矩阵的概念及运算
- 格式:ppt
- 大小:159.00 KB
- 文档页数:24
矩阵的基本概念矩阵是线性代数中的重要概念,广泛应用于各个领域,如物理学、计算机科学、经济学等。
本文将介绍矩阵的基本概念,包括定义、表示、运算以及特殊类型的矩阵。
一、定义矩阵是一个二维数组,由m行n列的元素构成,示例如下: [a₁₁, a₁₂, ..., a₁ₙ][a₂₁, a₂₂, ..., a₂ₙ][ ... , ... , ..., ... ][aₙ₁, aₙ₂, ..., aₙₙ]其中aₙₙ表示矩阵中第k行第l列的元素。
二、表示矩阵可以用多种方式进行表示,常见的有行向量、列向量、分块矩阵和矩阵方程。
1. 行向量:将矩阵的一行元素写成一个行向量,示例如下:[a₁₁, a₁₂, ..., a₁ₙ]2. 列向量:将矩阵的一列元素写成一个列向量,示例如下:[a₁₁][a₂₁][ ... ][aₙ₁]3. 分块矩阵:将一个大矩阵划分为多个小矩阵组成的矩阵,示例如下:[A₁₁, A₁₂; A₂₁, A₂₂]4. 矩阵方程:将矩阵和向量之间的关系表示为矩阵方程,示例如下:AX = B三、运算矩阵有多种运算,包括加法、数乘、乘法和转置等。
1. 加法:两个矩阵的对应元素相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁ + B₁₁, A₁₂ + B₁₂][A₂₁, A₂₂] + [B₂₁, B₂₂] = [A₂₁ + B₂₁, A₂₂ + B₂₂]2. 数乘:将矩阵中的每个元素乘以一个常数,示例如下:c * [A₁₁, A₁₂] = [cA₁₁, cA₁₂][A₂₁, A₂₂] [cA₂₁, cA₂₂]3. 乘法:两个矩阵的对应元素相乘然后相加得到新的矩阵,示例如下:[A₁₁, A₁₂] [B₁₁, B₁₂] [A₁₁B₁₁ + A₁₂B₂₁,A₁₁B₁₂ + A₁₂B₂₂][A₂₁, A₂₂] * [B₂₁, B₂₂] = [A₂₁B₁₁ + A₂₂B₂₁,A₂₁B₁₂ + A₂₂B₂₂]4. 转置:将矩阵的行和列互换得到新的矩阵,示例如下:[A₁₁, A₁₂, A₁₃] [A₁₁, A₂₁][A₂₁, A₂₂, A₂₃] -> [A₁₂, A₂₂][A₃₁, A₃₂, A₃₃] [A₁₃, A₂₃]四、特殊类型的矩阵矩阵还有一些特殊类型,包括零矩阵、单位矩阵、对角矩阵和方阵等。
矩阵知识点完整归纳矩阵是大学数学中比较重要和基础的概念之一,具有广泛的应用领域,例如线性代数、微积分、计算机科学等。
本文将全面归纳和总结矩阵的基本概念、性质以及相关应用,旨在帮助读者更好地理解和掌握矩阵知识。
一、基本概念1.矩阵的定义矩阵是由一个$m\times n$ 的矩形阵列(数组)表示的数表,其中$m$ 表示矩阵的行数,$n$ 表示矩阵的列数。
如下所示:$$A = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\\a_{21} & a_{22} & \cdots & a_{2n} \\\\vdots & \vdots & \ddots & \vdots \\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中,$a_{ij}$ 表示矩阵的第$i$ 行、第$j$ 列元素。
2.矩阵的分类矩阵根据其元素的性质可以分为不同类型,主要有以下几种:(1)行矩阵(行向量):只有一行的矩阵,例如$[a_1,a_2,\cdots,a_n]$。
(2)列矩阵(列向量):只有一列的矩阵,例如$\begin{bmatrix}a_1\\\ a_2\\\ \vdots\\\ a_m\end{bmatrix}$。
(3)方阵:行数等于列数的矩阵,例如$A=\begin{bmatrix}1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9\end{bmatrix}$。
(4)零矩阵:所有元素都为$0$ 的矩阵,例如$\begin{bmatrix}0 & 0 & 0\\\ 0 & 0 & 0\\\ 0 & 0 & 0\end{bmatrix}$。
第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵(一)矩阵及相关概念1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n n n ≠≠=得不到由,.............. (2122221)11211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵,记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵 、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵 1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nn n n n n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算1.矩阵的加法CB A B A b a cC n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设 ,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A k kA 111))(3(---=AB AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律 A A T T =))(1( T T kA kA =))(2( T T T A B AB =))(3(T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n A A n )2())(3(2≥=-**n A A A n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T T T T T D BC AD C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O BC O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A EBA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵(一)矩阵的初等变换及相关概念1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换(1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去(4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换)(5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位鞠振宁经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P )()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E k E k E E E ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A E A B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~r E PAQ Q n P m n m A BPAQ Q P B A B A六、常考题型及其解题方法与技巧题型一、有关矩阵的概念及运算题型二、求方阵的幂n A数学归纳法思路,可用相似对角化来求个线性无关的特征向量有,当思路可用二项式定理展开则且,能分解成两个矩阵的和,若思路律就可很方便地求出个矩阵的乘积,用结合能分解为一列与一行两则,若思路,43)(,2,1)(1nn n nA n A CB A CB BC C B A A A A A r +==+== 题型三、求与已知矩阵可交换的矩阵题型四、有关初等变换的问题题型五、关于伴随矩阵的命题题型六、矩阵可逆的计算与证明⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B A E E A A E E A A AA EBA E AB B 111-1-1-1-1114)()();()(3121,,分块矩阵法思路,初等变换法思路,伴随矩阵法思路或使,定义法,找出思路 题型七、求解矩阵方程为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A B A r A r A B B Ax 2,,1)()(.2.111--===。
矩阵的计算方式1 矩阵的定义矩阵是线性代数的基础概念之一。
它是一个由数构成的矩形阵列(一个表格),并按照特定的规则进行排列。
就像我们平时用的Excel 表格一样,矩阵可以用于描述各种各样的数学问题,例如线性方程组的求解、变换矩阵的应用等等。
2 矩阵的基本运算矩阵的运算有加、减、数乘、矩阵乘法等。
以下将从这几个方面来介绍矩阵的基本运算。
2.1 矩阵加法两个矩阵的加法定义为将它们的对应元素相加得到一个新矩阵。
例如:$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} +\begin{bmatrix}5 & 6 \\ 7 & 8\end{bmatrix} = \begin{bmatrix}6 & 8 \\ 10 & 12\end{bmatrix}$矩阵加法需要满足以下条件:- 两个矩阵必须具有相同的行数和列数。
- 相加的两个矩阵对应的元素必须都是相同类型的,例如都是实数。
2.2 矩阵减法两个矩阵的减法与加法类似,不同的是将它们的对应元素相减得到一个新矩阵。
例如:$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} -\begin{bmatrix}5 & 6 \\ 7 & 8\end{bmatrix} = \begin{bmatrix}-4 & -4 \\ -4 & -4\end{bmatrix}$矩阵减法需要满足与矩阵加法相同的条件(相同的行数和列数,相同类型的元素)。
2.3 矩阵数乘将矩阵的每个元素都乘以一个标量得到一个新的矩阵,这个操作称为矩阵数乘。
例如:$2 \begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}2 & 4 \\ 6 & 8\end{bmatrix}$矩阵数乘需要满足以下条件:- 被乘的标量必须是一个实数或者复数。
mathematics矩阵运算矩阵运算是线性代数中重要的概念之一,广泛应用于各个领域,包括物理、工程、计算机科学和金融等。
本文将一步一步地介绍矩阵的定义、基本运算、特殊类型的矩阵以及一些常见的矩阵运算。
一、矩阵的定义矩阵是一个按照矩形排列的数的集合,可以用方括号表示。
例如,一个3行2列的矩阵可以表示为:\[A =\begin{bmatrix}a_{1,1} & a_{1,2} \\a_{2,1} & a_{2,2} \\a_{3,1} & a_{3,2} \\\end{bmatrix}\]其中,\[a_{i,j}\]表示矩阵A中第i行第j列的元素。
矩阵中的元素可以是实数或者复数。
二、基本运算1. 矩阵的加法和减法:两个相同大小的矩阵可以进行加法和减法运算。
对应位置上的元素相加或相减,得到的结果矩阵具有相同的大小。
例如,对于两个3行2列的矩阵\[A\]和\[B\],它们的和\[A + B\]可以表示为:\[A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} \\a_{3,1}+b_{3,1} & a_{3,2}+b_{3,2} \\\end{bmatrix}\]2. 矩阵的标量乘法:矩阵可以与一个实数或者复数进行乘法运算,我们称之为标量乘法。
将矩阵中的每一个元素与标量相乘,得到的结果矩阵具有相同的大小。
例如,对于一个3行2列的矩阵\[A\]和一个标量\[k\],它们的乘积\[k \cdot A\]可以表示为:\[k \cdot A =\begin{bmatrix}k \cdot a_{1,1} & k \cdot a_{1,2} \\k \cdot a_{2,1} & k \cdot a_{2,2} \\k \cdot a_{3,1} & k \cdot a_{3,2} \\\end{bmatrix}\]3. 矩阵的乘法:矩阵的乘法是定义在两个矩阵之间的运算,它不同于矩阵加法和减法。
矩阵运算公式大全一、矩阵基本概念和性质1.矩阵的定义:一个m×n的矩阵A是由m行n列的数排成的一个矩形阵列,其中每个数称为矩阵的一个元素。
2. 矩阵元素的表示:A=[a_ij]_{m×n},其中a_ij表示矩阵A的第i行第j列的元素。
3. 矩阵的加法和减法:给定两个相同阶的矩阵A=[a_ij]_{m×n}和B=[b_ij]_{m×n},则它们的和A+B=[a_ij+b_ij]_{m×n}和差A-B=[a_ij-b_ij]_{m×n}定义为对应元素相加或相减得到的结果。
4. 矩阵的数乘:给定一个矩阵A=[a_ij]_{m×n}和一个实数k,则kA=[ka_ij]_{m×n}定义为矩阵A的每个元素乘以实数k得到的结果。
5. 矩阵的乘法:给定一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积AB=[c_ij]_{m×p}定义为矩阵A的第i行与矩阵B的第j列的对应元素乘积之和。
二、矩阵的转置和逆1. 矩阵的转置:给定一个m×n的矩阵A=[a_ij]_{m×n},它的转置记作A^T,其中A^T=[a_ji]_{n×m},即将矩阵A的行变为列,列变为行。
2.矩阵的逆:给定一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I,其中I是n阶单位矩阵,则称矩阵A是可逆的,矩阵B称为矩阵A的逆矩阵,记作A^{-1}。
三、矩阵的特殊类型1.零矩阵:所有元素都为0的矩阵,记作0。
2.单位矩阵:对角线上的元素都为1,其余元素都为0的矩阵,记作I。
3.对角矩阵:非对角线上的元素都为0的矩阵。
4.上三角矩阵:下三角元素都为0的矩阵。
5.下三角矩阵:上三角元素都为0的矩阵。
6. 对称矩阵:对于任意元素a_ij,有a_ij=a_ji的矩阵,记作A^T=A。
7. 反对称矩阵:对于任意元素a_ij,有a_ij=-a_ji的矩阵,记作A^T=-A。
矩阵的基本概念与运算矩阵是线性代数学科中的基础工具,这是因为矩阵可以用来表示线性变换和线性方程组。
对于矩阵的基本概念与运算,我们需要从以下几个方面来分析。
一、矩阵的基本概念1、定义与记法矩阵是一个由m行n列元素排成的矩形阵列,常用大写字母表示,如A、B、C等。
其中,阵列中的m表示矩阵的行数,n则表示矩阵的列数。
因此,一个m行n列的矩阵可以写成:$A_{m×n}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}& \cdots&a_{mn}\\\end{bmatrix}$其中,$a_{ij}$ 表示矩阵 A 中第 i 行第 j 列的元素。
2、矩阵的类型按照元素类型可以将矩阵分为实矩阵、复矩阵和布尔矩阵等。
按照矩阵的形状,矩阵可以分为方矩阵、长方矩阵和列矩阵等。
二、矩阵的基本运算1、矩阵的加法假设有两个矩阵 $A_{m×n}$ 和 $B_{m×n}$,它们对应位置相加的结果记作 $C=A+B$,则:$C_{ij}=A_{ij}+B_{ij}$2、矩阵的数乘假设有一个矩阵 $A_{m×n}$ 和一个数 $\lambda$,则它们的乘积记作 $B=\lambda A$,则:$B_{ij}=\lambda A_{ij}$3、矩阵的乘法假设有两个矩阵 $A_{m×n}$ 和 $B_{n×p}$,它们的乘积记作$C=AB$,则:$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$矩阵乘法需要满足结合律,但不满足交换律,也就是说,$AB$ 与 $BA$ 不一定相等。
线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。
本文将简单介绍矩阵的基本概念和运算。
矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。
一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。
对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。
也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。
矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。
对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。