异方差性的概念、类型、后果、检验及其修正方法含案例
- 格式:ppt
- 大小:7.29 MB
- 文档页数:69
异方差性在回归分析的影响在回归分析中,异方差性是一个重要的概念,指的是误差项的方差不是恒定的,而是随着自变量的变化而变化。
异方差性会对回归分析的结果产生影响,导致参数估计不准确甚至失真,从而影响对模型的解释和预测能力。
本文将从异方差性的定义、影响、检验以及处理方法等方面展开讨论。
一、异方差性的定义在回归分析中,我们通常假设误差项具有同方差性,即误差项的方差是恒定的。
然而,在实际应用中,误差项的方差可能会随着自变量的变化而发生变化,这种情况被称为异方差性。
异方差性通常表现为误差项的方差与自变量的水平相关,即方差不是常数。
二、异方差性的影响1. 参数估计的不准确性:异方差性会导致参数估计的不准确性,使得回归系数的估计偏离真实值,从而影响对自变量与因变量之间关系的解释。
2. 统计检验的失真:异方差性会使得回归模型的显著性检验结果失真,可能导致错误的结论,影响对模型整体拟合优度的评估。
3. 预测精度的下降:异方差性会影响对未来观测值的预测精度,使得预测结果不可靠,降低模型的预测能力。
三、异方差性的检验为了检验回归模型是否存在异方差性,可以采用以下方法:1. 图形诊断法:通过残差图、残差与预测值的散点图等图形来观察残差的分布情况,如果残差呈现出明显的异方差性模式,就可以怀疑模型存在异方差性。
2. 统计检验法:利用异方差性检验统计量,如White检验、Goldfeld-Quandt检验、Breusch-Pagan检验等,对模型的异方差性进行显著性检验。
四、处理异方差性的方法当检验结果表明模型存在异方差性时,可以采取以下方法进行处理:1. 加权最小二乘法(Weighted Least Squares, WLS):通过对残差进行加权,使得残差的方差与自变量的水平相关,从而消除异方差性。
2. 变量转换:对自变量或因变量进行对数变换、平方根变换等,使得变量的方差变化较小,减轻异方差性的影响。
3. 引入干扰项:在模型中引入干扰项,如虚拟变量、交互项等,来控制异方差性的影响。
异方差问题1.什么是异方差?i ki k i i i u X X X Y +++++=ββββ 22110,ni ,,2,1 =221),,|(i i i i X X u Var σ= ,n i ,,2,1 =或者 2)(i i u V a r σ=,n i ,,2,1 =同方差异方差2.异方差性的两个例子⏹收入与储蓄⏹打字出错个数与打字练习小时数3.异方差的类型同方差递增方差4.异方差性的后果(1)OLS 估计量仍然具有线性性和无偏性 证明:我们以一元线性回归模型为例来证明。
∑∑∑∑∑∑+-++=-==21010221)]()[()(ˆii i i i i i i i i ΔX X u X ΔX ΔX Y Y ΔX ΔX ΔY ΔX βββββ ∑+=i i u k 1β,其中∑=2iii ΔX ΔX k 。
⏹ 证明无偏性时只使用到两个假设:解释变量是外生的,误差的均值为零 ⏹下面证明OLS 估计量方差在同方差与异方差情况下不相等。
当假设为同方差时,1ˆβ的方差为 )var()var()ˆvar(11∑∑=+=i i i i u k u k ββ (由随机扰动项的无自相关性假设) ∑∑==)var()var(2i i i i u k u k (由同方差假设)∑∑∑∑=⎥⎥⎦⎤⎢⎢⎣⎡==22222222)(ii i iΔXΔX ΔX k σσσ当方差为异方差是,1ˆβ的方差为 ∑∑==2221)var()ˆvar(i i i i k u k σβ 22222222)()()(∑∑∑∑=⎥⎥⎦⎤⎢⎢⎣⎡=i i i i i i ΔX ΔX ΔX ΔX σσ (2)变量的显著性检验失去意义说明:如果在存在异方差的情况下,仍然使用常用的OLS 估计量表达式,则计算得到的方差通常是有偏的。
由于t 统计量和F 统计量的表达式中都包含样本标准差,因此计算得到的t 统计值和F 统计值都是有偏误的,则建立在其上的假设检验也是不可靠的。
计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
回归分析中的异方差性检验方法回归分析是统计学中一种常用的数据分析方法,它用来研究自变量和因变量之间的关系。
在进行回归分析时,我们通常会假设误差项的方差是恒定的,即不存在异方差性。
然而,在实际应用中,误差项的方差往往并非恒定的,而是存在异方差性。
异方差性会对回归分析的结果产生影响,因此需要进行异方差性检验并进行相应的修正。
一、异方差性的概念及影响异方差性是指误差项的方差不是恒定的,而是随着自变量的变化而变化。
当存在异方差性时,回归系数的估计值会失真,标准误差会被高估或低估,导致对回归系数和其显著性的检验结果产生偏误。
因此,必须进行异方差性的检验和修正,以确保回归分析结果的准确性和可靠性。
二、异方差性检验方法1. Park检验Park检验是一种常用的异方差性检验方法,它是基于残差的平方和与自变量的关系来进行检验的。
具体步骤是:首先进行回归分析,然后计算残差的平方和,接着将残差的平方和与自变量进行回归,最后通过F检验来检验残差的方差是否与自变量相关。
如果F统计量的显著性水平小于设定的显著性水平(通常为),则拒绝原假设,即存在异方差性。
2. Glejser检验Glejser检验是另一种常用的异方差性检验方法,它是通过对自变量的绝对值进行回归来进行检验的。
具体步骤是:首先进行回归分析,然后计算自变量的绝对值,接着将自变量的绝对值与残差进行回归,最后通过t检验来检验残差的方差是否与自变量相关。
如果t统计量的显著性水平小于设定的显著性水平(通常为),则拒绝原假设,即存在异方差性。
三、异方差性的修正方法1. 加权最小二乘法(Weighted Least Squares, WLS)当检验结果表明存在异方差性时,可以采用加权最小二乘法来进行修正。
加权最小二乘法是通过对残差进行加权,使得残差的方差与自变量的关系消失,从而得到回归系数的一致估计。
2. 广义最小二乘法(Generalized Least Squares, GLS)广义最小二乘法是对加权最小二乘法的推广,它允许误差项之间存在相关性,并对误差项的方差-协方差矩阵进行估计,从而得到回归系数的一致估计。
异方差性的概念类型后果检验及其修正方法异方差性(heteroscedasticity)是指随着自变量的变化,被解释变量的方差不保持恒定,呈现出不同的分散特征。
异方差性可能会导致线性回归模型的参数估计不精确,误差项的标准误差的估计不准确,常见的检验和修正方法包括Breusch-Pagan检验和White检验,同时,还可以采取加权最小二乘法或者转换变量的方法来修正异方差性。
异方差性可以分为条件异方差和非条件异方差两种类型。
条件异方差是指在给定自变量的情况下,被解释变量方差的大小存在差异;非条件异方差则是指被解释变量的方差在整个样本空间内都存在差异。
异方差性的后果是导致参数估计的不准确性和偏误。
当存在异方差性时,OLS(普通最小二乘法)估计的标准误差会低估真实标准误差,从而使得参数显著性以及模型拟合效果可能出现问题。
此外,在存在异方差性的情况下,t检验、F检验等假设检验的结果也会受到影响。
在进行线性回归模型时,常常需要对异方差性进行检验。
一种常用的检验方法是Breusch-Pagan检验,其基本思想是对残差的平方与自变量进行回归,然后通过F检验来判断异方差的存在与否。
另一种常用的检验方法是White检验,它是在一个包含自变量和交互项的扩展模型中对残差的平方与自变量进行回归,通过Wald检验统计量来判断异方差的存在与否。
异方差性可以通过多种修正方法来处理。
其中,一种常用的方法是采用加权最小二乘法(WLS)来估计参数。
WLS的基本思想是将方差不恒定的观测值加权,使得每个观测值的权重与方差的倒数成正比。
另一种常用的方法是通过转换变量,使得原始数据变换成具有恒定方差的形式,例如对数变换、平方根变换等。
下面以一个案例来说明如何检验和修正异方差性。
假设我们研究了城市的房价(被解释变量)与房屋面积和所在地区(自变量)之间的关系。
我们采集了100个样本数据,并构建了线性回归模型进行分析。
1.检验异方差性:使用Breusch-Pagan检验来检验模型的异方差性。