伴侣矩阵的多项式与多项式的整除性
- 格式:pdf
- 大小:303.59 KB
- 文档页数:7
§8矩阵多项式与多项式矩阵设A 是n 阶阵,则为矩阵A 的特征多项式事实上,n n n n a a a A E f ++++=-=--λλλλλ111)( 因此有一、Hamilton -Cayley Th (哈密顿—开莱)Th 2.每个n 阶矩阵A ,都是其特征多项式的根,即0111=++++--E a A a A a A n n n n (矩阵)注:该定理旨在用于:当一个n 阶矩阵的多项式次数高于n 次时,则可用该定理将它化为次数小于n 的多项式来计算。
eg 1.设⎪⎪⎪⎭⎫⎝⎛-=010110201A 试计算EA A A A A 432)(2458-++-=ϕ解:A 的特征多项式为12)(23+-=-=λλλλA E f取多项式432)(2458-++-=λλλλλϕ)()()149542(235λλλλλλr f +⋅-+-+= 余项103724)(2+-=λλλr由上定理0)(=A f ⎪⎪⎪⎭⎫⎝⎛----=+-==∴346106195026483103724)()(2E A A A r A ϕDf 2.一般地,设)(λϕ是多项式,A 为方阵,若0)(=A ϕ,则称)(λϕ是矩阵A 的零化多项式。
根据定义:每个矩阵都有其零化多项式,即AE f -=λλ)(Df 3.设A 是n 阶矩阵,则的首项系数为1的次数最小的零化多项式)(λm ,称为A 的最小多项式。
显然:①矩阵A 的零化多项式都被其最小多项式整除。
②矩阵A 的最小多项式是唯一的Th 3.矩阵A 的最小多项式的根必是A 的特征根;反之,A 的特征根也必是A 的最小多项式的根——特征多项式与最小多项式之间的关系。
由此可得,求最小多项式的一个方法:设nn CA ⨯∈,其所有不同的特征值为s λλλ,,,21 ,则其特征多项式为kss k k A E f )()()()(2121λλλλλλλλ---=-=则A 的最小多项式必具有如下形式:ns s n n m )()()()(2121λλλλλλλ---=其中si k n ii ,,2,1 =≤eg 2.求⎪⎪⎪⎭⎫⎝⎛----=031251233A 的最小多项式)(λm解:)4()2()(2--=-=λλλλA E fA ∴的最小多项式,只能是:)4)(2()(--=λλλm ,或2)2()(-=λλm ,)2()(-=λλm ,)4()(-=λλm 及)()(λλf m =经计算可知:)4)(2()(--=λλλm 是A 的最小多项式,由此可得:Th 4.若A 的特征多项式没有公因子,则特征多项式为最小多项式。
不可约多项式之间的关系
两个不可约多项式之间的关系可以通过以下几个方面来描述:
1. 互素关系:如果两个不可约多项式没有公共的因式,即它们的最大公因式为常数,则称它们互素。
互素的多项式之间没有任何关系。
2. 除尽关系:如果一个不可约多项式能够整除另一个不可约多项式,即它们的商式是一个整数多项式,则称它们存在除尽关系。
除尽关系意味着一个多项式可以被另一个多项式整除。
例如,多项式x+1可以整除多项式x^2 +1。
3. 相伴关系:如果一个不可约多项式是另一个不可约多项式的常数倍,则称它们存在相伴关系。
相伴关系意味着两个多项式具有相似的性质,但并不相等。
总的来说,不可约多项式之间的关系是多种多样的,可以通过不同的因式关系来描述它们之间的联系。
多项式矩阵多项式矩阵(polynomialmatrix)是指将多项式作为元素,构成矩阵的矩阵。
它是数学上的一种重要结构,可以用于复杂方面的多项式计算。
多项式矩阵的研究属于矩阵论(matrix theory)的范畴,主要涉及求解系统矩阵方程,求解极大值问题,求解微分方程等等。
定义:设有一个n阶矩阵A,它的元素均由单项式组成,则称A为多项式矩阵。
特别地,若A的元素均为实数项式,则称A为实数多项式矩阵;若A的元素均为复数项式,则称A为复数多项式矩阵。
多项式矩阵的基本性质包括:1、交换律:多项式矩阵间的加法满足交换律,即A+B=B+A,其中A,B为任意两个多项式矩阵。
2、结合律:多项式矩阵间的加法满足结合律,即(A+B)+C=A+(B+C),其中A,B,C为任意三个多项式矩阵。
3、元素恒等律:多项式矩阵的加法满足元素恒等律,即若A+B=C,则A的第i行第j列元素与C的第i行第j列元素均相等,其中A,B,C为任意三个多项式矩阵。
4、可加性:若A+B=C,则A的所有元素可以借助B的元素得到C 的所有元素,其中A,B,C为任意三个多项式矩阵。
5、可积性:若A与B的任意一个元素相乘,其积仍然是多项式,则称A与B为可积多项式矩阵。
多项式矩阵的应用1、求解系统矩阵方程:利用多项式矩阵的可加性和可积性,可以用于求解系统矩阵方程,即(A+B)X=C,其中A,B,C为多项式矩阵。
2、求解极大值问题:多项式矩阵可以用来表示多项式极大值问题,即求解如何使多项式函数达到最大值,从而解决求极值问题。
3、求解微分方程:多项式矩阵可以用来表示多项式微分方程,通过解决多项式微分方程,可以求出曲线的极值,解决求根问题等。
4、应用于数字信号处理:多项式矩阵可以用于处理复杂的数字信号,如滤波、数字信号检测、声音分析、图像处理等。
多项式矩阵的研究多项式矩阵的研究是矩阵论的重要主题,它涉及的主要研究领域包括:1、多项式线性方程组的求解:多项式矩阵可以用来求解多项式线性方程组,即求解系数矩阵A及常数矩阵B满足AX=B的多项式矩阵X。
多项式矩阵多项式矩阵(polynomial matrix)是由多项式组成的矩阵。
它在数学和工程领域有着广泛的应用,尤其在控制论、信号处理和图像处理等领域中扮演着重要角色。
本文将介绍多项式矩阵的定义、基本性质和一些应用。
首先,我们来定义多项式矩阵。
一个m行n列的多项式矩阵可以写为:[P] = [P11, P12, ..., P1n;P21, P22, ..., P2n;...Pm1, Pm2, ..., Pmn]其中Pij是一个多项式,表示矩阵的第i行第j列的元素。
多项式可以是任意阶数的,可以包含常数项、线性项、二次项等。
这个定义与一般的实数矩阵相似,只是矩阵中的元素是多项式而不是实数。
接下来,我们将讨论多项式矩阵的一些基本性质。
首先,多项式矩阵的加法和减法与实数矩阵的加法和减法类似,只需对应位置上的多项式进行相加或相减。
例如,矩阵[P] + [Q]的第i行第j列的元素为Pij + Qij。
同样,矩阵[P] - [Q]的第i行第j列的元素为Pij - Qij。
多项式矩阵的乘法也有所不同。
在实数矩阵中,矩阵的乘法是通过将一行的元素与另一列的元素逐个相乘,然后求和得到的。
而在多项式矩阵中,我们需要使用多项式的乘法规则。
具体地说,矩阵[P]和[Q]的乘积[PQ]的第i行第j列的元素为多项式Pi1 * Q1j + Pi2 * Q2j + ... + Pin * Qnj。
注意,Pi1和Q1j是对应位置上的多项式,它们相乘后得到一个新的多项式。
多项式矩阵还有一个重要的性质是可逆性。
一个多项式矩阵[P]是可逆的,如果存在一个多项式矩阵[Q],使得[PQ] = [QP] = [I],其中[I]是单位矩阵。
这个性质类似于实数矩阵的可逆性。
当一个多项式矩阵可逆时,我们可以使用矩阵的逆矩阵来解线性方程组,计算行列式等。
多项式矩阵在控制论中有着广泛的应用。
在控制系统中,我们通常需要设计一个控制器来调节系统的行为。
多项式矩阵可以用来表示系统的状态空间方程和传输函数。