小学六年级数学概念定义总复习
- 格式:doc
- 大小:53.00 KB
- 文档页数:4
小学六年级数学总复习知识点归纳小学六年级数学总复习知识点归纳在日常的学习中,大家最熟悉的就是知识点吧?知识点在教育实践中,是指对某一个知识的泛称。
那么,都有哪些知识点呢?以下是店铺整理的小学六年级数学总复习知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。
小学六年级数学总复习知识点归纳篇1一、与圆有关的概念1、圆是由一条曲线围成的平面图形。
而长方形、梯形等都是由几条线段围成的平面图形把圆对折,再对折(对折2次)就能找到圆心。
因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
半圆只有1条对称轴。
常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。
2、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。
3、圆内最长的线段是直径,圆规两脚之间的距离是半径。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。
(d=2r, r =d÷2)5、圆心决定圆的位置,半径决定圆的大小。
6、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π表示。
π是一个无限不循环小数。
π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。
π>3.147、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
8、几个直径和为n的圆的周长=直径为n的圆的周长几个直径和为n的圆的面积<直径为n的圆的周长(如图)略9.大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n×n倍)10、常用的3.14的倍数:3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 03.14×6=18.84 3.14×7=21.983.14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.503.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.3411、常用的平方数:11?=121 12?=144 13?=169 14?=196 15?=225 16?=256 17?=28918?=324 19?=361 20?=400二、圆的周长公式1、已知圆的半径(r),求圆的周长(c):C=2πr2、已知圆的直径(d),求圆的周长(c)C=πd3、已知圆的周长,求圆的半径:r=C÷π÷24、已知圆的周长,求圆的直径:d=C÷π5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr 或者半圆的弧长=πd÷26、求半圆的周长,半圆的周长等于圆周长的一半加一条直径:C半圆= πr+2rC半圆= πd÷2+d7、车轮滚动一周前进的路程就是车轮的周长。
六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。
六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
小学六年级数学总复习知识点归纳1. 分数乘除法。
分数乘、除法属于分数的基本学问和技能,而且两者关系亲密,教材将这两部分内容集中支配。
教材首先通过一组题目,强调分数乘除法的关系,即分数除法是分数乘法的逆运算。
同时对分数乘除法的计算方法进行了复习。
比的相关概念、倒数的概念和计算、比的性质、比与分数及除法的关系等也是复习的重点,教材通过总复习的第2题和练习二十七的第3、4、5题进行了复习。
此外,用分数乘除法解决问题也是这部分的重点内容,主要包括求一个数的几分之几是多少的问题(含稍简单的)、已知一个数的几分之几是多少求这个数的问题(含稍简单的)等。
教材把它们对比编排,便于同学弄清这几类问题的联系和区分,从而更好地把握解决问题的思路,即先明确单位"1',再看单位"1'是已知还是未知来确定解决问题的方法。
为了让同学更好地把握分析方法,总复习的第5题和练习二十七的第7题还支配了需要两次推断单位"1'的练习。
2. 百分数。
百分数内容的复习重点放在百分数的应用,紧接在用分数乘除法解决问题后编排,这样可以使同学看到它们在结构、解题思路上的全都性,便于加强学问间的联系。
百分数的概念没有单独复习,但它是百分数应用的基础,因此要留意进行复习。
总复习的第6题是求常见的百分率的问题,通过给出计算公式,既复习百分数的意义、百分数与分数及小数的互化,又可复习求烘干率等类似问题。
第7题为稍简单的百分数的应用问题。
练习二十七的第13、14、15题支配的是有关百分数的习题,其中第15题涉及国债、纳税、利率等内容的复习。
3. 空间与图形。
这部分内容包括位置与圆的复习。
在第一学段中,同学已经会用第几组、第几个来表示物体的位置,本学期进一步学习用数对表示物体的位置。
教材通过总复习的第8题复习用数对表示物体的位置,练习二十七的第1题支配了相应的练习。
本学期圆的熟悉包括直径、半径、、轴对称图形等概念以及圆的周长和面积、圆的画法等内容,教材重点复习了圆的周长、面积计算公式和轴对称图形。
小学六年级数学总复习知识点归纳一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、利润与折扣问题利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)三、常用单位换算1、长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米2、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分3、时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
小学六年级数学知识点归纳整理笔记六年级数学知识点归纳一、算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a × b + c6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O 的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数二、方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
代数:代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。
如:3x =ab+c三、分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的.分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
小学数学总复习知识整理(全)第一章数和数的运算一概念(一)整数1 整数的意义自然数都是整数。
整数包括正整数、0和负整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
如:个位、十位、百位、千位、万位……5数的整除(1)整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
(2)如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(3)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
小学六年级数学总复习知识点归纳第一章数和数的运算一概念(一)整数1 、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:倍数和因数是相互依存的。
因为35能被7整除,所以35是7 的倍数,7是35的约数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
2的倍数:个位上是0、2、4、6、8的数,都是2的倍数,5的倍数:个位上是0或5的数,都是5的倍数。
3的倍数:一个数的各位上的数的和是3的倍数,这个数就是3的倍数。
9的倍数:一个数各位数上的和是9的倍数,这个数就是9的倍数。
是3的倍数的数不一定是9的倍数,是9的倍数的数一定是3的倍数。
6、是2的倍数的数叫做偶数。
不是2的倍数的数叫做奇数。
0也是偶数。
自然数按是不是2的倍数的特征可分为奇数和偶数。
7、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数也不是合数,自然数除了0、1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和0、1。
8、公因数只有1的两个数,叫做互质数。
成互质关系的两个数,有下列几种情况:(1)1和任何自然数互质。
(2)相邻的两个自然数互质。
(3)两个不同的质数互质。
小学六年级数学概念定义总复习一、整数的分类和整除的有关概念、结论。
1.整数分为正整数、0和负整数。
2.用来表示物体个数的0、1、2、3、4、5……都是自然数,一个物体也没有,就用0表示,0是最小的自然数;自然数包括正整数和0。
3.如果整数a除以整数b(b≠0),商是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。
如果a能被b整除,那么a叫做b的倍数,b叫做a的因数。
4.一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
5.一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
6.一个数最大的因数和最小的倍数相等,都是它本身。
7.最小的自然数是0,没有最大的自然数。
8.自然数按能不能被2整除分为偶数和奇数两类。
能被2整除的数是偶数, 最小的偶数是0;不能被2整除的数是奇数,最小的奇数是1。
9.按因数的个数可以把自然数分为质数、合数和1三类。
只有因数1和它本身两个因数的数叫做素数或质数。
除了1和它本身之外还有别的因数的数叫合数。
10.质数只有两个因数,合数至少有三个因数;1既不是质数,也不是合数。
11.最小的质数是2,最小的合数是4,既是偶数又是质数的数只有2。
12.能被2整除的数的特征是:个位上是2、4、6、8、0的数,都能被2整除。
13.能被5整除的数的特征是:个位上是0或5的数,都能被5整除。
14.能被3整除的特征是:一个数,如果每一位上的数字相加的和能被3整除,这个数就能被3整除。
15.能同时被2和3整除的数,一定是6的倍数;能同时被2和5整除的数,个位一定是0(也就是10的倍数);能同时被3和5整除的数,一定是15的倍数;能同时被2、3、5整除的数,一定是30的倍数;能同时被2、3、5整除的最小三位数是120,最大三位数是990。
16.20以内既是奇数又是合数的数只有9和15。
17.50以内的质数有:2、3、5、7;11、13、17、19;23、29;31、37;41、43、47,共15个。
18.把一个合数写成几个质数相乘的形式,叫做分解质因数;这几个质数叫做这个合数的质因数。
(只有合数才能分解质因数)。
19.分解质因数的方法:先用质数依次去除,除到商是质数为止,再把所有的除数和最后的商连乘起来。
20.公因数只有1的两个数叫做互质数。
互质的两个数不一定是质数。
21.互质数的6种特例:(1)相邻两个自然数一定是互质数;例如:15和16 58和59……(2)相邻两个奇数一定是互质数;例如:15和17 61和63 ……(3)1和任意一个自然数一定是互质数;例如:1和26 1和100 ……(4)2 和任意一个奇数一定是互质数;例如:2和25 2和39 ……(5)两个不同的质数一定是互质数;例如:7和13 23和31 ……(6)一质一合,不成倍数就一定是互质数。
例如:5和33 11和28 ……22.最大公因数和最小公倍数的两种特例:(1)两个数是互质关系时,它们的最大公因数是1,最小公倍数是它们的乘积;(2)两个数是倍数关系时,它们的最大公因数是较小数,最小公倍数是较大数。
二、多位数。
(在遇到多位数时,应先分级再做题)1.多位数的读数法则:(1)从高位到低位,一级一级地往下读;(2)每级末尾不管有几个0,都不读;(3)其它数位有一个0或连续的几个0,都只读一个零。
2.多位数的写数法则:(1)从高位到低位,一级一级地往下写;(2)哪一位上一个单位都没有,就在那一位上写0。
3.把一个多位数改写成用“万”或“亿”作单位的数的方法是:在“万”位或“亿”位的右下角打上小数点,同时在后面加上一个“万”字或“亿”字,用等号连接,。
4.把一个多位数省略“万”或“亿”位后面的尾数,求近似数的方法是:找到“万”位或“亿”位,看“千位”或“千万位”上的数是否满5,满了5就向前一位进一,没满5就舍去,同时在后面加上一个“万”字或“亿”字,用约等号连接。
三、简便计算的依据1.加数或减数接近整数(或整十、整百、整千数……)的简便计算:(1)多加就减;(2)多减就加;(4)少减就再减。
2.去括号(或添号)法则。
(用于同级运算中)(1)在加、减法中:括号前面是加号,去掉括号不变号。
括号前面是减号,去掉括号要变号,是加变成减,是减变成加。
(2)在乘、除法中:括号前面是乘号,去掉括号不变号;括号前面是除号,去掉括号要变号,是乘变成除,是除变成乘。
3.五大运算律。
(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:a b=ba(4)乘法结合律:(ab)×c=a×(bc)(5)乘法分配律:(a+b)×c=ac+bc 或(a-b)×c=ac-bc乘法分配律的逆运用:a c+bc=(a+b)×c或ac-bc=(a-b)×c四、方程1.含有未知数的等式叫做方程;使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫做解方程。
2.解方程的依据:(1)四则运算的基本关系式:一个加数=和-另一个加数被减数=减数+差减数=被减数-差一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商(2)等式的性质:等式的两边同时加上或减去、同时乘或除以一个相同的数(0不作除数)所得的结果仍然是等式。
(3)移项。
(从等号的左边移到右边或右边移到左边)移加作减,移减作加,移乘作除,移除作乘。
(4)比例的基本性质。
(解比例的依据)在比例中,两内项的积等于两外项的积。
五、一般应用题常用数量关系1.单价×数量=总价总价÷数量=单价总价÷单价=数量2.速度×时间=路程路程÷时间=速度路程÷速度=时间在相遇问题中:速度和×共行时间=共行路程共行路程÷共行时间=速度和共行路程÷速度和=共行时间3.工效×工作时间=工作总量工作总量÷工作时间=工效工作总量÷工效=工作时间4.单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量5.一倍数×倍数=几倍数几倍数÷倍数=一倍数几倍数÷一倍数=倍数6.较小数+相差数=较大数较大数-相差数=较小数较大数-较小数=相差数7.在和差问题中:较大数=(和+差)÷2 较小数=(和-差)÷28.每份数×份数=总数量总数量÷份数=每份数总数量÷每份数=份数9.图上距离÷实际距离=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺★注意:在计算时,通常把比例尺写成分数形式。
10.利息=本金×利率×时间本金=利息÷时间÷利率11.应纳税额=营业额×税率营业额=应纳税额÷税率税率=应纳税额÷营业额六、分数应用题常用的数量关系1.求比较量:单位“1”的量×比较量对应的分率=比较量单位“1”的量×多的分率=多的数量单位“1”的量×少的分率=少的数量……总之,单位“1”的量乘什么量对应的分率就等于什么量。
2.求单位“1”的量:比较量÷比较量对应的分率=单位“1”的量多的数量÷多的分率=单位“1”的量少的数量÷少的分率=单位“1”的量……3.求分率:比较量÷单位“1”的量=比较量以应的分率少的数量÷单位“1”的量=少的分率多的数量÷单位“1”的量=多的分率……注意:甲数比乙数多的分率≠乙数比甲数少的分率。
(因为单位“1”不同。
)4.工程问题:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率合作总量=合作工效×合作时间合作时间=合作总量÷合作工效合作工效=合作总量÷合作时间七、规律和性质(0除外)1.乘法中的一些规律:(1)一个因数不变,另一个因数扩大或缩小若干倍,积也随着扩大或缩小相同的倍数。
(2)一个因数扩大若干倍,另一个因数缩小相同的倍数,积不变。
(一扩一缩,倍数相同,积不变。
)(3)一个非零的数乘小于1的数,积就小于这个数;乘大于1的数,积就大于这个数。
2.除法中的一些规律:(1)除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。
(2)被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数。
(3)被除数和除数同时扩大或缩小相同的倍数,商不变,这叫做商不变规律。
(4)当被除数不为零时,除数大于1,商反而小于被除数;除数小于1,商反而大于被除数。
3.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变,这叫做小数的性质。
★近似数末尾的0不能去掉。
4.分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数,分数值不变,这叫做分数的基本性质。
5.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
6.比例的基本性质:在比例中,两内项的积等于两外项的积,这叫做比例的基本性质。
八、分数、小数、百分数之间的互化1.分数化小数的方法是:分子除以分母。
2.小数化分数的方法是:先把小数改写成分母是10、100、1000、……的分数,再约分成最简分数。
3.小数化百分数的方法是:把小数点向右移动两位,同时在后面添上百分号。
4.百分数化小数的方法是:去掉百分号,同时把小数点向左移动两位。
5.分数化百分数的方法是:先把分数化成小数(除不尽的通常保留三位小数),再把小数化成百分数。
★当分数的分母是100的因数或倍数时,也可以利用分数的基本性质把分数化百分数。
6.百分数化分数的方法是:先把百分数改写成分母是100的分数,再约分成最简分数。
★熟记常用的分数、小数、百分数的互化:1/2=0.5=50% 1/4=0.25=25% 1/8=0.75=75% 1/5=0.2=20% 2/5=0.4=40% 3/5=0.6=60%4/5=0.8=80% 1/8=0.125=12.5% 3/8=0.375=37.5% 5/8=0.625=62.5% 7/8=0.875=87.5% 1/25=0.04=4%九、正比例和反比例1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比例(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.反比例的意义:两种相关联的量,一种量变化,另一个量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。