电容传感器寄生电容产生原因及消除方法
- 格式:pdf
- 大小:188.58 KB
- 文档页数:4
0402 电阻的寄生电容(原创实用版)目录1.电阻的寄生电容概述2.寄生电容的产生原因3.寄生电容的影响4.如何减小电阻的寄生电容5.结论正文一、电阻的寄生电容概述在电子电路中,电阻是一种常见的元件,用于限制电流或电压。
然而,在实际应用中,电阻可能会产生一种名为寄生电容的现象,这将对电路的性能产生影响。
本文将探讨电阻的寄生电容,包括它的产生原因、影响以及如何减小它。
二、寄生电容的产生原因寄生电容的产生主要与电阻的结构和制造工艺有关。
在电阻的生产过程中,由于材料的不均匀性、接触面积的大小以及加工环境的湿度等因素,都可能导致电阻表面形成一层电容。
此外,电阻内部的引线结构和 PCB 布局也可能导致寄生电容的产生。
三、寄生电容的影响寄生电容会对电路的性能产生负面影响,主要表现在以下几个方面:1.频率响应:寄生电容会降低电阻的频率响应,使得电阻在高频信号下表现出更大的阻抗。
2.稳定性:寄生电容可能导致电路的稳定性降低,使得电路的输出波动较大。
3.电流噪声:寄生电容可能引起电流噪声,从而影响电路的性能。
四、如何减小电阻的寄生电容为了减小电阻的寄生电容,可以采取以下几种方法:1.选择合适的电阻材料:采用介电常数较小的材料,可以降低寄生电容的产生。
2.优化电阻结构:改变电阻的引线结构和接触面积,以减小寄生电容。
3.调整 PCB 布局:优化 PCB 布局,使得电阻与其他元件的距离适中,以减小寄生电容。
4.使用屏蔽技术:对电阻进行屏蔽处理,可以有效减小寄生电容。
五、结论总之,电阻的寄生电容是由于电阻的结构和制造工艺等因素导致的,它会对电路的性能产生负面影响。
为了减小寄生电容,可以从电阻材料选择、电阻结构优化、PCB 布局调整和屏蔽技术等方面入手。
消除电容传感器寄生电容干扰的几种方法摘要: 电容传感器结构简单,分辨率高,但寄生电容的存在严重影响了其工作特性,文章分析了寄生电容存在的原因,采用驱动电缆技术、运算放大器驱动技术、整体屏蔽技术、集成组合技术可有效减小寄生电容,提高传感器的性能。
关键词:电容传感器;寄生电容;干扰;驱动电缆技术;整体屏蔽技术1 前言---电容式传感器具有温度稳定性好,结构简单,适应性强,动态响应好等优点,广泛应用于位移、振动、液位、压力等测量中[1],但由于电容式传感器的初始电容量很小,而连接传感器与电子线路的引线电缆电容、电子线路的杂散电容以及传感器内极板与周围导体构成的电容等所形成的寄生电容却较大,不仅降低了传感器的灵敏度,而且这些电容是随机变化的,使得仪器工作很不稳定,影响测量精度,甚至使传感器无法工作,必须设法消除寄生电容对传感器的影响。
2 消除电容传感器寄生电容的方法2.1 增加初始电容值---采用增加初始电容值的方法可以使寄生电容相对电容传感器的电容量减小。
可采用减小极片或极筒间的间距,如平板式间距可减小为0.2mm,圆筒式间距可减小为0.15mm,增加工作面积或工作长度来增加原始电容值,但此种方法要受到加工和装配工艺、精度、示值范围、击穿电压等限制,一般电容变化值在10-3~103pF之间。
2.2 集成法[2]---将传感器与电子线路的前置级装在一个壳体内,省去传感器至前置级的电缆,这样,寄生电容大为减小而且固定不变,使仪器工作稳定。
但这种做法因电子元器件的存在而不能在高温或环境恶劣的地方使用。
也可利用集成工艺,把传感器和调理电路集成于同一芯片,构成集成电容传感器。
2.3 采用“驱动电缆”技术---在压电传感器和放大器之间采用双层屏蔽电缆,并接入增益为1的驱动放大器,这种接法使得内屏蔽与芯线等电位,消除了芯线对内屏蔽的容性漏电,克服了寄生电容的影响,而内外层之间的电容变成了驱动放大器的负载,因此,驱动放大器是一个输入阻抗很高,具有容性负载,放大倍数为1的同相放大器。
电容传感器寄生电容干扰的产生原因及消除方法分析了电容传感器寄生电容存在的主要原因,以及消除寄生电容干扰的几种方法:主要采用驱动电缆技术、运算放大器驱动技术、整体屏蔽技术、集成组合技术来减小寄生电容,以提高传感器的性能。
电容式传感器具有结构简单,灵敏度高,温度稳定性好,适应性强,动态性能好等一系列优点,目前在检测技术中不仅广泛应用于位移、振动、角度、加速度等机械量的测量,还可用于液位、压力、成份含量等热工方面的测量中。
但由于电容式传感器的初始电容量很小,一般在皮法级,而连接传感器与电子线路的引电缆电容、电子线路的杂散电容以及传感器内极板与周围导体构成的电容等所形成的寄生电容却较大,不仅降低了传感器的灵敏度,而且这些电容是随机变化的,使得仪器工作很不稳定,从而影响测量精度,甚至使传感器无法正常工作,所以必须设法消除寄生电容对电容传感器的影响。
以下对消除电容传感器寄生电容的几种方法进行分析。
增加初始电容值法采用增加初始电容值的方法可以使寄生电容相对电容传感器的电容量减小。
由公式C0=ε0·εr·A/d0可知,采用减小极片或极筒间的间距d0,如平板式间距可减小为0.2毫米,圆筒式间距可减小为0.15毫米;或在两电极之间覆盖一层玻璃介质,用以提高相对介电常数,通过实验发现传感器的初始电容量C0不仅显著提高了,同时也防止了过载时两电极之间的短路;另外,增加工作面积A或工作长度也可增加初始电容值C0。
不过,这种方法要受到加工工艺和装配工艺、精度、示值范围、击穿电压等的限制,一般电容的变化值在10-3~103pF 之间。
采用“驱动电缆”技术,减小寄生电容如图1所示:在压电传感器和放大器A之间采用双层屏蔽电缆,并接入增益为1的驱动放大器,这种接法可使得内屏蔽与芯线等电位,进而消除了芯线对内屏蔽的容性漏电,克服了寄生电容的影响,而内外层之间的电容Cx变成了驱动放大器的负载,电容传感器由于受几何尺寸的限制,其容量都是很小的,一般仅几个pF到几十pF。
pedestrian初级会员注册日期: Sep 2001 来自:发帖数量: 3电容的介质吸收的图示pedestrian 上传了这个图片:向版主反映这个帖子| < a>09-18-2001 09:09 PMpedestrian初级会员注册日期: Sep 2001 来自:发帖数量: 3电容器的寄生效应我们都希望我们所用的电容器是一个理想的电容器,但事实并非如我们所愿。
实际电容器存在一些寄生效应:电容泄漏电阻Rp、串联损耗电阻Rs、串联电感Ls、介质损耗Rda+Cda 等。
各种实际电容器的不同,一是在于容量大小不同,二则是这些寄生效应的大小不同。
电容器主要用于耦合(通交流隔直流)、去耦(滤除叠加在直流中的交流分量)、滤波器、选频网络、取样保持电路等等。
不同的用途,对于电容的要求各不相同,所以在电路设计中对电容器的选用很重要。
那么首先就要了解这些寄生效应对各应用的影响,以及各种电容器在这些寄生效应上的比较。
泄漏电流电容泄漏电流大小在等效电路中表示为泄漏电阻Rp的大小,Rp越大,电容泄漏则越小;在电容技术指标中常用漏电流或绝缘电阻来衡量;在耦合和取样保持电路中,低电容泄漏(高Rp)非常重要;电解电容具有相对较高的泄漏电流,而且在刚上电开始工作的几分钟内会有更高的泄漏电流;钽电解电容比铝电解电容有更小的泄漏电流,但价格较高。
钽电解电容的泄漏电流大约为5nA/µF,而铝电解电容的泄漏电流大约为20nA/µF;其它类型的电容,泄漏电阻一般都大于几百GΩ,所以在大多数应用场合对它们的泄漏电流忽略不计。
损耗电阻(等效串联电阻ESR)电容损耗电阻Rs越大,损耗越大;在电容技术指标中常用损耗角正切来衡量;当较大交流电流流过电容时,Rs就消耗一部分功率,所以在RF电路和带高电流纹波去耦中,低损耗电阻就显得非常重要,但在高精度模拟电路中损耗电阻并不会带来什么影响。
串联电感(等效串联电感ESL)串联电感Ls的大小,决定了电容的工作频率,Ls越大,工作频率就越低;电容器的一常见结构是两片金属箔夹着一片纸质或是塑料介质,卷成卷,这种结构的电容本身就有相当大的电感,这就使得在频率大于几MHz的时候,其电感量大过电容量,所以不能用电解电容或是薄膜电容来作高频去耦;片状瓷介电容有比较低的串联电感(取决于它的层叠式结构),但它会产生颤噪声,有的会因高Q值而自谐振,而圆片瓷介电容由于引线会有较高的串联电感;钽电解电容和片状瓷介电容并联,可以保证模拟电路足够的去耦(连接片状瓷介电容印制板走线要短!)。
电容传感器的误差分析摘要:电容传感器具有高灵敏度、高阻抗、小功率、动态范围大、动态响应较快、几乎没有零漂、结构简单和适应性强等优点,在测量荷重、位移、振动、角度、加速度的工业领域有着广泛的应用,随着新材料、新材料的应用,电容式传感器在我们日常生活中广泛的使用,如现在手机的电容式触摸屏,凭借其多点触控、不易误触等优点取代了电阻触摸屏;最近Apple公司推出的最新款手机Iphone5s的HOME键的指纹识别功能,也是使用电容传感器实现指纹采集的。
电容传感器的高灵敏度、高精度的优点离不开精细的加工技术、正确的选材以及正确的设计。
本文从不同方面考虑以发扬优点、克服缺点。
1、减小环境温度、湿度变化所产生的误差温度变化使传感器内各零件的几何尺寸和相互位置及某些介质的介电常数发生改变,从而改变电容传感器的电容量,产生温度误差。
湿度也影响某些介质的介电常数和绝缘电阻值。
因此必须从选材、材料加工工艺等方面来减小温度等误差以保证绝缘材料具有高的绝缘性能。
电容传感器的金厲电极材料以选用温度系数低的铁镍合金为好,但较难加工也可釆用在陶瓷或石英上喷镀金或银的工艺,这样电极可以做得极薄,对减小边缘效应极为有利。
传感器内电极表面不便经常淸洗,应加以密封,用以防尘、防潮。
若在电极表面镀以极薄的惰性金属(如铑等)层,则可代替密封件而起保护作用,可防尘、防湿、防腐蚀,并且可以在高温下减少表面损耗,降低温度系数,但成本较高。
传感器内电极的支架除要有一定的机械强度外还要有稳定的性能。
因此选用温度系敷小和几何尺寸长期稳定性好,并具有髙的绝缘电阻、低的吸潮性和高的表面电阻的材料作为支架。
例如,可以采用石英、云母、入造宝石及各种陶瓷,虽然它们较难加工,但性能远高于塑料、有机玻璃等材料。
在温度不太高的环境下,聚四氟乙烯具有良好的绝缘性能,选用时也可予以考虑。
尽量采用空气或云母等介电常数的温度系数近似为零的电介质作为电容传感器的电介质。
若用某些液体如硅油、煤油等作为电介质,当环境温度、湿度变化时,它们的介电常数随之改变,产生误^这种误差虽可用后接的电子电路加以补偿(如采用与测量电桥相并联补偿电桥),但不易完全消除。
电容传感器寄生电容产生原因及消除方法 引言 电容式传感器具有结构简单,灵敏度高,温度稳定性好,适应性强,动态性能好等一系列优点,目前在检测技术中不仅广泛应用于位移、振动、角度、加速度等机械量的测量,还可用于液位、压力、成份含量等热工方面的测量中。
但由于电容式传感器的初始电容量很小,一般在皮法级,而连接传感器与电子线路的引电缆电容、电子线路的杂散电容以及传感器内极板与周围导体构成的电容等所形成的寄生电容却较大,不仅降低了传感器的灵敏度,而且这些电容是随机变化的,使得仪器工作很不稳定,从而影响测量精度,甚至使传感器无法正常工作,所以必须设法消除寄生电容对电容传感器的影响。
以下对消除电容传感器寄生电容的几种方法进行分析。
增加初始电容值法 采用增加初始电容值的方法可以使寄生电容相对电容传感器的电容量减小。
由公式C0 = 可知,采用减小极片或极筒间的间距d0 ,如平板式间距可减小为0.2 毫米,圆筒式间距可减小为0.15毫米;或在两电极之间覆盖一层玻璃介质,用以提高相对介电常数,通过实验发现传感器的初始电容量C0不仅显着提高了,同时也防止了过载时两电极之间的短路;另外,增加工作面积A或工作长度也可增加初始电容值C0。
不过,这种方法要受到加工工艺和装配工艺、精度、示值范围、击穿电压等的限制,一般电容的变化值在10-3~103pF之间。
采用驱动电缆技术,减小寄生电容 如图1所示:在压电传感器和放大器A 之间采用双层屏蔽电缆,并接入增益为1 的驱动放大器,这种接法可使得内屏蔽与芯线等电位,进而消除了芯线对内屏蔽的容性漏电,克服了寄生电容的影响,而内外层之间的电容Cx 变成了驱动放大器的负载,电容传感器由于受几何尺寸的限制,其容量都是很小的,一般仅几个pF到几十pF。
因C太小,故容抗XC=1/ωc很大,为高阻抗元件;所以,驱动放大器可以看成是一个输入阻抗很高,且具有容性负载,放大倍数为1 的同相放大器。
电容传感器寄生电容产生原因及消除方法
引言
电容式传感器具有结构简单,灵敏度高,温度稳定性好,适应性强,动态性能好等一系列优点,目前在检测技术中不仅广泛应用于位移、振动、角度、加速度等机械量的测量,还可用于液位、压力、成份含量等热工方面的测量中。
但由于电容式传感器的初始电容量很小,一般在皮法级,而连接传感器与电子线路的引电缆电容、电子线路的杂散电容以及传感器内极板与周围导体构成的电容等所形成的寄生电容却较大,不仅降低了传感器的灵敏度,而且这些电容是随机变化的,使得仪器工作很不稳定,从而影响测量精度,甚至使传感器无法正常工作,所以必须设法消除寄生电容对电容传感器的影响。
以下对消除电容传感器寄生电容的几种方法进行分析。
增加初始电容值法
采用增加初始电容值的方法可以使寄生电容相对电容传感器的电容量减小。
由公式C0 =。