略2、向左边的方向,过B、C、D点分别作AE的平行线,依次截取与AE等长的线段为BF、CG、DH,则正方形EFGH是平移后的正方形.3、△EOF和△COD4、AB、AˊBˊ,CD可以看作是由CˊDˊ平移得到的,AAˊ,CC ˊ,DDˊ可以看作是由BBˊ平移得到的,AˊDˊ无法由CˊDˊ或BB ˊ平移得到5、9个,n个6、如图(1)(2)中的阴影部分分别向上、下、左、右平移就可以得到整个图案.图形的平移与旋转(2)知识概述1、生活中的旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2、简单的旋转作图3、简单的图案设计二、重点知识归纳及讲解1、旋转之后得到的图形与原来的图形全等,即旋转不改变图形的大小和形状.2、画旋转后的图形时,首先必须明确旋转中心,其次要注意对应点到旋转中心的距离相等,还要注意,在同一个图形中的旋转角相等.3、在认识图形变化时,要根据我们已掌握的对称的性质,平移和旋转的特征去仔细观察、分析,同时要注意“基本图案”是经过怎样的变化形成美观的图案.4、学习简单的图案设计,学会利用平移、旋转的知识,画出精美的几何图案,培养创新意识,创意美丽作品。
第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。
2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。
我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。
3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。
注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。
4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。
5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点被称为旋转中心,转动的角称为旋转角。
旋转不改变图形的形状和大小。
注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。
2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。
3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。
(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。
图形的旋转(1)——简单的旋转作图
_____月 日 班别_________ 学号________ 姓名________
教学目标
1、掌握旋转点的作图方法
2、掌握绕已知图上一点,画旋转图形的作图方法。
教学过程
环节一、课前复习
1、观察时钟的指针运动情形,用“顺”或“逆”填空:
箭头方向( )时针
箭头方向( )时针
2、如图,用“顺”或“逆”填空:
1) 把OA 绕着点O 旋转50°到OB 是( )时针旋转; 2)把OB 绕着点O 旋转50°到OA 是( )时针旋转。
环节二、新课学习
问题1:如何画出线段的旋转图形? 试一试:
例1、画出:线段AB 绕A 点顺时针旋转90˚的图形. (请向同学们自己完成)小结:“画线段的旋转图形”关键是:判断旋转方向,画角,截取 。
试一试:
例2、画出:点A 绕点O 逆时针旋转60˚的图形.(同学们自己完成)
小结:
“画点的旋转图形”要转化为画 的旋转图形。
例3、画出△ABC 绕点C 逆时针旋转60 后的图形。
分析:画△ABC 绕点C 的图形,只要画点A 、点 绕点C 的旋转图形即可。
画法:(模仿例2)
1)画点A 逆时针旋转60 的图形点A ′ 2)画点B 逆时针旋转60 的图形点B ′, 连接A ′,B ′,C
△A ′B ′C 就是所求作图形。
小结:画旋转图形,实际就是旋转关键点。
课堂练习A 组
1、已知线段AB, 按照要求画出旋转后的图形。
(1)AB 绕点B 顺时针针旋转900 (2)AB 绕点A 逆时针针旋转900
思考: 思考: 在AB 的
方作出∠ABC =900, 在AB 的 方作出∠CBA =900 。
A
B
C
B
A
B
A
2、 已知△ABC ,按照要求画出旋转后的图形。
(1)绕点B 顺时针旋转90 (2)绕点B 逆时针旋转90
3.画出△ABC 绕点A 顺时针旋转1800后的图形:
B 组:
1、如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)将原图形绕点O 逆时针旋转90°,顺时针旋转90°,逆时针旋转180°; (2)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽。
A
B
C
A
B
C O
2、如图,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么是绕哪一点旋转?旋转了多少度?
解:绕点________旋转;
旋转了____________。
C 组:
1、如图l ,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP ’的度数是( )
A .45°
B .60°
C .90°
D .120°
2、如图,四边形ABCD 是正方形,△ADE 旋转后能与△ABF 重合。
①绕哪一点进行旋转? ②旋转了多少度?
③如果连接EF ,那么△AEF 是怎样的三角形?
F
B
C
E
D
A。