当前位置:文档之家› 母差保护的工作基础学习知识原理,保护范围

母差保护的工作基础学习知识原理,保护范围

母差保护的工作基础学习知识原理,保护范围
母差保护的工作基础学习知识原理,保护范围

母差保护的工作原理、保护范围

母线保护装置是正确迅速切除母线故障

的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行

的一些切换、投退操作则往往认识模糊.

1 母线差动保护范围是否是确定的,保护对象是否是不变的

通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器, 按差接法接线,正常运行以及保护范围以外故障

时,差电流等于零,保护范围内故障时差电

流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计

算整定.

但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操

作肯定就认识模糊、甚至趋于盲目了.

2 母线倒闸操作时是否须将母线差动保护

退出

“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线

倒闸操作时发生过母线差动保护误动,但其

根本原因是对母线差动保护缺乏正确认识.

母线倒闸操作如严格按照规定进行,即并、

解列时的等电位操作,尽量减少操作隔离开

关时的电位差,严禁母线电压互感器二次侧

反充电,充分考虑母线差动保护非选择性开

关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护

的工作原理如不遭到破坏,一般应投入运行. 根据历年统计资料看,因误操作引起母线短

路事故,几率还很高.尽管近几年为防止误

操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规

使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线

差动保护投入有着极其重要的现实意义.投

入母线差动保护倒母线, 可以在万一发生

误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故.

事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线.

3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

实际工作中一些运行人员片面地认为,母线倒闸操作会使母线差动保护失去选择性,故在操作完成后,合入母线差动保护的非选择性开关.产生这一认识误区的根源在于他们不明白母线差动保护装置中设置这一非选择性开关的目的.

母线保护有多种类型,不同类型的母线保护其实现保护的工作原理是不一样的.

某些类型的母线保护由于其工作原理本身存在缺陷, 在进行母线倒闸操作时会使装置失去对故障母线的选择性.因此,问题的关键是运行人员要弄清楚:哪种类型的母线保护在母线倒闸操作时会失去对故障母线的选择性以及怎样在适当的时候将装置的非选择性开关合入, 在什么时候又该将装置的非选择性开关拉开,抑或是否应使该开关保持合入状态.

这里仅就固定连接的母线差动保护和母联电流相位比较原理差动保护以及电流相位比较式母线保护作一简单说明.

(1) 固定连接的母线差动保护.

这种母线差动保护要求母线上的电源元件,必须按照事先规定好的固定连接方式运行,母线故障时,母线差动保护的动作才有选择性.当母线保护采用此种类型时,进行电源元件的倒换,将使保护失去选择性.因此,倒换前合入母线差动保护非选择性开

关,倒完后也不拉开.对负荷元件,则在倒换

前合入非选择性开关,倒换后拉开非选择性

开关,同时负荷元件的跳闸压板也作相应的

切换.

(2) 母联电流相位比较原理的母线差

动保护.

这种保护无固定连接的要求.只要母差

保护的跳闸压板位置与元件母线隔离开关

所接母线位置相对应就可以了.因此,倒换

操作前将非选择性开关合入,倒换后再拉开,并对母线差动保护跳闸压板及重合闸放电

压板,切换到倒换后所对应的母线位置就可

以了.这种保护存在的缺点是2组母线分列

运行时,母线将失去选择故障母线组的能力.

(3) 电流相位比较式母线差动保护.

这种保护只反应电流间的相位,具有较

高的灵敏度.倒闸过程中,需合入非选择性

开关,倒闸后将被操作元件的跳闸压板及重

电力系统继电保护基本知识

电力系统继电保护 董双桥 2005年9月

第一部分电力系统继电保护的基本知识 电力系统:由发电电厂中的电气部分,变电站,输配电线路,用电设备等组成的统一体:它包括发电机、变压器、线路、用电设备以及相应的通信,安全自动装置,继电保护,调调自动化设备等。 电力系统运行有如下特点: 1、电能的生产,输送和使用必须同时进行。 2、与生产及人们的生活密切相关。 3、暂态进程非常短,一个正常运行的系统可能在几分钟,甚致几秒钟内瓦解。 电力系统继电保护的作用。 电力系统在运行中,可能由于以下原因,发生故障或不正常工作状态。 1、外部原因:雷击,大风,地震造成的倒杆,绝缘子污秽造成污闪,线路覆冰造成冰闪。 2、内部原因:设备绝缘损坏,老化。 3、系统中运行人员误操作。 电力系统故障的类型: 1、单相接地故障D(1) 2、两相接地故障D(1.1) 3、两相短路故障D(2) 4、三相短路故障D(3) 5 线路断线故障 以上故障单独发生为简单故障。在不同地点同时发生两个或以上称为复故障。 电力系统短路故障的后果: 1、短路电流在短路点引起电弧烧坏电气设备。 2、造成部分地区电压下降。 3、使系统电气设备,通过短路电流造成热效应和电动力。 4、电力系统稳定性被破坏,可能引起振荡,甚至鲜列。 不正常工作状态有:电力系统中电气设备的正常工作遭到破坏,但未发展成故障。 不正常工作状态有: 1)电力设备过负荷,如:发电机,变压器线路过负荷。 2)电力系统过电压。 3)电力系统振荡。

4)电力系统低频,低压。 电力系统事故:电力系统中,故障和不正常工作状态均可能引起系统事故,即系统全部或部分设备正常运行遭到破坏,对用户非计划停电、少送电、电能质量达不到标准(频率,电压,波形)、设备损坏等。 继电保护的作用,就检测电力系统中各电气设备的故障和不正常工作状态的信息,并作相应处理。 继电保护的基本任务: 1)将故障设备从运行系统中切除,保证系统中非故障设备正常运行。 2)发生告警信号通知运行值班人员,系统不正常工作状态已发生或自动调整使系统恢复正常工作状态。 电力系统对继电保护的基本要求(四性) 1)选择性:电力系统故障时,使停电范围最小的切除故障的方式 2)快速性:电力系统故障对设备、人身、系统稳定的影响与故障的持续时间密切相关,故障持续时间越长,设备损坏越严重;对系统影响也越大。因此,要求继电保护快速的切除故障。 电力系统对继电保护快速性的要求与电网的电压等级有关。 35kV及以下保护动作时间工段60-80ms 110kV 工段40-60ms 220kV 高频保护20-40ms 500kV 20-40ms 快速切除故障,可提高重合闸成功率,提高线路的输送容量。 3)灵敏性:继电保护装置在它的保护范围内发生故障和不正常工作状态的反应能力(各种运行方式,最大运行方式,最小运行方式),故障时通人保护装置的故障量与保护装置的整定值之比,称为保护装置的灵敏度。 4)可靠性: ①保护范围内发生故障时,保护装置可靠动作切除故障,不拒动。 ②保护范围外发生故障和正常运行时,保护可靠闭锁,不误动。 在保护四性中:重要的是可靠性,关键是选择性,灵敏性按规程要求,快速性按系统要求。

母差保护的工作原理、保护范围

母差保护的工作原理、保护围 母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器, 按差接法接线,正常运行以及保护围以外故障时,

差电流等于零,保护围故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出

“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行. 根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线, 可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

母差保护的工作原理、保护范围

母差保护的工作原理、保护范围 母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器, 按差接法接线,正常运行以及保护范围以外故障

时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出

“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行. 根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线, 可以在万一发生误操作造

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

母线差动保护的工作原理和保护范围

母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些

必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出 “在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为:

继电保护知识点总结

电力系统中常见的故障类型和不正常运行状态 故障:短路(最常见也最危险);断线;两者同时发生 不正常:过负荷;功率缺额而引起的频率降低;发电机突然甩负荷而产生的过电压;振荡 继电保护在电力系统发生故障或不正常运行时的基本任务和作用。 迅速切除故障,减小停电时间和停电范围 指示不正常状态,并予以控制 继电保护的基本原理 利用电力系统正常运行与发生故障或不正常运行状态时,各种物理量的差别来判断故障或异常,并通过断路器将故障切除或者发出告警信号 继电保护装置的三个组成部分。 测量部分:给出“是”、“非”、“大于”等逻辑信号判断保护是否启动 逻辑部分:常用逻辑回路有“或”、“与”、“否”、“延时起动”等,确定断路器跳闸或发出信号 执行部分 保护的四性 选择性:保护装置动作时仅将故障元件从电力系统中切除,使停电范围尽量减少速动性:继电保护装置应尽可能快的断开故障元件。 灵敏性:继电保护装置应尽可能快的断开故障元件。故障的切除时间等于保护装置和断路器动作时间之和 可靠性:在保护装置规定的保护范围内发生了它应该反映的故障时,保护装置应可靠地动作(即不拒动,称信赖性)而在不属于该保护装置动作的其他情况下,则不应该动作(即不误动,称安全性)。 主保护、后备保护 保护:被保护元件发生故障故障,快速动作的保护装置 后备保护:在主保护系统失效时,起备用作用的保护装置。 远后备:后备保护与主保护处于不同变电站 近后备:主保护与后备保护在同一个变电站,但不共用同一个一次电路。 继电器的相关概念: 继电器是测量和起动元件 动作电流:使继电器动作的最小电流值 返回电流:使继电器返回原位的最大电流值 返回系数:返回值/动作值 过量继电器:返回系数Kre<1 欠量继电器:返回系数Kre>1 绩电特性:启动和返回都是明确的,不可能停留在某个中间位置 阶梯时限特性: 最大(小)运行方式: 在被保护线路末端发生短路时,系统等值阻抗最小(大),而通过保护装置的电流最大(小)的运行方式 三段式电流保护:由电流速断保护、限时电流速断保护及定时限过电流保护相配合构成的一整套保护 工作原理: 电流速断保护:当所在线路保护范围内发生短路时,反应电流增大而瞬时动作切

母差保护的工作原理

母差保护的工作原理、保护范围 来源:电力网时间:2007-12-19 责任编辑:葛红波母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入,实际工作中一些运行人员片面地认为,母线倒闸操作会使母线差动保护失去选择性,故在操作完成后,合入母线差动保护的非选择性开关.产生这一认识误区的根源在于他们不明白母线差动保护装置中设置这一非选择性开关的目的. 母线保护有多种类型,不同类型的母线保护其实现保护的工作原理

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

差动保护基本原理

差动保护基本原理 1、母线差动保护基本原理 母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。如果母线发生故障,这一平衡就会破坏。有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围 2、什么是差动保护?为什么叫差动?这样有什么优点? 差动保护是变压器的主保护,是按循环电流原理装设的。 主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。 在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。 从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK 为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。 当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即 Ik=I1+I2=Iumb 能使继电器可靠动作。 变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。 3、为什么220KV高压线路保护用电压取母线TV不取线路TV 事实上,两个电压都接入保护装置的,它们的作用各不相同 母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别 线路电压,一般用来重合闸的时候用,作为线路有压无压的判据 现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护 也有采用两套光纤电流,两套高频的比较少了 4、变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

电力系统继电保护的基础知识

电力系统继电保护的基础知识 城市电网配电系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保城市电网配电系统的正常运行,必须正确地设置继电保护装置。 一、继电保护的基本概念 可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。具体到继电保护装置,其可靠性是指在该装置规定的范围内发生了它应该动作的故障时,它不应该拒动作,而在任何其它该保护不应动作的情况下,它不应误动作。 继电保护装置的拒动和误动都会给电力系统造成严重危害。但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。由于电力系统的结构和负荷性质的不同,拒动和误动所造成的危害往往不同。例如当系统中有充足的旋转备用容量,输电线路很多,各系统之间和电源与负荷之间联系很紧密时由于继电保护装置的误动作,使发电机变压器或输电线路切除而给电力系统造成的影响可能很小;但如果发电机变压器或输电线路故障时继电保护装置拒动作,将会造成设备的损坏或系统稳定的破坏,损失是巨大的。在此情况下提高继电保护装置不拒动的可靠性比提高其不误动的可靠性更为重要。但在系统中旋转备用容量很少及各系统之间和负荷和电源之间联系比较薄弱的情况下,继电保护装置的误动作使发电机变压器或输电线切除时,将会引起对负荷供电的中断甚至造成系统稳定的破坏,损失是巨大的。而当某一保护装置拒动时,其后备保护仍可以动作而切除故障,因此在这种情况下提高继电保护装置不误动的可靠性比提高其不拒动的可靠性更为重要。 二、保护装置评价指标 1、继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。这是保护装置的正常状态。②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。 ③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状

差动保护原理

前提是变压器为常见的星星三角接线,点数11. 所谓差流平衡,就是当正常运行或主变区外故障时的状态,装置感受到的变压器两侧电流方向相反,大小相等。这里暂且称装置感受到用来计算差流的量为装置量。 先计算1202的平衡系数。方法如下: 高压侧:PH高=变压器绕组星形接线1/√3 中压侧:PM中=变压器绕组星形接线Mct*Mdy/(Hct*Hdy*√3) 低压侧:PL低=变压器绕组角形接线Lct*Ldy/(Hct*Hdy) 装置量=输入值*平衡系数 例:CT变比H:1200/5 M:1200/5 L:2000/5 PT变比H:230/100 M:115/100 L:37.5/100 变压器星星角接线,CT二次星星星接线 可计算得Ph高,Ph中和Ph低值 当做高低压侧差流平衡时,加量方法如下:任取一个装置制动量X A(装置量), 则测试仪加入X/PH高 0度(加在高压侧A相) X/ PH低 180度(加在低压侧A相) (补偿电流) X/PH低 0度(加在低压侧C相) 楼主给的是3A,取X为3代入,就可以得到测试仪加入的量了。这样加一定是装置无差流的。 至于为什么要加补偿电流,是因为从前的主变保护如果两侧为星型和三角型,则CT二次侧星型接为三角,三角接为星型,以补偿相位达到差流的平衡。但是现在的微机保护装置,统一二次侧全接为星型,因此需要软件中进行相位补偿。1202相位校正采取方法是星变三角,即将高压侧二次电流进行以下公式变换,也就是楼主所提供的公式。 IAH=(Iah-Ibh)/根3 IBH=(Ibh-Ich)/根3 ICH=(Ich-Iah)/根3 其实就是将来自高压侧的电流互相相减再除以根3 根据上式,如果做高低压侧差流平衡,本来在高压侧A相和低压侧A相通入相同幅值,相位相反的装置量,就应该差流平衡的。但是因为高压侧进行了以上的相位变换,所以当高压侧A相通入电流时,高压侧C相也产生了反相的同幅值电流,所以C相产生了差流。这样没有办法差流平衡。所以要进行补偿,同时在高压侧C相或者低压侧C相也加入一个同相同幅值的装置量来抵消。这就是C相补偿电流的来源。注意上面所

什么是差动保护

差动保护 [1]电流差动保护是中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是 A 超前C,C超前B各是120度。有功方向变反只是和电流的之间的角加上180度,就是反相功率,而不是逆相序。 差动保护是根据“电路中流入电流的总和等于零”原理制成的。 差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧跳开,使故障设备断开电源。 差动保护原理 差动保护 差动保护是利用电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动不动作。当时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于,差动继电器动作。 差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、差动保护等等。 变压器差动保护是防止变压器内部故障的主保护。其接线方式,按原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略,在两个互感器的二次回路臂上没有差电流流入继电器,即:iJ=ibp=iI-iII=0。 如果内部故障,如图ZD点短路,流入继电器的电流等于短路点的总电流。即:iJ=ibp=iI2+iII2。当流入继电器的电流大于,保护动作断路器跳闸。 技术参数 1.环境条件 正常温度: -10℃~55℃ 极限温度: -30℃~70℃ 存储温度: -40℃~85℃ 相对湿度:≤95%,不凝露 大气压力: 80~110kPa 2.工作电源 电压范围: 85~265V(AC或DC) 正常功耗:<10W 最大功耗:<20W 电源跌落:200ms 上电冲击:4A 隔离耐压:3kV

继电保护基础知识

41 、什么是继电保护装置? 答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障或危及其安全运行的事件时,需要向运行值班人员及时发出警告信号,或者直接向所控制的开关发出跳闸命令,以终止这些事件发展的一种自动化措施和设备。实现这种自动化措施的成套设备,一般通称为继电保护装置。 42 、继电保护在电力系统中的任务是什么? 答:继电保护的基本任务主要分为两部分: 1、当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给距离故障元件最近的开关发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。 2、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行而会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置容许带一定的延时动作。 43、简述继电保护的基本原理和构成方式? 答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置将包括测量部分(和定值调整部分)、逻辑部分、执行部分。 44、如何保证继电保护的可靠性? 答:可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同开关的继电保护装置进行保护。当任一套继电保护装置或任一组开关拒绝动作时,能由另一套继电保护装置操作另一组开关切除故障。在所有情况下,要求这两套继电保护装置和开关所取的直流电源均经由不同的熔断器供电。 45 、为保证电网继电保护的选择性,上、下级电网继电保护之间配合应满足什么要求? 答:上、下级电网(包括同级和上一级及下一级电网)继电保护之间的整定,应遵循逐级配合的原则,满足选择性的要求,即当下一级线路或元件故障时,故障线路或元件的继电保护整定值必须在灵敏度和动作时间上均与上一级线路或元件的 继电保护整定值相互配合,以保证电网发生故障时有选择性地切除故障。 46 、在哪些情况下允许适当牺牲继电保护部分选择性? 答:1、接入供电变压器的终端线路,无论是一台或多台变压器并列运行(包括多处T接供电变压器或供电线路),都允许线路侧的速动段保护按躲开变压器其他侧母线故障整定。需要时,线路速动段保护可经一短时限动作。 2、对串联供电线路,如果按逐级配合的原则将过份延长电源侧保护的动作时间,则可将容量较小的某些中间变电所按T接变电所或不配合点处理,以减少配合的级数,缩短动作时间。 3、双回线内部保护的配合,可按双回线主保护(例如横联差动保护)动作,或双回线中一回线故障时两侧零序电流(或相电流速断)保护纵续动作的条件考虑;确有困难时,允许双回线中一回线故障时,两回线的延时保护段间有不配合的情况。 4、在构成环网运行的线路中,允许设置预定的一个解列点或一回解列线路。 47、为保证灵敏度,接地保护最末一段定值应如何整定? 答:接地保护最末一段(例如零序电流保护Ⅳ段),应以适应下述短路点接地电阻值的接地故障为整定条件:220kV线 路,100Ω;330kV线路,150Ω;500kV线路,300Ω。对应于上述条件,零序电流保护最末一段的动作电流整定值应不大于300A。当线路末端发生高电阻接地故障时,允许由两侧线路继电保护装置纵续动作切除故障。对于110kV线路,考虑到在可能的高电阻接地故障情况下的动作灵敏度要求,其最末一段零序电流保护的电流整定值一般也不应大于300A,此时,允许线路两侧零序电流保护纵续动作切除故障。 48 、简述220千伏线路保护的配置原则是什么? 答:对于220千伏线路,根据稳定要求或后备保护整定配合有困难时,应装设两套全线速动保护。接地短路后备保护可装阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护。相间短路后备保护一般应装设阶段式距离保护。

变压器差动保护的基本原理

变压器差动保护的基本原理 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。 变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 1)励磁涌流 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

- 3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。 ②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。

4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

学习继电保护必须掌握的基础知识

学习继电保护必须掌握的基础知识 1.什么是继电保护装置? 答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这 些事件发展的一种自动化措施和设备,一般通称为继电保护装置。 2.继电保护在电力系统中的任务是什么? 答:继电保护的基本任务:(1)当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。(2)反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情 况的继电保护装置允许带一定的延时动作。 3.简述继电保护的基本原理和构成方式。 答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。 4.电力系统对继电保护的基本要求是什么? 答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。(1)可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。(3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求,通过继电保护的整定实现。 (4)速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继 电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。 5.如何保证继电保护的可靠性? 答:继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护 和管理来保证。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。 220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不 同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这购套继电保护装置和断路器所 取的直流电源都经由不同的熔断器供电。 6.为保证电网继电保护的选择性,上、下级电网继电保护之间逐级配合应满足什么要求:答:上、下级电网(包括同级和上一级及下一级电网)继电保护之间的整定,应遭循逐级配合的原则,满

相关主题
文本预览
相关文档 最新文档