将下列各周期函数展开成傅里叶级数(下面给出函数在一个...
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
第十五章 傅立叶级数§1 傅立叶级数1.在指定区间内把下列函数展开成傅立叶级数: (1)f(x)=x (i),x p p -<<(ii) 02;x p << (2) f(x)=x 2 (i),x p p -<<(ii) 02;x p << (3) ax 0,x p -<?f(x)= (a,b 为不等于0的常数,且a ≠b) bx 0x p <<解:(1)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
011()0,a f x dx xdx p p p p p p--===蝌1n ³时,有11cos sin sin 0n xa x nxdx nxnxdx n n p p ppp pp pp---==-=蝌2,1sin 2,n nb x nxdx n p pp -ìïï-ïï==íïïïïïîò所以在(,)p p -上11sin ()2(1)n n nx f x n ¥+==-å(ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
20012,a xdx pp p ==ò1n ³时,有201cos 0,n a x nxdx pp ==ò2012sin ,n b x nxdx np p ==-ò所以在(0,2)p 上1sin ()2n nxf x n p ¥==-å(2)(i )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
22012,3a x dx p p p p -==ò1n ³时,有22241cos 4n n a x nxdx np pp -ìïïïï==íïï-ïïïîò 21sin 0n b x nxdx p pp -==ò所以在(,)p p -上221cos ()4(1)3n n nx f x n p ¥==+-å (ii )f(x)按段光滑,由收敛定理知它可以展成傅立叶级数。
第15章傅里叶级数§15.1傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1)周期性每一个函数都是以2π为周期的周期函数; (2)正交性任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b 为常数2以2π为周期的傅里叶级数定义1设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论如果()f x 是以2π,]ππ-上按 段光滑,则x R ∀∈,有()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1在指定区间内把下列函数展开为傅里叶级数(1)(),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011sin sin d 0|x nx nx x n n ππππ=-=⎰,2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,222224cos cos d (1)|n x nx nx x n n n ππππππ--=-=-⎰,2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.()2f x =x0a =当1n ≥时,222220224cos cos d |x nx nx x n n n ππππ=-=⎰,2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.(3)0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有c+2 c+211()cos d ()cos d f t nt t f x nx xππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2)111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1)取2x π=,则11114357π=-+-+;(2)由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3)取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,02()cos d 2102f x nx x n k n k ππ⎧=-⎪=⎨⎪=⎩⎰.02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =. 5设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰. 02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=. 6试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是[0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7求下列函数的傅里叶级数展开式(1)(),022x f x x ππ-=<<;(),02x f x x ππ-=<< 0a 当1n ≥时,22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2)()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得0sin d sin d 22x x x x ππ-=+=.当1n ≥时,sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,24an =, 42a n n ππ=--, 故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x c ππππ-=++=+⎰.当1n ≥时,24(1)nan =-, 12(1)n bn -=-, 故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4)()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5)()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑. 解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.故结论成立.10证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 22Mn ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15.2以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n xb f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑. 其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n xb f x x f x x l l l l ππ-==⎰⎰. 从而01()2n n a f x a ∞=+∑由此可知,函数偶延拓() (0,()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1求下列周期函数的傅里叶级数展开式 (1)()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于(f ()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2)()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π);2222解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4)()sgn(cos )f x x =(周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,02sgn(cos )cos d n a x nx xππ=⎰4sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos(21)2n n xn ππ∞=-=-∑为所求.6把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l=0.5,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7求下列函数的傅里叶级数展开式 (1)()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2)()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 是偶函数,故其展开式为余弦级数.002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈. 8试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑;(2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2)先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.()f x 是偶函数,故其展开式为余弦级数.002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15.3收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2设以2π为周期的函数()f x 在[,]ππ-上可积,则1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3(收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式. (1)22118(21)n n π∞==-∑;(2)22116n n π∞==∑;(3)44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1(1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1(2)得 2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰, 故44190n π=∑. 4证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2n n n g x nx nx ααβ∞==++∑.于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ cos ,cos n n n n a nx nx a αα==, cos ,cos n n n n b nx nx b ββ==,所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,且成立贝塞尔等式,则22()d ()d f x x f x xππππ--'≥⎰⎰.证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是由贝塞尔等式得2()d f x xππ-=⎰.总练习题151试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得001(),1(cos sin ),12nn k k k A a T x A kx B kx A ===++=∑,当1k ≥时,1(cos sin ),cos 02nkk k k A k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,1(cos sin ),sin 02nkk k k B k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的 傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn k k k A T x A kx B kx ==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====, 因为[]2()()d n f x T x xππ--⎰22 ()d 2()()d ()d n n f x x f x T x x T x xππππππ---=-+⎰⎰⎰,而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰, () 22201()d 2nnk k k A T x x A B πππ-==++∑⎰,所以[]2()()d n f x T x xππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 3设f 为以2π周期,且具有二阶连续可微的函数,11()sin d , ()sin d n nb f x nx x b f x nx xππππππ--''''==⎰⎰,若级数n b ''∑绝对收敛,则11122n n n b ∞∞==⎛⎫''+ ⎪⎝⎭∑.证:因为()f x 为以2π周期,且具有二阶连续可微的函数, 所以1()sin d n b f x nx x πππ-''''=⎰2 2 ()cos ()sin d nn n f x nxf x nx x n b ππππππ--=-+=⎰. 即211,n n n b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=1122n n b ∞=⎛⎫''<+ ⎪⎝⎭∑.故结论成立.4设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1)()()x x ϕψ-=;(2)()()x x ϕψ-=-.试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,()1()cos sin 2n n n x nx nx αψαβ∞==++∑,(1)则当()()x x ϕψ-=时,0n ∀≥,n α=.1n ∀≥,n β=-.(2)当()()x x ϕψ-=-时,0n ∀≥,n α=-.1n ∀≥,n β=.5设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系0 ()()d 1 bn m a n mx x x n m ϕϕ≠⎧=⎨=⎩⎰,对于在[,]a b 上的可积函数f ,定义()()d , 1,2,b n n a a f x x x n ϕ==⎰,证明21n n a ∞=∑收敛,且有不等式 22 1[()]d b n a n a f x x ∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为(),()()()d b a f x g x f x g x x =⎰,则函数列{}()n x ϕ为标准正交系.令1()(),1,2,m m n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=, 又 2 [()()]d bm a f x S x x -⎰22 ()d 2()()d ()d n n f x x f x S x x S x x ππππππ---=-+⎰⎰⎰,而11(),()(),()(),()m m n n n n n n n f x S x f x a x a f x x ϕϕ====∑∑ 21m nn a ==∑. 211(),()m mk k k k k k k a a x x a ϕϕ====∑∑,于是 222 1()d [()()]d 0m b n m an f x x a f x S x x ππ-=-=-≥∑⎰⎰, 所以22 11,[()]d m b n a n m a f x x =∀≥≤∑⎰,即{}()m S x 有上界. 故 21n n a∞=∑收敛,且 22 1[()]d b n a n a f x x∞=≤∑⎰.。
第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , ,, ,n x x x线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos2, sin2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰ 0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰ 1,2,k =,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2nn n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,22220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰222220224cos cos d |x nx nx x n n n ππππ=-=⎰,222211sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a b n π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰,2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+2 11()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k n n n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰0011()d ()d f t t f x x πππππ=-+⎰⎰0011(2)d ()d f t t f x x ππππππ=-++⎰⎰000112()d ()d ()d f t t f x x f x x πππππππ=++=⎰⎰⎰. 当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得2200011()d d 02x a f x x x πππππ-===⎰⎰.当1n ≥时,220011cos d d(sin )22n x xa nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求. (2)()f x x ππ-≤≤;解:()f x x ππ-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰00sin d sin d 22x x x x ππ-==. 当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+0sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππ-==.所以211()cos 41n f x nxn∞=-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+=±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得2001()d a f x xππ=⎰222018()d 223a ax bx c x b c ππππ=++=++⎰. 当1n ≥时, 2201()cos d n a ax bx c nx xππ=++⎰ 2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =, 2201()sin d n b ax bx c nx x ππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx xn n ππππππ--=-⎰21sh d(cos )x nx n πππ-=⎰2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰ 11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰.当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得 221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ n n n a n b ≤+22M n ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑. 其中 1()cos ,l n l n x a f x dx l l π-=⎰1()sin l n l n x b f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n xa f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin 2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓.偶延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式(1) ()cos f x x =(周期π);解:函数由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰22[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos 241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,2222()()1121022[]cos2d 2[]cos2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin2)x n x x x n x n πππ==⎰⎰110011sin2sin2d 0|x n x n x x n n ππππ=-=⎰.()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰204311cos2cos4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x ==-+,(,)x ∈-∞+∞为所求.2222(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n x f x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得 31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时,12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x xπ+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ 011cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n x a f x xπ=⎰240211(1)cos d (3)cos d 2424n x n x x x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰ 442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭. 解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得 0,0,1,2,n a n ==.02arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin 2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰02cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x x nx xπππππ=+⎰⎰ 202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰02()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数. 推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)l i m ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b n n n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑. (2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑.4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则。
傅里叶级数与函数的展开傅里叶级数是一种将周期性函数分解为无穷多个正弦和余弦函数的方法。
通过将一个周期为T的函数f(x)表示为正弦和余弦函数的线性组合,可以将复杂的函数形式简化为一系列简单的分量。
傅里叶级数展开不仅在数学领域有广泛的应用,而且在工程、物理、计算机科学等多个领域也有重要的实际应用。
本文将介绍傅里叶级数的基本概念和数学原理,以及展开函数的方法和应用。
一、傅里叶级数的基本概念和数学原理傅里叶级数的基本概念是将周期为T的连续函数f(x)表示为以基频率为1/T的正弦和余弦函数的线性组合。
对于一个周期为T的函数f(x),它的傅里叶级数展开可以表示为:f(x) = a0/2 + Σ(an*cos(nωx) + bn*sin(nωx))其中a0/2是恒定分量,表示函数f(x)在一个周期内的平均值,an和bn为傅里叶系数,ω是角频率,n取正整数表示谐波的阶数。
傅里叶级数的数学原理是基于正交函数的性质。
正交函数是指在某个区间上内积为0的函数,而正弦和余弦函数是正交函数的典型例子。
通过选择合适的基函数,可以将任意函数展开成正弦和余弦函数的线性组合。
傅里叶级数展开的实质是通过构造适当的线性组合,使得每个正弦和余弦函数与原函数在一个周期内的匹配程度最好。
二、展开函数的方法展开函数的方法有两种:傅里叶级数展开和傅里叶变换。
傅里叶级数展开适用于周期性函数,而傅里叶变换适用于任意函数。
下面将分别介绍这两种方法的具体步骤。
1. 傅里叶级数展开对于一个周期为T的函数f(x),傅里叶级数展开的步骤如下:步骤1:求解恒定分量a0/2,可以通过计算函数f(x)在一个周期内的平均值得到。
步骤2:求解傅里叶系数an和bn,可以通过计算函数f(x)与正弦和余弦函数的内积得到。
具体计算公式为:an = (2/T) * ∫[0,T] f(x)*cos(nωx) dxbn = (2/T) * ∫[0,T] f(x)*sin(nωx) dx其中∫[a,b]表示对区间[a,b]的积分。
习题11-81. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式):(1))2121(1)(2<≤--=x x x f ;解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ⋅ ⋅ ⋅), 而 611)1(4)1(2/12210221020=-=-=⎰⎰dx x dx x a ,⎰-=21022/1c o s )1(2/12dx x n x a n π221212)1(2c o s )1(4ππn x d x n x n +-=-=⎰(n =1, 2, ⋅ ⋅ ⋅),由于f (x )在(-∞, +∞)内连续, 所以∑∞=+-+=12122c o s )1(11211)(n n x n n x f ππ, x ∈(-∞, +∞).(2)⎪⎪⎩⎪⎪⎨⎧<≤-<≤<≤-=1211210 101 )(x x x x x f ;解 21)(12121111-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,⎰⎰⎰⎰-+==--12121111c o s c o s c o s c o s )(xd x n x d x n x d x n x x d x n x f a n ππππ2s i n 2])1(1[122πππn n n n +--= (n =1, 2, ⋅ ⋅ ⋅),dx x n xdx n xdx n x xdx n x f b n ⎰⎰⎰⎰-+==--121210111sin sin sin sin )(πππππππn n n 12c o s 2+-= (n =1, 2, ⋅ ⋅ ⋅).而在(-∞, +∞)上f (x )的间断点为x =2k , 212+k , k =0, ±1, ±2, ⋅ ⋅ ⋅,故 }s i n 2c o s21c o s ]2s i n 2)1(1{[41)(122x n n n x n n n n x f n nπππππππ-++--+-=∑∞=(x ≠2k , 212+≠k x , k =0, ±1, ±2, ⋅ ⋅ ⋅).(3)⎩⎨⎧<≤<≤-+=30 1 03 12)(x x x x f .解 1])12([31)(3133330-=++==⎰⎰⎰--dx dx x dx x f a ,]3c o s 3c o s )12([313c o s )(313333⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ])1(1[622n n --=π(n =1, 2, ⋅ ⋅ ⋅ ),]3s i n 3s i n )12([313s i n )(313333⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππn n )1(6-=π(n =1, 2, ⋅ ⋅ ⋅ ),而在(-∞, +∞)上, f (x )的间断点为 x =3(2k +1), k =0, ±1, ±2, ⋅ ⋅ ⋅, 故}3s i n 6)1(3c o s ])1(1[6{21)(1122∑∞=+-+--+-=n n n xn n x n n x f ππππ,(x ≠3(2k +1), k =0, ±1, ±2, ⋅ ⋅ ⋅).2. 将下列函数分别展开成正弦级数和余弦级数:(1)⎪⎩⎪⎨⎧≤≤-<≤=lx x l l x x x f 2l20 )(; 解 正弦级数:对f (x )进行奇延拓, 则函数的傅氏系数为 a 0=0(n =0, 1, 2, ⋅ ⋅ ⋅),2s i n 4]s i n )(s i n [22221210ππππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰(n =1, 2, ⋅ ⋅ ⋅ )故 ∑∞==122s i n2s i n 14)(n lx n n nlx f πππ, x ∈[0, l ].余弦级数:对f (x )进行偶延拓, 则函数的傅氏系数为2])([2212100l dx x l xdx l a l=-+=⎰⎰,⎰⎰-+=ln dx l x n x l dx l x n x l a 21210]cos )(cos [2ππ])1(12c o s 2[222n n n l ---=ππ(n =1, 2, ⋅ ⋅ ⋅ ) b n =0(n =1, 2, ⋅ ⋅ ⋅ ), 故l x n n n l l x f n n πππc o s ])1(12c o s 2[124)(122∑∞=---+=, x ∈[0, l ].(2)f (x )=x 2(0≤x ≤2).解 正弦级数:对f (x )进行奇延拓, 则函数的傅氏系数为 a 0=0(n =0, 1, 2, ⋅ ⋅ ⋅),]1)1[()(168)1(2sin 223122--+-==+⎰n n n n n dx x n x b πππ,故 2s i n }]1)1[()(168)1{()(131x n n n x f n n n πππ∑∞=+--+-=2s i n }]1)1[(2)1({81231xn n n n n n πππ∑∞=+--+-=, x ∈[0, 2).余弦级数:对f (x )进行偶延拓, 则函数的傅氏系数为3822220==⎰dx x a222)(16)1(2cos 22ππn dx x n x a n n -==⎰(n =1, 2, ⋅ ⋅ ⋅),b n =0(n =1, 2, ⋅ ⋅ ⋅),故2c o s)(16)1(34)(12xn n x f n n ππ∑∞=-+=2c o s)1(1634122x n n n n ππ∑∞=-+=, x ∈[0, 2].。
在指定的区间内把下列函数展开成傅里叶级数(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)1. 在指定的区间内把下列函数展开成傅里叶级数:(1) (),(),()02.f x x i x ii x πππ=-<<<<(2)2(),(),()02.f x x i x ii x πππ=-<<<< (3),0(),(,0,0).,0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩解 (1)()i()f x 是x ππ-<<的奇函数,所以0,1,2,n a n ==1022cos (1)2sin ,n n n b x nxdx n nπππ---===⎰因()f x 在x ππ-<<连续且光滑,所以11(1)2sin ,(,).n n x nx x n ππ-∞=-=∈-∑()ii 20012,a xdx πππ==⎰201cos 0,n a x nxdx ππ==⎰2012sin(),n b x nx dx nππ==-⎰因()f x 在(0,2)π上光滑且连续,所以1sin 2,(0,2).n nxx x n ππ∞==-∈∑(2) (i) 2()f x x =是(,)ππ-上的偶函数,故0,1,2,;n b n ==2012()3a f x dx ππππ-==⎰,222311sin 2cos 2sin ()cos cos n x nx nx nx nxf x nxdx x nxdx nπππ+-==⎰⎰ 223221sin 2cos 2sin 4(1)4()cos cos (1)n n n x nx nx nx nx a f x nxdx n n n n n πππππππ--+--====≥⎰ 又2()f x x =在(,)ππ-上光滑,故22211(1)4,(,).3n nn x x x n πππ∞=-=+∈-∑ (ii) 222200118()3a f x dx x dx πππππ===⎰⎰,22223201sin 2cos 2sin 4()cos (1),n n x nx nx nx nx a f x nxdx n n n ππππ+-===≥⎰ 222231cos 2cos 2sin 4()sin (1).n n x nx nx nx nx b f x nxdx n n n πππππ-++===-≥⎰又2()f x x =在(0,2)π上光滑,故22214cos 4(sin ),(0,2).3n nx x nx x n n πππ∞==+-∈∑(3)00011()[](),2a f x dx axdx bxdxb a πππππππ--==+=-⎰⎰⎰002211()cos [cos cos ]2(), (cos 1)0, n a f x nxdx ax nxdx bx nxdx a b n b a n n n n πππππππππ--==+-⎧-⎪=-=⎨⎪⎩⎰⎰⎰为奇数为偶数10011(1)()sin [sin sin ]cos (),n n a b b f x nxdx ax nxdx bx nxdx n a b n nπππππππ+--+-==+=-=+⎰⎰⎰所以1112()1(1)()cos(21)()sin ,4(21)n n n b a a b f x n x a b nx n n ππ+∞∞==---=+-++-∑∑(,).x ππ∈- 2. 把函数,04(),04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出:11111157111317=-+-+-+解:()f x 是(,)ππ-上的奇函数,故0,0,1,2,n a n ==.1,211cos ()sin sin 220,n n n b f x nxdx nx nn n ππππ⎧-⎪====⎨⎪⎩⎰⎰为奇数为偶数. 又()f x 在(,0)(0,)ππ-连续,故1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.当23x π=时, 12sin (21)23()3214n n f n πππ∞=⎡⎤-⎢⎥⎣⎦==-∑.当213n k -=时,2sin (21)0,3n π⎡⎤-=⎢⎥⎣⎦当2131n k -=+时,2sin (21)32n π⎡⎤-=⎢⎥⎣⎦当2132n k -=+时,2sin (21)3n π⎡⎤-=⎢⎥⎣⎦所以,11111(1)4257111317π=-+-+-+,即111111657111317=-+-+-+.3.设函数()f x 满足条件:()()f x f x π+=。
习题11-8
1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式):
(1))2
12
1(1)(2<≤--=x x x f ;
解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ⋅ ⋅ ⋅), 而 611)1(4)1(2/1221
0221
020=-=-=⎰⎰dx x dx x a ,
⎰-=21022/1c o s )1(2/12dx x n x a n π
2
2
121
2
)1(2c o s )1(4π
πn x d x n x n +-=
-=⎰
(n =1, 2, ⋅ ⋅ ⋅),
由于f (x )在(-∞, +∞)内连续, 所以
∑
∞
=+-+=1
2
1
2
2c o s )1(1
1211)(n n x n n x f ππ
, x ∈(-∞, +∞).
(2)⎪⎪
⎩
⎪⎪⎨⎧
<≤-<≤<≤-=1
21
12
1
0 101 )(x x x x x f ;
解 2
1)(1
2
121
1
11
-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,
⎰⎰
⎰⎰-+==--1
2
121
1
11
c o s c o s c o s c o s )(x
d x n x d x n x d x n x x d x n x f a n ππππ
2
s i n 2])1(1[122πππ
n n n n +--= (n =1, 2, ⋅ ⋅ ⋅),
dx x n xdx n xdx n x xdx n x f b n ⎰⎰
⎰⎰-+==--1
2
1210
1
1
1
sin sin sin sin )(ππππ
π
ππ
n n n 12
c o s 2+-= (n =1, 2, ⋅ ⋅ ⋅).
而在(-∞, +∞)上f (x )的间断点为x =2k , 2
12+k , k =0, ±1, ±2, ⋅ ⋅ ⋅,
故 }s i n 2c o s
21c o s ]2s i n 2)1(1{[41)(122x n n n x n n n n x f n n
πππππππ
-++--+-=∑∞
=
(x ≠2k , 2
12+≠k x , k =0, ±1, ±2, ⋅ ⋅ ⋅).
(3)⎩⎨
⎧<≤<≤-+=3
0 1 03 12)(x x x x f .
解 1])12([3
1)(3
13
33
30-=++==⎰⎰⎰--dx dx x dx x f a ,
]3
c o s 3
c o s )12([3
13c o s )(3
13
3
3
3
⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ
])1(1[62
2
n n --=
π
(n =1, 2, ⋅ ⋅ ⋅ ),
]3
s i n 3
s i n )12([3
13s i n )(3
13
3
33
⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππ
n n )1(6-=π
(n =1, 2, ⋅ ⋅ ⋅ ),
而在(-∞, +∞)上, f (x )的间断点为 x =3(2k +1), k =0, ±1, ±2, ⋅ ⋅ ⋅, 故
}3
s i n 6)1(3c o s ])1(1[6{21)(1122∑∞
=+-+--+-=n n n x
n n x n n x f ππππ,
(x ≠3(2k +1), k =0, ±1, ±2, ⋅ ⋅ ⋅).
2. 将下列函数分别展开成正弦级数和余弦级数:
(1)⎪⎩
⎪⎨
⎧≤≤-<≤=l
x x l l x x x f 2l
20 )(; 解 正弦级数:
对f (x )进行奇延拓, 则函数的傅氏系数为 a 0=0(n =0, 1, 2, ⋅ ⋅ ⋅),
2s i n 4]s i n )(s i n [22
22
121
0π
πππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰(n =1, 2, ⋅ ⋅ ⋅ )
故 ∑∞
==
1
2
2s i n
2s i n 14)(n l
x n n n
l
x f ππ
π, x ∈[0, l ].
余弦级数:
对f (x )进行偶延拓, 则函数的傅氏系数为
2])([22
121
00l dx x l xdx l a l
=-+=⎰⎰,
⎰⎰-+=l
n dx l x n x l dx l x n x l a 2
1210]cos )(cos [2ππ
])1(12
c o s 2[22
2n n n l ---=ππ
(n =1, 2, ⋅ ⋅ ⋅ ) b n =0(n =1, 2, ⋅ ⋅ ⋅ ), 故
l x n n n l l x f n n πππ
c o s ])1(12c o s 2[124)(1
2
2
∑∞
=---+=, x ∈[0, l ].
(2)f (x )=x 2(0≤x ≤2).
解 正弦级数:
对f (x )进行奇延拓, 则函数的傅氏系数为 a 0=0(n =0, 1, 2, ⋅ ⋅ ⋅),
]1)1[()
(168)1(2sin 2
2312
2--+-==+⎰n n n n n dx x n x b πππ,
故 2
s i n }]1)1[()(168)1{()(1
31x n n n x f n n n πππ∑∞
=+--+-=
2s i n }]1)1[(2)1({8
1231x
n n n n n n πππ∑∞
=+--+-=, x ∈[0, 2).
余弦级数:
对f (x )进行偶延拓, 则函数的傅氏系数为
3
82
22
20==⎰dx x a
2
2
2)
(16
)1(2cos 2
2ππn dx x n x a n n -==⎰(n =1, 2, ⋅ ⋅ ⋅),
b n =0(n =1, 2, ⋅ ⋅ ⋅),
故
2
c o s
)(16)1(34)(12x
n n x f n n ππ∑∞
=-+=
2
c o s
)1(16341
2
2x n n n n ππ
∑
∞
=-+=, x ∈[0, 2].。