自成像与莫尔条纹理解光的相位改变
- 格式:pdf
- 大小:470.64 KB
- 文档页数:9
莫尔条纹的光学原理莫尔条纹是一种在光学实验中观察到的干涉现象,它的光学原理与光的波动性以及光的干涉有关。
下面将详细介绍莫尔条纹的光学原理。
光的波动性是理解莫尔条纹的基础。
根据光的波动性,光可以被视为电磁波,它具有一定的频率和波长。
当光通过介质界面时,会发生反射和折射,并且光的波长会在介质中发生改变。
莫尔条纹实验通常在一个反射光源下进行观察,其中的主要元件有一平行板和观察屏。
在莫尔条纹实验中,一束入射光从光源(如激光器)射向一个透明的平行板,平行板的表面可以看作是两个平行的玻璃面,它们之间有一个微小的空气间隙。
当光线垂直入射到平行板上时,根据斯涅耳定律,部分光线将会被反射,另一部分光线则穿过平行板继续向前传播,同时发生折射。
光线在平行板内部传播时,由于光的波长会在介质中发生改变,因此不同路径上的光会有不同的光程。
光程差是产生莫尔条纹的重要因素。
当两束光线经过平行板传播后,在观察屏上会形成明暗相间的条纹,这就是莫尔条纹。
因为光程差的存在,两束光线在观察屏上会产生相位差。
当相位差为整数倍的波长时,两束光线会相干叠加形成明条纹;而当相位差为半波长时,两束光线会相消干涉形成暗条纹。
这种明暗相间的条纹就是莫尔条纹。
具体来说,对于从平行板上的两个不同点出射的光线,光程差可以表示为:ΔL = 2n*dsinθ,其中n是平行板的折射率,d是平行板的厚度,θ是入射角。
当光程差满足ΔL = mλ时,其中m是任意整数,λ是光的波长,两束光线在观察屏上会叠加相干增强形成明条纹;而当光程差满足ΔL = (m+0.5)λ时,两束光线在观察屏上会叠加相消干涉形成暗条纹。
莫尔条纹实验的观察屏上会出现一系列的明暗相间的直线条纹。
这是由于平行板内不同位置处的光程差不同,所以不同位置处会有不同的相位差,从而在观察屏上形成明暗相间的条纹。
莫尔条纹是一种非常重要的干涉现象,它不仅被广泛应用于实验室的光学实验中,还在一些实际应用中得到利用,例如在显微镜、望远镜、天文学观测中都有应用。
光学设计实验莫尔条纹原理及应用学生姓名:指导教师:所在学院:物理学院所学专业:物理学中国·长春2014 年6 月一、中文摘要目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,测量精度已达 0.1um,已成为位移测量领域各工业化国家竞争的关键技术。
它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。
本文首先详细阐述了莫尔条纹的形成机理,当计量光栅为粗光栅时,莫尔条纹形成机理用遮光阴影原理解释,当计量光栅为细光栅时,则用衍射干涉原理解释。
然后系统介绍了基于莫尔条纹技术的光电测量仪器的设计原理,它由光栅读数头和对莫尔条纹信号进行处理的电子学部分组成,光栅读数头包括光栅副,光电接收元件,由光源和准直镜组成的照明系统,以及必要的光阑、接收狭缝、调整机构等。
最后提出了基于光栅莫尔条纹干涉计量技术的一种新的应用,即把光栅线性位移传感器应用在数字读数显微镜上,数字读数显微镜包括光学系统、控制与显示系统、CCD 摄像机与显示器四部分,其中,控制与显示系统是设计的核心模块,是基于 FPGA 技术实现的,它包括倍频鉴相模块、可逆计数模块、显示控制和显示接口模块。
经过大量的理论研究和实践测试工作,我们已经把光栅莫尔条纹技术成功地应用在数字读数显微镜上,实现了对被测物体线性位移的精密测量,测量分辨率达到 0.5um,测量精度达到±1um。
设计中用 CCD 摄像头代替目镜可以避免传统的肉眼观察的不便。
关键词:莫尔条纹,光栅读数头,FPGA,数字读数显微镜二、英文摘要At the present time, grating linear movement sensor based on grating Moiré fringe interferometry technology has developed rapidly.Grating movement measurement system has reached the nanometer level resolution, measuring accuracy than 0.1um.It is widely used, almost penetrated into the social sciences in various fields, such as the machine tool industry,test measurement,aerospace navigation,national defense,education and scientific research in all industry sectors.This paper first described in detail the formation mechanism of Moire fringe,when the measurement grating for coarse grating, the moire fringe formation mechanism of the shadow of the principle of using sunscreen to explain, when the measurement grating for fine grating, then explained by diffraction interference principle. And then systematically introduced the principle of design of grating linear movement sensor based on Grating Moire fringe technology, grating linear movement sensor is composed of grating reading-head and Moire fringe signal processing electronics components.Grating reading-head include Grating pair, the lighting system composed of light source, collimation mirror, the essential diaphragm, received slot and adjusted organization, etc. Finally, a new kind of application based on the Moire fringe interferometry technology is proposed, which apply the grating linear movement sensor to the digital reading microscope. The digital reading microscope includes optical system, control and display system,CCD camera and display four parts, among them, it is the key module that is designed to control with the display system, which is based on FPGA technology and mainly concludes four fold-frequency and direction-judgment module,reversible counter module,displaying control module and displaying interface module.After a lot of theoretical research and practical testing,we have already applied grating Moire fringe technology to the digital reading microscope successfully,which has made the accurate measurement of linear displacement of the testee become true, and the measured resolution has reached 0.5um, the measurement accuracy has reached ± 1um. CCD camera instead of eyepiece can avoid the inconvenience of traditional visual observation.Keywords: Moire Fringe, Grating Reading Head, FPGA, Digital Reading Microscope三、正文1、问题提出光栅莫尔条纹技术是一门既古老又现代的测量技术。
二、莫尔条纹莫尔条纹是光栅式传感器工作的基础。
(一)形成莫尔条纹的光学原理莫尔条纹通常是由两块光栅叠加形成的,为了避免摩擦,光栅之间留有间隙,对于栅距较大的振幅光栅,可以忽略光的衍射。
图7-25 为两光栅以很近的距离重叠的情况。
在a-a线上,两光栅的栅线透光部分与透光部分叠加,光线透过透光部分形成亮带;在b-b线上,两光栅透光部分分别另一光栅的不透光部分叠加,互相遮挡,光线透不过形成暗带,这种由光栅重叠形成的光学图案称为莫尔条纹。
长光栅莫尔条纹的周期为式中 W1——标尺光栅(也称主光栅)1的光栅常数;W2——指示光栅2的光栅常数;θ——两光栅栅线的夹角。
莫尔条纹有如下重要特性:1.运动对应关系莫尔条纹的移动量和移动方向与两光栅的相对位移量和位移方向有着严格的对应关系。
在图7-25中,当主光栅向右运动一个栅距W1时,莫尔条纹向下移动一个条纹间距B;如果主光栅1向左运动,莫尔条纹则向上移动。
光栅传感器在测量时,可以根据莫尔条纹的移动量和移动方向判定光栅的位移量和位移的方向。
2.位移放大作用由于两光栅的夹角θ很小,若它们的光栅常数相等,设为W,从式(7-19)可得到如下近似关系(7-20)明显看出,莫尔条纹有放大作用,其放大倍数为1/θ。
所以尽管栅距很小,难以观察到,但莫尔条纹却清晰可见。
这非常有利于布置接收莫尔条纹信号的光电器件。
3.误差平均效应莫尔条纹是由光栅的大量栅线(常为数百条)共同形成的,对光栅的刻划误差有平均作用,在很大程度上消除了栅线的局部缺陷和短周期误差的影响,个别栅线的栅距误差或断线及疵病对莫尔条纹的影响很微小,从而提高了光栅传感器的测量精度。
对于栅距很小(例如W<0.005mm)的光栅,特别是有的相位光栅处处透光,这时莫尔条纹的形成必须用光的衍射理论加以解释。
根据物理光学理论,平行光束透过光栅后,将发生衍射现象,如图7-26所示。
设光栅G1产生了0,±1,±2,…等n级衍射光,光栅G1的衍射光束到达光栅G2时将进一步被衍射,G1的n 级衍射光,其中每一级的衍射光束对光栅G2来说都是一组入射光束,并由光栅G2又衍射成n级衍射光(因为两光栅的W相同,又是单色光),所以从光栅副出射的衍射光束的数目为个。
光学传感三维面形测量实验GCS-SWCL实验讲义大恒新纪元科技股份有限公司版权所有不得翻印光学传感三维面形测量1. 引言非接触三维自动测量是随着计算机技术的发展而开展起来的新技术研究,它包括三维形体测量﹑应力形变分析和折射率梯度测量等方面。
应用到的技术有莫尔条纹、散斑干涉、全息干涉和光阑投影等光学技术和计算机条纹图像处理技术。
条纹投影以及各种光阑投影自动测量技术在工业生产控制与检测、医学诊断和机器人视觉等领域正占有越来越重要的地位。
本试验是利用投影式相移技术,对形成的被测物面条纹进行计算机相移法自动处理的综合性实验。
2. 实验目的通过本实验了解投影光栅相位法的形成机理;了解一种充分发挥计算机特长的条纹投影相位移处理技术。
对于非接触测量有一定的感性认识。
3. 基本原理投影光栅相位法是三维轮廓测量中的热点之一,其测量原理是光栅图样投射到被测物体表面,相位和振幅受到物面高度的调制使光栅像发生变形,通过解调可以得到包含高度信息的相位变化,最后根据三角法原理完成相位---高度的转换。
根据相位检测方法的不同,主要有Moire轮廓术、Fourier变换轮廓术,相位测量轮廓术,本实验就是采用了相位测量轮廓术。
相位测量轮廓术采用正弦光栅投影相移技术。
基本原理是利用条纹投影相移技术将投影到物体上的正弦光栅依次移动一定的相位,由采集到的移相变形条纹图计算得到包含物体高度信息的相位。
基于相位测量的光学三维测量技术本质上仍然是光学三角法,但与光学三角法的轮廓术有所不同,它不直接去寻找和判断由于物体高度变动后的像点,而是通过相位测量间接地实现,由于相位信息的参与,使得这类方法与单纯基于光学三角法有很大区别。
相位测量轮廓术的基本原理将规则光栅图像投射到被测物表面,从另一角度可以观察到由于受物体高度的影响而引起的条纹变形。
这种变形可解释为相位和振幅均被调制的空间载波信号。
采集变形条纹并对其进行解调,从中恢复出与被测物表面高度变化有关的相位信息,然后由相位与高度的关系确定出高度,这就是相位测量轮廓术的基本原理。
光学成像技术中的成像原理和图像处理方法光学成像技术是一种将物体的形象转化为光信号便于记录和传输的技术,广泛应用于医学、工业、通信、科学研究等领域。
本文将从成像原理和图像处理方法两个方面介绍光学成像技术的基本知识。
一、成像原理光学成像技术的最基本原理是光的反射、折射和透射。
在下面,我们将这三种光学现象依次介绍。
1. 反射当光线撞击物体表面时,根据菲涅尔反射定律,光线会以同样的角度反射回去。
此时,我们可以利用反射后的光线再次成像。
这种成像方式称为反射成像。
2. 折射当光线从一种介质进入另一种介质时,由于光速的改变,光线的传播方向也会改变。
这种光学现象称为折射。
利用折射可以制作透镜和棱镜,实现折射成像和分光成像。
3. 透射当光线通过介质时,由于介质的吸收和散射作用,光线会发生衰减和变形。
利用透射现象可以观测材料的组成和结构。
二、图像处理方法1. 去噪在照片或视频中,可能会存在许多噪点,这些噪点可能来自于图像采集设备的噪声或者传输过程中的干扰。
去噪方法是通过滤波器、小波变换等方式,将噪点减少到最小程度。
2. 均衡化在照片或视频中,可能会存在一些区域亮度偏暗或偏亮的情况,这些情况可能影响到对图像中重要细节的观察。
均衡化方法可以提升图像局部亮度的对比度,从而使图像更加清晰。
3. 纹理描述在某些应用场景中,需要对物体的纹理进行描述,在光学成像技术中,可以使用局部二值模式(LBP)描述纹理特征。
此方法可以根据像素点及其周围像素点的灰度级信息,生成一系列特征向量,以便进行纹理分类和检测。
4. 特征提取在光学成像技术中,通常需要从一张图像中提取出一些重要的特征,以便进行后续处理和分析。
常见的特征提取方法有边缘检测、角点检测、尺度空间分析等。
结语光学成像技术是一种相对成熟的技术,但在不同的应用领域中,需要采用不同的成像原理和图像处理方法。
希望本文介绍的基本知识,能给读者提供一些思路,以便更好地理解和应用光学成像技术。