莫尔条纹的光学放大作用
- 格式:ppt
- 大小:1.76 MB
- 文档页数:6
莫尔条纹机电科学与工程系电子信息工程莫尔条纹是十八世纪法国研究人员莫尔先生首先发现的一种光学现象。
所谓莫尔条纹,是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹。
数控方面的莫尔条纹是由光栅固定在机床活动部件上,读数头装在机床固定部件上,并且两者相互平行放置,在光源的照射下形成明暗相见的条纹。
莫尔条纹具有如下特点:变化规律,两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。
由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步;放大作用,在两光栅栅线夹角较小的情况下,莫尔条纹宽度W和光栅栅距ω、栅线角θ之间有下列关系(θ的单位为rad,W的单位为mm),由于倾角很小,sinθ很小,则W=ω /θ,若ω=0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍;均化误差作用,由若干光栅条纹共用形成莫尔条纹,例如每毫米100线的光栅,10mm宽度的莫尔条纹就有1000条线纹,这样栅距之间的相邻误差就被平均化了消除了由于栅距不均匀、断裂等造成的误差。
莫尔条纹现象是由于信号取样频率接近感光器分辨率所致,通常解决方法用一个低通滤镜把高于感光器分辨率的信号挡住,其副作用就是降低成像分辨率。
因此在设计低通滤镜时设计师要在分辨率和莫尔条纹之间做一个妥协选择。
因为D70的CCD前面使用效果比较弱的低通滤镜,所以在提高成像分辨率也造成了莫尔条纹出现几率的增大,此现象也广泛出现于其他DSLR上。
根据莫尔条纹的形成原理制成了光栅尺位移传感器,其工作原理是,当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。
在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。
相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带。
光栅尺的应用与原理光栅尺的结构是由有刻有窄的等间距的线纹标尺光栅和读数头组成,读数头是由刻有与标尺光栅光刻密度相同好的指示光栅、光学系统和光路原件等组成。
标尺光栅与尺度光栅与一定间距平行放置,并且他们的刻度线相互倾斜一定角度@,标尺光栅固定不动,指示光栅沿着垂直线条纹方向运动,光线照在标尺光栅上放射或者投射在指示光栅并发生光的衍射,产生明暗相间的莫尔条纹,光电探测器检测莫尔条纹的宽度变化并将其转换成电信号输出给控制装置。
莫尔条纹的特点:1.莫尔条纹的移动与光栅栅距之间的移动关系,光栅移动一个条纹,莫尔条纹正好移动一个条纹。
2.莫尔条纹的放大作用:B=W/(2SIN2/2)=W/2主要的元件:发光LED, 标尺光栅,指示光栅,光电探测器。
光栅的选用:选用光栅要综合考虑一下几个要素:1.考虑被测物理量的性质,要根据呗测量的行程和精度要求选择量程和精度,根据被测量的最大速度确定光栅尺的最大移动速度以及是否需要基准标记和相位开关传感器,要什么形式的光栅。
2.根据控制器可以控制的信号的类型选择光栅输出类型,还要考虑接口的硬件匹配。
3.根据工作条件确定光栅尺应具备在何种环境下工作的能力4.根据被测的物体考虑安装方案。
考虑到空间,方向等问题。
5.设计电缆的长度6.价格和服务7.市场的方便,型号的选择。
光栅的主要技术参数:分辨率:表征的测量精度,有5.0um ,1.0um ,0.5um ,0.1um输出波形:方波和正弦波两种。
按控制的形式:数字量和模拟量,要与控制器匹配。
测量周期:没测一次所需的时间测量长度:可以应许的测量范围测量方式:绝对值和识字增量坐标使用温度:5----45度供电电源:一般为+5+5%,电流大小为120mA最大移动速度:要大于要求值最小时钟频率:要保证控制器的频率高于要求值。
安装:把光栅尺贴在平台的固定部分上。
安装要用专用工具,保证光栅的安装合付要求(水平度、垂直度)。
读数头要安装在平台的移动部分上。
光学设计实验莫尔条纹原理及其应用学生姓名:***指导教师:***所在学院:物理学院所学专业:物理学(公费)中国·长春2014年6月莫尔条纹原理及应用一、摘要:目前,以莫尔条纹技术为基础的光栅线性位移传感器发展十分迅速,光栅长度测量系统的分辨率达到纳米级,测量精度已达 0.1um,已成为位移测量领域各工业化国家竞争的关键技术。
它的应用非常广泛,几乎渗透到社会科学中的各个领域,如机床行业、计量测试部门、航空航天航海、科研教育以及国防等各个行业部门。
本文详细阐述了莫尔条纹的形成机理,当计量光栅为粗光栅时,莫尔条纹形成机理用遮光阴影原理解释,当计量光栅为细光栅时,则用衍射干涉原理解释,以及相关公式的推导过程。
然后系统介绍了莫尔条纹的有关应用以及光栅传感器的原理和应用。
说明了微小偏向角的测量原理及方法,到达对莫尔条纹的进一步理解和认识。
关键词:莫尔条纹,光栅传感器,微小偏向角二、英文摘要At the present time, grating linear movement sensor based on grating Moiré fringe interferometry technology has developed rapidly.Grating movement measurement system has reached the nanometer level resolution, measuring accuracy than 0.1um.It is widely used, almost penetrated into the social sciences in various fields, such as the machine tool industry,test measurement,aerospace navigation,national defense,education and scientific research in all industry sectors.This paper describes in detail the formation mechanismof Moiré fringes, when the grating is coarse grating , Moiré fringe formation mechanism explained by shading shadow principle, when the grating is fine grating diffraction interferometry,with the explanation,the reasoning process and the correlation formula. Then introduces the application of grating sensor principle and application of Moiré fringe.The small deviation angle measuring principle and method, tof urther understanding of Moiré fringe.Keywords: Moire Fringe,grating sensor,deviation angle三、正文1、问题提出光栅莫尔条纹技术是一门既古老又现代的测量技术。
几何光学原理解释莫尔条纹有光学放大作用嘿,你知道吗?几何光学原理可神奇啦!就拿莫尔条纹来说吧,它
竟然有着光学放大作用,这可太有意思了!
想象一下,我们平常看东西,是不是觉得很普通,没啥特别的呀。
但是当几何光学原理碰上莫尔条纹,哇塞,那就像打开了一个奇妙的
世界之门!比如说,你看那两条看似普通的线,当它们以特定的方式
重叠在一起时,莫尔条纹就出现啦!这就好比是一场魔法,突然就变
出了一些之前没有的东西。
我记得有一次,我和朋友一起研究这个莫尔条纹,我们就像两个好
奇的孩子,瞪大眼睛盯着看。
朋友还说:“哎呀,这真的好神奇呀,怎
么就突然有了这种放大效果呢?”可不是嘛,这就是几何光学原理的魅
力所在呀!
再想想,这就好像我们在生活中,有时候一些小小的改变或者组合,就能带来意想不到的大变化。
就像一颗小小的种子,最后能长成参天
大树一样。
莫尔条纹的光学放大作用不也是这样吗?从小小的线条中
诞生出那么明显的放大效果。
而且哦,这种光学放大作用可不是随便说说的,它是有实实在在的
依据和原理的。
通过精确的计算和分析,我们能清楚地知道为什么会
这样,这多让人着迷呀!
在我看来,几何光学原理解释莫尔条纹的光学放大作用真的是太神奇、太有趣啦!它让我们看到了平常看不到的东西,感受到了科学的魅力和奇妙。
它就像是一个隐藏在我们身边的宝藏,等待着我们去挖掘和探索呢!。
二、莫尔条纹莫尔条纹是光栅式传感器工作的基础。
(一)形成莫尔条纹的光学原理莫尔条纹通常是由两块光栅叠加形成的,为了避免摩擦,光栅之间留有间隙,对于栅距较大的振幅光栅,可以忽略光的衍射。
图7-25 为两光栅以很近的距离重叠的情况。
在a-a线上,两光栅的栅线透光部分与透光部分叠加,光线透过透光部分形成亮带;在b-b线上,两光栅透光部分分别另一光栅的不透光部分叠加,互相遮挡,光线透不过形成暗带,这种由光栅重叠形成的光学图案称为莫尔条纹。
长光栅莫尔条纹的周期为式中 W1——标尺光栅(也称主光栅)1的光栅常数;W2——指示光栅2的光栅常数;θ——两光栅栅线的夹角。
莫尔条纹有如下重要特性:1.运动对应关系莫尔条纹的移动量和移动方向与两光栅的相对位移量和位移方向有着严格的对应关系。
在图7-25中,当主光栅向右运动一个栅距W1时,莫尔条纹向下移动一个条纹间距B;如果主光栅1向左运动,莫尔条纹则向上移动。
光栅传感器在测量时,可以根据莫尔条纹的移动量和移动方向判定光栅的位移量和位移的方向。
2.位移放大作用由于两光栅的夹角θ很小,若它们的光栅常数相等,设为W,从式(7-19)可得到如下近似关系(7-20)明显看出,莫尔条纹有放大作用,其放大倍数为1/θ。
所以尽管栅距很小,难以观察到,但莫尔条纹却清晰可见。
这非常有利于布置接收莫尔条纹信号的光电器件。
3.误差平均效应莫尔条纹是由光栅的大量栅线(常为数百条)共同形成的,对光栅的刻划误差有平均作用,在很大程度上消除了栅线的局部缺陷和短周期误差的影响,个别栅线的栅距误差或断线及疵病对莫尔条纹的影响很微小,从而提高了光栅传感器的测量精度。
对于栅距很小(例如W<0.005mm)的光栅,特别是有的相位光栅处处透光,这时莫尔条纹的形成必须用光的衍射理论加以解释。
根据物理光学理论,平行光束透过光栅后,将发生衍射现象,如图7-26所示。
设光栅G1产生了0,±1,±2,…等n级衍射光,光栅G1的衍射光束到达光栅G2时将进一步被衍射,G1的n 级衍射光,其中每一级的衍射光束对光栅G2来说都是一组入射光束,并由光栅G2又衍射成n级衍射光(因为两光栅的W相同,又是单色光),所以从光栅副出射的衍射光束的数目为个。
莫尔条纹术角度上讲,莫尔条纹是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象就是莫尔条纹。
莫尔条纹能从三个方面产生:1. 双色或多色网点之间的干涉;2. 各色网点与丝网网丝之间的干涉;3. 作为附加的因素,由于承印物体本身的特性而发生的干涉。
使用莫尔条纹防护系统的目的就在于根据你选定的丝网目数、加网线数、印刷色数和加网角度来预测莫尔条纹。
莫尔条纹的形成原理:莫尔条纹的形成原理可有不同解释: 一种基于遮光阴影原理, 认为可以按照重叠线条的交点轨迹来描述新的亮度分布规律, 据此,应用儿何方法获得了代表莫尔条纹节距和方向的表达式, 或应用指数方法获得表征莫尔花样的条纹方程, 另一种基于衍射干涉原理, 认为新的强度分布可按衍射波之间的干涉结果来描述, 据此, 应用复指数函数方法, 获得各衍射级次的强度分布公式, 还有一种基于信息理论, 认为光栅后面的合成光场强度可以归结为各种空间频率分量, 而莫尔条纹则由低于原始频率(即光栅频率) 的低空间频率分量所组成。
莫尔条纹的特点:莫尔条纹具有如下特点:变化规律,两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。
由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步;放大作用,在两光栅栅线夹角较小的情况下,莫尔条纹宽度W和光栅栅距ω、栅线角θ之间有下列关系(θ的单位为rad,W的单位为mm),由于倾角很小,sinθ很小,则W=ω /θ,若ω=0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍;均化误差作用,由若干光栅条纹共用形成莫尔条纹,例如每毫米100线的光栅,10mm宽度的莫尔条纹就有1000条线纹,这样栅距之间的相邻误差就被平均化了消除了由于栅距不均匀、断裂等造成的误差。
莫尔条纹的应用:莫尔条纹的应用:起初,莫尔现象只是应用于装饰方面。
干涉莫尔条纹原理一.实验原理莫尔条纹概述莫尔条纹是18世纪法国研究人员莫尔先生首先发现的一种光学现象。
从技术角度上讲,莫尔条纹是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能看到干涉的花纹,这种光学现象就是莫尔条纹。
用数学计算来预测和分析莫尔条纹是可能的,而且计算结果也只是理论上的莫尔条纹,实际对丝网印刷造成影响的莫尔条纹则是对印刷结果有危害的可视莫尔条纹,莫尔条纹防护系统给丝印工作者提供了一个简便的视觉控制工具,使用这个工具会在复制工艺的任何步骤上避免莫尔条纹的产生。
如果把两块光栅距相等的光栅平行安装,并且使光栅刻痕相对保持一个较小的夹角θ时,透过光栅组可以看到一组明暗相间的条纹,即为莫尔条纹。
莫尔条纹的宽度B为:B=P/sinθ其中P为光栅距。
光栅刻痕重合部分形成条纹暗带,非重合部分光线透过则形成条纹亮带。
光栅莫尔条纹的两个主要特征是(1)判向作用:当指示光栅相对于固定不动的主光栅左右移动时,莫尔条纹将沿着近于栅线的方向上下移动,由此可以确定光栅移动的方向。
(2)位移放大作用:当指示光栅沿着与光栅刻线垂直方向移动一个光栅距D时,莫尔条纹移动一个条纹间距B,当两个等距光栅之间的夹角θ较小时,指示光栅移动一个光栅距D,莫尔条纹就移动KD的距离。
K=B/D≈1/θ。
B=D/2sinθ/2≈d/θ,这样就可以把肉眼看不见的栅距位移变成清晰可见的条纹位移,实现高灵敏的位移测量。
二.实验仪器光栅组、移动平台三.实验步骤1、安装好主光栅与指示光栅,使两光栅保持平行,光栅间间隙要尽量小,微调主光栅角度,使莫尔条纹清晰可见。
2、旋动移动平台螺旋测微仪,向前或向后,观察莫尔条纹上下移动与指示光栅位移方向的关系。
3、人工微位移测量:当指示光栅位移一个光栅距时,莫尔条纹就移动一个条纹距。
调节位移平台,仔细记数条纹移动数目,根据实验二十测得的光栅距,与位移条纹数相乘,此即为指示光栅的位移距离,实验时可与螺旋测微仪的转动刻度相对照。