变压器差动保护工作原理和不平衡电流产生原因
- 格式:doc
- 大小:32.00 KB
- 文档页数:6
变压器差动保护的不平衡电流及克服方法变压器差动保护是一种重要的电力系统保护装置,用于保护变压器的安全运行。
一旦发生元件的故障,例如绕组短路或接地故障,会引起差动电流不平衡,此时差动保护将起到关键的作用。
本文将详细介绍变压器差动保护中的不平衡电流问题,并探讨了一些克服方法。
不平衡电流问题是指在正常运行情况下,变压器差动保护输入和输出电流之间出现不平衡的现象。
造成不平衡电流的原因可能有多种,如绕组短路、绝缘故障以及负荷不均衡等。
不平衡电流会导致差动保护的误动作,从而影响电力系统的稳定运行。
克服不平衡电流的方法有以下几种:1.基本差动保护原理:差动保护原理是通过比较变压器的输入和输出电流来判断是否存在故障。
基本差动保护原理可以有效地检测对称故障,但对于不平衡故障的检测相对较弱。
因此,需要采用其他方法来克服不平衡电流的问题。
2.元件选择:正确选择差动保护所使用的元件对克服不平衡电流非常重要。
换流器和变压器侧比例放大器等元件应具有较好的动态响应特性和高抗干扰能力,以减少不平衡电流对差动保护的影响。
3.抗干扰能力的提高:由于电力系统中存在各种干扰源,例如负荷电流突变、谐波干扰等,这些干扰源会引起差动保护误动作。
为了克服不平衡电流,需要提高差动保护的抗干扰能力,采用滤波器、补偿器等改进措施来减少干扰。
4.组合保护:差动保护通常与其他保护装置配合使用,例如过电流保护、过热保护等。
通过组合使用多种保护装置,可以增强对不平衡电流的检测和判断能力,从而更好地保护变压器的安全运行。
5.故障录波和分析:对于差动保护误动作的原因,可以通过故障录波和故障分析来进一步研究。
录波数据可以提供详细的电流和电压波形,通过对波形的分析,可以找出导致差动保护误动作的原因,从而采取相应的措施。
总之,不平衡电流是变压器差动保护中需要解决的重要问题。
采取适当的方法和措施,可以有效地克服不平衡电流,提高差动保护的性能和可靠性,确保变压器的安全运行。
变压器差动保护中产生不平衡电流的因素变压器差动保护是电力系统中常用的保护方式之一,它能够有效地检测到变压器绕组的故障,保护变压器的安全运行。
但是在使用差动保护时,有时会出现不平衡电流的情况,这会对保护的准确性造成影响。
本文将从多个方面分析变压器差动保护中产生不平衡电流的因素。
变压器中的铁心饱和是不平衡电流的主要原因之一。
当变压器的负载不均衡时,负载电流会使铁心进入饱和状态,导致变压器的磁导率发生变化。
这会使变压器的磁通分布不均匀,从而导致不平衡电流的产生。
因此,在设计差动保护时,应该考虑铁心饱和的影响,采用合适的保护措施。
变压器中的接地故障也是产生不平衡电流的主要原因之一。
变压器的接地故障会导致变压器绕组中出现大量的故障电流,并且这些故障电流会随着时间的推移而变化。
这种变化会导致差动保护中的不平衡电流的产生。
因此,在设计差动保护时,应该加强变压器的绝缘检查,及时排除接地故障。
第三,变压器的非线性特性也会导致不平衡电流的产生。
当变压器的负载变化时,变压器的磁通分布也会随之变化,从而导致变压器的非线性特性显现。
这种非线性特性会导致变压器中的电流分布不均匀,从而产生不平衡电流。
因此,在进行差动保护设计时,应该考虑变压器的非线性特性,采用相应的措施来抑制不平衡电流的产生。
变压器的差动保护装置本身也会对差动保护的准确性产生影响。
当差动保护装置的设定值不合理时,会导致差动保护的误动作和漏动,从而产生不平衡电流。
因此,在进行差动保护的设计和调试时,应该仔细校验各项参数,保证差动保护装置的设定值合理。
变压器差动保护中产生不平衡电流的因素是多方面的,需要从铁心饱和、接地故障、非线性特性和差动保护装置等多个角度进行考虑。
只有在加强绝缘检查、优化差动保护装置的设定值、采用合适的保护措施等方面做好工作,才能有效避免不平衡电流的产生,保证变压器差动保护的准确性和可靠性。
变压器差动保护工作原理和不平衡电流产生原因变压器差动保护工作的基本原理是比较变压器的输入和输出侧电流的差值。
在正常运行时,变压器的输入侧电流等于输出侧电流,差值为零。
如果发生内部短路或开路等故障,会导致输入侧电流和输出侧电流的差值增大。
差动保护系统通过采集输入侧和输出侧电流的信号,并进行比较,如果差值超过预定的阈值,系统会判断为故障,触发动作信号,将变压器切除,从而避免故障进一步发展。
差动保护系统一般由保护元件、CT(电流互感器)、继电器和切断装置等组成。
在正常运行时,每个相位的CT会输出输入侧和输出侧的电流信号,并经过继电器进行比较。
当差流超过设定值时,继电器会输出动作信号,触发切断装置切除故障的电路。
不平衡电流产生原因:不平衡电流是指三相电路中,三相电流不相等的状态。
其主要原因有以下几点:1.负载不平衡:当电力负荷分布不均匀时,每个相位所承担的负载不同,导致电流不平衡。
例如,三相不均匀分布的单相负载或者不同负载之间的功率因数不同,都会引起不平衡电流。
2.供电网电压不平衡:当供电网的相电压不同,例如电压幅值不同、相位差异或频率偏差时,会导致三相电路中的电流不平衡。
3.动态负载变化:当大功率设备启动或停止,或者存在突发负载波动时,会引起瞬时电流的不平衡。
因为电动机等设备在启动时需要较高的起动电流,而在停止时会产生反向电流。
4.系统故障:电力系统中的故障,如接地故障、短路故障或设备故障等,都可能导致电流不平衡。
不平衡电流可能会引起以下问题:1.电力设备热损耗增加:不平衡电流会导致负载电流不均匀分布,部分回路的电流较大,使得设备负荷过载,进而导致热损耗增加。
2.电力设备寿命缩短:不平衡电流会导致电力设备中的线圈和导线产生过大的电流,从而加剧线圈和导线的电磁热损伤,使得设备的寿命大大减少。
3.系统能效降低:不平衡电流会导致电力系统中电压降低、线路功率因数下降等问题,进而降低系统整体的能效。
因此,为了保护电力设备和提高电力系统的运行质量,需要针对不平衡电流进行监测和处理。
分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是电力系统中非常重要的保护之一,其主要作用是监测主变压器两侧的电流是否平衡,如果出现不平衡,则切断故障电流以保护设备的安全运行。
在实际工作中,经常出现差动保护误动或误动率过高的情况,其中一个主要原因就是不平衡电流的产生。
下面从以下几个方面进行分析。
1.主变压器的不平衡主变压器的不平衡是导致差动保护误动或误动率过高的主要原因之一。
主变压器本身存在着磁路不对称性、接线不对称性等问题,这些问题都会导致主变压器两侧的电流不平衡。
而差动保护的动作依赖于两侧电流的差值,因此如果主变压器本身的不平衡电流大于设定值,则会误动差动保护。
2. 对称分量不同对称分量不同也会导致差动保护误动或误动率过高。
在电力系统中,对称分量是指电流或电压分解成正序、负序、零序三个分量。
如果主变压器两侧电流的对称分量不同,则会导致差动保护误动。
例如,如果主变压器两侧电流的负序分量不同,则会导致差动保护产生不平衡电流,从而导致误动或误动率过高。
3. 母线电抗不同4. 安装误差导致的相位偏差最后,安装误差也可能导致差动保护误动或误动率过高。
差动保护是通过主变压器两侧的电流差值来判断故障的存在,因此安装位置的相对偏差会导致电流测量的不准确性,从而导致差动保护误动或误动率过高。
综上所述,导致变电站主变压器差动保护误动或误动率过高的原因主要来自主变压器的不平衡、对称分量不同、母线电抗不同以及安装误差。
因此,在实际工作中,应该对主变压器进行定期检修和维护,尽量保证其正常运行,同时安装差动保护时也要注意检查安装误差,以减少差动保护误动或误动率过高的情况的发生。
变压器差动保护工作原理和不平衡电流产生原因变压器差动保护是变压器保护中最常用的一种保护方式,其工作原理是通过比较在变压器的主辅绕组上流过的电流,来判断是否有故障发生,并及时采取相应的措施,以保护变压器的安全运行。
而不平衡电流是变压器差动保护中常见的故障之一,通常由于以下原因产生。
首先,不平衡电流可能是由于供电系统中的故障引起的。
例如,供电系统的一相短路或接地故障会导致相间不平衡,进而影响到变压器的正常运行。
这种情况下,不平衡电流会引起变压器的过热,甚至引发火灾。
其次,不平衡电流也可能是由于变压器自身的故障引起的。
例如,变压器内部绕组的短路或接地故障,或者绕组绝缘的老化、破损等,都会导致相间不平衡的电流分布,从而产生不平衡电流。
这种情况下,不平衡电流可能导致变压器的电压降低、功率损耗增加,甚至引发变压器的局部过热。
当变压器正常运行时,主辅绕组上流过的电流应保持相等。
差动保护装置通过采集主辅绕组上的电流信号,并对其进行差分运算,生成一个差动电流信号。
如果主辅绕组上的电流相等,则差动电流信号接近于零;而若存在不平衡电流,则差动电流信号不为零。
差动保护装置将差动电流信号与设定的动作阈值进行比较。
当差动电流信号超过动作阈值时,差动保护装置将触发报警或保护动作。
一般来说,动作阈值会设置一个适当的容许偏差,以允许正常的负载变化,同时避免误动作。
当差动保护装置动作时,会通过开关装置切断变压器的供电,以防止进一步的损坏或事故发生。
此外,差动保护装置还可以提供相应的报警信号,以便及时进行检修。
总之,变压器差动保护通过比较主辅绕组上的电流,来判断是否存在不平衡电流并及时采取相应的保护措施。
不平衡电流可能由供电系统故障或变压器自身故障引起,差动保护装置通过判别差动电流是否超过设定的动作阈值来实现保护。
这种保护方式能有效地避免变压器的损坏和事故的发生,保证变压器的安全运行。
分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是一种保护装置,其原理是通过检测主变压器两侧电流的差值,当差值超过设定值时,保护动作,从而实现对主变压器的保护。
然而,在实际应用中,存在着差动保护误动以及抗干扰能力弱等问题。
其中,不平衡电流是导致差动保护误动的主要原因之一。
不平衡电流是指主变压器两侧电流的不相等现象,其产生的原因主要有以下几个方面。
1. 负载不均衡负载不均衡是主要导致不平衡电流产生的原因之一。
在电力系统中,由于电网接入负载的不同,不同的负载分布不同,因此会导致主变压器两侧电流的负载不均衡。
负载不均衡会导致电流的流动方向不一致,从而造成主变压器两侧电流的不平衡。
2. 主变压器内部故障主变压器内部故障也是导致差动保护误动的常见原因之一。
在主变压器内部有可能出现短路、接触不良、线圈断线等故障,这些故障都会造成主变压器两侧电流的不平衡。
如果差动保护的设定值比较低,就会导致误动。
3. 变压器组接方式不同在变电站中,采用不同的变压器组接方式也会导致主变压器两侧电流的不平衡。
比如,当变压器中性点接地时,主变压器两侧电流的不平衡可能会更加明显。
4. 零序电流的影响零序电流也会对差动保护产生影响。
当系统中存在零序电流时,它会通过主变压器的铁心流动,由于铁心对电流具有阻抗特性,因此会产生磁通,从而导致主变压器两侧电流的不平衡。
5. 线路中的杂乱信号变电站周围的电子设备、通信系统等都会产生杂乱信号,这些信号可能会影响到差动保护的工作。
当杂乱信号超过差动保护的判别能力时,就会导致误动。
总之,不平衡电流是导致差动保护误动的主要原因之一,其产生的原因较为复杂,需要对变电站的运行情况进行全面认真的分析,以制定相应的防护措施,保障变电站的运行安全。
变压器纵差保护原理及不平衡电流的克服方法_变压器三相电流不平衡1.变压器纵差保护基本原理变压器具有两个或更多个电压等级,构成纵差保护所用电流互感器的额定参数各不相同,由此产生的纵差保护不平衡电流将比发电机的大得多,纵差保护是利用比较被保护元件各端电流的幅值和相位的原理构成的,根据KCL基本定理,当被保护设备无故障时恒有各流入电流之和必等于各流出电流之和。
2.纵差保护不平衡电流分析2.1稳态情况下的不平衡电流由电流互感器计算变比与实际变比不同而产生。
正常运行时变压器各侧电流的大小是不相等的。
为了满足正常运行或外部短路时流入继电器差动回路的电流为零,则应使高、低压两侧流入继电器的电流相等,即高、低侧电流互感器变比的比值应等于变压器的变比。
但是,实际上由于电流互感器的变比都是根据产品目录选取的标准变比,而变压器的变比是一定的,因此上述条件是不能得到满足的,因而会产生不平衡电流。
由变压器两侧电流相位不同产生。
变压器经常采用两侧电流相位相差30°的接线方式。
此时,假如两侧的电流互感器仍采用通常的接线方式,则二次电流由于相位不同,也会在纵差保护回路产生不平衡电流。
2.2暂态情况下的不平衡电流由变压器励磁涌流产生。
变压器的励磁电流仅流经变压器接通电源的某一侧,对差动回路来说,励磁电流的存在就相当于变压器内部故障时的短路电流。
在外部短路时,由于系统电压降低,励磁电流也将减小。
在正常运行和外部短路时励磁电流对纵差保护的影响经常可忽略不计。
在电压忽然增加的非凡情况下,比如变压器在空载投入和外部故障切除后恢复供电的情况下,则可能出现很大的励磁电流,这种暂态过程中出现的变压器励磁电流通常称励磁涌流。
由变压器外部故障暂态穿越性短路电流产生。
纵差保护是瞬动保护,它是在一次系统短路暂态过程中发出跳闸脉冲。
在变压器外部故障的暂态过程中,一次系统的短路电流含有非周期分量,它对时间的变化率很小,很难变换到二次侧,而主要成为互感器的励磁电流,从而使互感器的铁心更加饱和。
分析变电站主变压器差动保护的不平衡电流产生的原因变电站主变压器差动保护是保护电力系统中主变压器的重要装置,它能够及时监测主变压器的运行状态,一旦出现故障能够快速切除故障区域,保护整个电力系统的安全稳定运行。
在实际运行中,差动保护系统有时会出现不平衡电流问题,这种情况会对保护装置造成影响,甚至导致误动作。
了解不平衡电流产生的原因对改善差动保护系统的性能具有重要意义。
一、不平衡电流的产生原因1. 主变压器接地故障主变压器的接地故障是导致不平衡电流产生的一个主要原因。
当主变压器出现接地故障时,会导致主变压器的相间短路,从而引起不平衡电流。
由于接地故障通常只发生在一个相位上,因此会导致该相位电流增大,而其他两个相位的电流并不受影响,从而造成了不平衡电流。
2. 主变压器绕组短路主变压器的绕组短路也是不平衡电流产生的原因之一。
主变压器绕组中如果出现相间短路现象,就会导致不平衡电流的产生。
绕组短路会导致电流在绕组中流动路径发生改变,从而引起不平衡电流的产生。
3. 不同相位的负载不平衡电力系统中,如果不同相位的负载不平衡,即各相的负载功率不相等,就会导致不平衡电流。
当电力系统中的负载不平衡时,会导致各相的电流不相等,同时引起不平衡电流问题。
主变压器的冷却系统故障也是不平衡电流产生的原因之一。
主变压器的冷却系统如果出现故障,会导致主变压器的冷却效果不良,可能导致主变压器的一些绕组过热,从而引起不平衡电流。
1. 误动作不平衡电流会导致差动保护系统的误动作。
由于不平衡电流的存在,可能会导致差动保护系统误判为主变压器发生了内部故障,从而切除了主变压器,影响了电力系统的正常运行。
2. 对设备造成损坏不平衡电流会使主变压器绕组和绝缘系统承受不均匀的电流,可能会造成设备的损坏,甚至会导致设备的烧毁。
3. 降低保护系统的可靠性不平衡电流会影响差动保护系统的可靠性,导致保护系统的性能下降,这对电力系统的安全稳定运行具有严重的影响。
平衡电流产生原因
1前言
变压器差动保护是按照循环电流原理构成的。
双绕组变压器,在其两侧装设电流互感器。
当两侧电流互感器的同极性在同一方向,则将两侧电流互感器不同极性的二次端子相连接(如果同极性端子均置于靠近母线一侧,二次侧为同极相连),差动继电器的工作线圈并联在电流互感器的二次端子上。
在正常运行或外部故障时,两侧的二次电流大小相等,方向相反,在继电器中电流等于零,因此差动保护不动作。
然而,由于变压器实际运行中引起的种种不平衡电流,使得差动继电器的动作电流增大,从而降低了保护的灵敏度。
不平衡电流的产生有稳态和暂态二方面。
稳态不平衡电流产生的原因:(1)变压器高低压侧绕组接线方式不同;(2)变压器各侧电流互感器的型号和变比不相同;(3)带负荷调分接头引起变压器变比的改变。
暂态不平衡电流主要是由于变压器空载投入电源或外部故障切除,电压恢复时产生的励磁涌流。
3影响和防范措施
下面就以上几种变压器差动保护的不平衡电流产生原因和防范措施进行阐述。
3.1变压器高低压侧绕组接线方式不同的影响和防范措施:
3.1.1变压器接线组别对差动保护的影响
对于Y,y0接线的变压器,由于一、二次绕组对应相的电压同相位,故一、二次两侧对应相的相位几乎完全相同。
而常用的Y,d11接线的变压器,由于三角形侧的线电压,在相位上相差30°,故其相应相的电流相位关系也相差30°,即三角形侧电流比星形侧的同一相电流,在相位上超前30°,因此即使变压器两侧电流互感器二次电流的数值相等,在差动保护回路中也会出现不平衡电流。
3.1.2变压器接线组别影响的防范措施
为了消除由于变压器Y,d11接线而引起的不平衡电流的影响,可采用相位补偿法,即将变压器星形侧的电流互感器二次侧接成三角形,而将变压器三角形侧的电流互感器二次侧接成星形,从而把电流互感器二次电流的相位校正过来。
相位补偿后,为了使每相两差动臂的电流数值近似相等,在选择电流互感器的变比nTA时,应考虑电流互感器的接线系数KC后,即差动臂的电流为KCI1/nTA。
其中,I1为一次电流,电流互感器按星形接线时则KC=1,按三角形接线时KC=√3,如电流互感器的二次电流为5A时,则两侧电流互感器的变比按以下两式选择。
变压器星形侧的电流互感器变比为:
nTA(Y)=√3In(Y)/5
变压器三角形侧的电流互感器变比为:
nTA(△)=In(△)/5
In(△)变压器绕组接成三角形侧的额定电流。
实际上选择电流互感器时,是根据电流互感器定型产品变比确定一个接近并稍大于计算值的标准变比(下表所列为我厂一台15MVA38.5kV/6.3kV主变的计算)。
3.2变压器各侧电流互感器型号和变比的影响和防范措施
变压器两侧额定电压不同,装设在两侧的电流互感器型号就不相同,致使他们的饱和特性和励磁电流(归算到同一侧)也不相同。
因而在外部短路时将引起较大的不平衡电流,对此只有采用适当增大保护动作电流的办法予以考虑。
由于电流互感器都是标准化的定型产品,所以实际选用的变比,一般均与计算变比不完全一致,而且各变压器的变比也不可能完全相同,因此在差动保护回路又会引起不平衡电流。
这种由于变比选择不完全合适而引起的不平衡电流,可利用磁平衡原理在差动继电器中设置平衡线圈加以消除,一般平衡线圈接于保护臂电流小的一侧,因为平衡线圈和差动线圈共同绕在继电器的中间磁柱上,适当选择平衡线圈的匝数,使它产生的磁势与差流在差动线圈中产生的磁势相抵消,这样,在二次绕阻就不会感应电势了,其差动继电器的执行元件也就无电流。
但接线时要注意极性,应使小电流侧在平衡线圈与差流在差动线圈产生的磁势相反。
3.3带负荷调压在运行中改变分接头的影响和防范措施
电力系统中,通常利用调节变压器分接头的方法来维持一定的电压水平(由于分接头的改变,使变压器的变比也跟着改变)。
但差动保护中电流互感器变比的选择,差动继电器平衡线圈的确定,都只能根据一定的变压器变比计算和调整,使差动回路达到平衡。
当变压器分接头改变时,就破坏了平衡,并出现了新的不平衡电流,这一不平衡电流与一次电流成正比,其数值为Ibp=±△UID.max/nTA
式中±△U――调压分接头相对于额定抽头位置的最大变化范围
ID.max――通过调压侧的最大外部故障电流。
为了避免不平衡电流的影响,在整定保护的动作电流时应给予相应的考虑,即提高保护的动作整定值。
3.4变压器励磁涌流的影响和防范措施
3.4.1变压器的励磁涌流对差动保护的影响
变压器的高、低压侧是通过电磁联系的,故仅在电源的一侧存在励磁电流,它通过电流互感器构成差回路中不平衡电流的一部分。
在正常运行情况下,其值很小,一般不超过变压器额定电流的3%~5%。
当外部短路故障时,由于电源侧母线电压降低,励磁电流更小,因此这些情况下的不平衡电流对差动保护的影响一般可以不必考虑。
在变压器空载投入电源或外部故障切除后电压恢复过程中,由于变压器铁芯中的磁通急剧增大,使铁芯瞬间饱和,这时出现数值很大的冲击励磁电流(可达5~10倍的额定电流),通常称为励磁涌流。
励磁涌流IE中含有大量的非周期分量与高次谐波,因此励磁涌流已不是正弦波,而是尖顶波,且在最初瞬间完全偏于时间轴的一侧。
励磁涌流的大小和衰减速度,与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向、电源容量、变压器的容量及铁芯材料等因素有关。
对于单相的双绕阻变压器,在其它条件相同的情况下,当电压瞬时值为零时合闸,励磁电流最大;如果在电压瞬时值最大时合闸,则不会出现励磁涌流,而只有正常的励磁电流。
对于三相变压器,无论任何瞬间合闸,至少有两相会出现不同程度的励磁涌流。
在起始瞬间,励磁涌流衰减的速度很快,对于一般的中小型变压器,经0.5~1S后其值不超过额定流的0.25~0.5倍;大型电力变压器励磁涌流的衰减速度较慢,衰减到上述值时约2~3S。
这就是说,变压器容量越大衰减越慢,完全衰减要经过几十秒的时间。
根据试验和理论分析结果得知,励磁涌流中含有大量的高次谐波分量,其中二次谐波分量所占比例最大,约为60%以上。
四次以上谐波分量很小,在最初几个周期内,励磁涌流的波形是间断的(即两个波形之间有一间断角),每个周期内有120。
~180。
的间断角,最小也不低于80。
~100。
[见左下图(b)]。
另外,励磁涌流对于额定电流幅值的倍数,与变压器容量有关,容量越大,变压器的涌流倍数也越小。
3.4.2变压器差动保护中减小励磁涌流影响的措施
防止励磁涌流的影响,采用BCH型具有速饱和变流器的继电器是国内目前广泛采用的一种方法。
当外部故障时,所含非周期分量的最大不平衡电流能使速饱和变流器的铁芯很快地单方面饱和,传变性能变坏,致使不平衡电流难于传变到差动继电器的差动线圈上,保证差动保护不会误动。
内部故障时虽然速饱和变流器一次线圈的电流也含有一定的非周期性分量,但它衰减得快,一般经
过1.5~2个周波即衰减完毕,此后速饱和变流器一次线圈中通过的完全是周期性的短路电流,于是在二次线圈中产生很大的感应电动势,并使执行元件中的相应电流也较大,从而使继电器能灵敏地动作。
速饱和变流器正是利用容易饱和的性能来躲过变压器外部短路不平衡电流和空载合闸励磁涌流的非周期分量影响。
此外,减小励磁涌流还可以采用以下措施:
3.4.3采用内部短路电流和励磁涌流波形的差别(有无间断角)来躲过励磁涌流。