TM-21Calculator
- 格式:xlsx
- 大小:111.10 KB
- 文档页数:2
Time (hours)Lumen Maintenance (%)Time (hours)Lumen Maintenance (%)Time (hours)Lumen Maintenance (%)0100.00%0100.00%0100.00%100099.89%100099.83%100099.69%200099.41%200099.22%200098.97%300098.63%300098.41%300097.84%400097.62%400097.34%400096.63%500096.71%500096.35%500095.55%Total number of units tested per case temperature:25600096.19%600095.75%600094.83%Number of failures:0700096.01%700095.42%700094.52%Number of units measured:25800095.82%800095.14%800094.12%Test duration (hours):8000Tested drive current (mA):30Tested case temperature 1 (T c , ⁰C):45Tested case temperature 2 (T c , ⁰C):55Tested case temperature 3 (T c , ⁰C):85Drive current for each LED package/array/module (mA):18In-situ case temperature (T c , ⁰C):50.2Percentage of initial lumens to project to (e.g. for L 70,enter 70):70Time (t) at which to estimate lumen maintenance(hours):48,000Lumen maintenance at time (t) (%):Calculated L70 (hours):Reported L70 (hours):Results LM-80 Testing Details In-Situ Inputs InstructionsLM-80 Test InputsTM-21 Inputs4 Ft LED T-10 Fluorecent replacement tube Test Data for 45⁰C Case Temperature Test Data for 55⁰C Case Temperature Test Data for 85⁰C Case Temperature Yellow fields are completed by the user. Fields not used should be left blank. Cyan fields are calculated based on user entries.First, enter a description of the LED light source tested. Then complete the fields labeled "LM-80 Testing Details".Test duration must be at least 6,000hours. If only one case temperature data set is to be used (nointerpolation), complete only "Tested case temperature 1". For only two case temperature data sets, complete 1 and 2.Next, further to the right, in thecorresponding box(es) for each tested case temperature, enter the test data along with the time (in hours) at which each measurement was taken. Data entered must be normalized then averaged measured data (per TM-21sections 5.2.1 and 5.2.2).Enter drive current, in-situ temperature data and the percentage of initiallumens to project to in the fields labeled "In-Situ Inputs".Results can be tailored to estimate lumen maintenance at a specific time by entering a value (t) in the yellow field.A complete TM-21 report will appear on the next tab labeled "Report".Description of LED Light Source Tested (manufacturer, model, catalog number)。
关于TM21 LED寿命推算方法1、基础知识IES LM-80-08是用于测量LED光源光通维持率的方法,被广泛用于描述LED的光衰特性,LED器件生产厂家提供的LM-80-08测试报告(ES认可的测试机构测试)采用的数据都来至于持续测试6000h或更多时间内的测试数据,然而对于被测产品LM-80-08并没有很好的定义对于收集到的数据,如何被实际用于确定LED的有效寿命。
TM-21是Energy Star标准的技术备忘,补充了根据LM-80-08测试过程中获得的数据,来进行超出老化时间的寿命推算的方法。
额定光通维持寿命是指LED光源的光输出相对于初始光输出达到某一给定百分比所经过的运行时间,这个值被定义为Lp,p为给定的百分比值,业界常用LED光输出下降至初始光输出的70%所经过的时间来定义LED的寿命,LED达到其额定光通维持寿命取决于很多变量,包括运行温度、驱动电流、产品结构的设计和材料特性。
2、样品规模及测试数据采集对于从LM80报告中获得的所有针对某一特定产品的壳温、驱动电流等数据,都应用于流明维持寿命推算,推荐的样品规模集最小为20 pcs,并可以在流明维持寿命推算中,相对于寿命测试持续时间,LED推算寿命最大不超过6倍测试时间。
任何样品规模的改变都将导致不确定度及流明维持寿命推算的时间间隔的改变,对于样品规模为1019pcs的情况,LED推算寿命最大不超过5.5倍测试时间。
不支持样品规模小于10pcs的寿命推算。
从目前各厂家提供的LM80报告来看,样品规模多为20 pcs或25 pcs。
目前LM80 6000h报告中数据的采集时间间隔多为1000h,且很多厂家持续测试时间已超6000H,超6000H的附加测量可以提高流明维持寿命推算的准确性。
3、流明维持寿命推算方法目前LM80报告中采用最多的是对采集到的数据进行曲线拟合,以推算光通维持率衰减至70%所经历的时间,这个时间就是LED的流明维持寿命。
Package‘TmCalculator’October12,2022Type PackageTitle Melting Temperature of Nucleic Acid SequencesVersion1.0.3Date2022-02-20Author Junhui LiMaintainer Junhui Li<****************.cn>Description This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python.The melt-ing temperature of nucleic acid sequences can be calculated in three method,the Wal-lace rule(Thein&Wallace(1986)<doi:10.1016/S0140-6736(86)90739-7>),empirical formu-las based on G and C content(Marmur J.(1962)<doi:10.1016/S0022-2836(62)80066-7>,Schildkraut C.(2010)<doi:10.1002/bip.360030207>,Wet-mur J G(1991)<doi:10.3109/10409239109114069>,Unter-gasser,A.(2012)<doi:10.1093/nar/gks596>,von Ah-sen N(2001)<doi:10.1093/clinchem/47.11.1956>)and nearest neighbor thermodynamics(Bres-lauer K J(1986)<doi:10.1073/pnas.83.11.3746>,Sugi-moto N(1996)<doi:10.1093/nar/24.22.4501>,Allawi H(1998)<doi:10.1093/nar/26.11.2694>,San-taLu-cia J(2004)<doi:10.1146/annurev.biophys.32.110601.141800>,Freier S(1986)<doi:10.1073/pnas.83.24.9373>,Xia T(19 mar-ito S(2000)<doi:10.1093/nar/28.9.1929>,Turner D H(2010)<doi:10.1093/nar/gkp892>,Sugi-moto N(1995)<doi:10.1016/S0048-9697(98)00088-6>,Allawi H T(1997)<doi:10.1021/bi962590c>,Santalu-cia N(2005)<doi:10.1093/nar/gki918>),and it can also be corrected with salt ions and chemi-cal compound(SantaLucia J(1996)<doi:10.1021/bi951907q>,SantaLu-cia J(1998)<doi:10.1073/pnas.95.4.1460>,Owczarzy R(2004)<doi:10.1021/bi034621r>,Owczarzy R(2008)<doi:10.102 BugReports https:///JunhuiLi1017/TmCalculator/issuesLicense GPL(>=2)Depends R(>=2.10)NeedsCompilation noRepository CRANRoxygenNote7.1.2Date/Publication2022-02-2104:10:03UTC12c2s R topics documented:c2s (2)check_filter (3)chem_correction (4)complement (5)GC (6)print.TmCalculator (6)s2c (7)salt_correction (8)Tm_GC (9)Tm_NN (12)Tm_Wallace (15)Index17 c2s convert a vector of characters into a stringDescriptionSimply convert a vector of characters such as c("H","e","l","l","o","W","o","r","l","d")into a single string"HelloWorld".Usagec2s(characters)Argumentscharacters A vector of charactersValueRetrun a stringsAuthor(s)Junhui LiReferencescitation("TmCalculator")Examplesc2s(c("H","e","l","l","o","W","o","r","l","d"))check_filter3check_filter Check andfilter invalid base of nucleotide sequencesDescriptionIn general,whitespaces and non-base characters are removed and characters are converted to up-percase in given method.Usagecheck_filter(ntseq,method)Argumentsntseq Sequence(5’to3’)of one strand of the DNA nucleic acid duplex as string orvector of charactersmethod TM_Wallace:check and return"A","B","C","D","G","H","I","K","M","N","R","S","T","V","W"and"Y"TM_GC:check and return"A","B","C","D","G","H","I","K","M","N","R","S","T","V","W","X"and"Y"TM_NN:check and return"A","C","G","I"and"T"ValueReturn a sequence which fullfils the requirements of the given method.Author(s)Junhui LiReferencescitation("TmCalculator")Examplesntseq<-c("ATCGBDHKMNRVYWSqq")check_filter(ntseq,method= Tm_Wallace )check_filter(ntseq,method= Tm_NN )4chem_correction chem_correction Corrections of melting temperature with chemical substancesDescriptionCorrections coefficient of melting temperature with DMSO and formamide and these corrections are rough approximations.Usagechem_correction(DMSO=0,fmd=0,DMSOfactor=0.75,fmdmethod=c("concentration","molar"),fmdfactor=0.65,ptGC)ArgumentsDMSO Percent DMSOfmd Formamide concentration in percentage(fmdmethod="concentration")or molar (fmdmethod="molar").DMSOfactor Coefficient of Tm decreases per percent DMSO.Default=0.75von Ahsen N (2001)<PMID:11673362>.Other published values are0.5,0.6and0.675.fmdmethod"concentration"method for formamide concentration in percentage and"molar"for formamide concentration in molarfmdfactor Coefficient of Tm decrease per percent formamide.Default=0.65.Several pa-pers report factors between0.6and0.72.ptGC Percentage of GC(%).Detailsfmdmethod="concentration"Correction=-factor*percentage_of_formamidefmdmethod="molar"Correction=(0.453*GC/100-2.88)x formamideAuthor(s)Junhui Licomplement5 Referencesvon Ahsen N,Wittwer CT,Schutz E,et al.Oligonucleotide melting temperatures under PCR conditions:deoxynucleotide Triphosphate and Dimethyl sulfoxide concentrations with comparison to alternative empirical formulas.Clin Chem2001,47:1956-C1961.Exampleschem_correction(DMSO=3)chem_correction(fmd=1.25,fmdmethod="molar",ptGC=50)complement complement and reverse complement base of nucleotide sequencesDescriptionget reverse complement and complement base of nucleotide sequencesUsagecomplement(ntseq,reverse=FALSE)Argumentsntseq Sequence(5’to3’)of one strand of the nucleic acid duplex as string or vector of charactersreverse Logical value,TRUE is reverse complement sequence,FALSE is not.Author(s)Junhui LiReferencescitation("TmCalculator")Examplescomplement("ATCGYCGYsWwsaVv")complement("ATCGYCGYsWwsaVv",reverse=TRUE)6print.TmCalculator GC Calculate G and C content of nucleotide sequencesDescriptionCalculate G and C content of nucleotide sequences.The number of G and C in sequence is divided by length of sequence(when totalnt is TRUE)or the number of all A,T,C,G and ambiguous base.UsageGC(ntseq,ambiguous=FALSE,totalnt=TRUE)Argumentsntseq Sequence(5’to3’)of one strand of the nucleic acid duplex as string or vector of characters.ambiguous Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE.totalnt Sum of’G’and’C’bases divided by the length of the sequence when totalnt is TRUE.ValueContent of G and C(range from0to100Author(s)Junhui LiExamplesGC(c("a","t","c","t","g","g","g","c","c","a","g","t","a"))#53.84615GC("GCATSWSYK",ambiguous=TRUE)#55.55556print.TmCalculator Prints melting temperature from a TmCalculator objectDescriptionprint.TmCalculator prints to console the melting temperature value from an object of class TmCalculator.s2c7Usage##S3method for class TmCalculatorprint(x,...)Argumentsx An object of class TmCalculator....UnusedValueThe melting temperature value.s2c convert a string into a vector of charactersDescriptionSimply convert a single string such as"HelloWorld"into a vector of characters such as c("H","e","l","l","o","W","o","r","l","d Usages2c(strings)Argumentsstrings A single string such as"HelloWorld"ValueRetrun a vector of charactersAuthor(s)Junhui LiReferencescitation("TmCalculator")Exampless2c(c("HelloWorld"))8salt_correctionsalt_correction Corrections of melting temperature with salt ionsDescriptionCorrections coefficient of melting temperature or entropy with different operationsUsagesalt_correction(Na=0,K=0,Tris=0,Mg=0,dNTPs=0,method=c("Schildkraut2010","Wetmur1991","SantaLucia1996","SantaLucia1998-1", "SantaLucia1998-2","Owczarzy2004","Owczarzy2008"),ntseq,ambiguous=FALSE)ArgumentsNa Millimolar concentration of NaK Millimolar concentration of KTris Millimolar concentration of TrisMg Millimolar concentration of MgdNTPs Millimolar concentration of dNTPsmethod Method to be applied including"Schildkraut2010","Wetmur1991","SantaLucia1996", "SantaLucia1998-1","SantaLucia1998-2","Owczarzy2004","Owczarzy2008".Firstfourth methods correct Tm,fifth method corrects deltaS,sixth and seventh meth-ods correct1/Tm.See details for the method description.ntseq Sequence(5’to3’)of one strand of the nucleic acid duplex as string or vectorof characters.ambiguous Ambiguous bases are taken into account to compute the G and C content whenambiguous is TRUE.DetailsThe methods are:1Schildkraut C(2010)<doi:10.1002/bip.360030207>2Wetmur J G(1991)<doi:10.3109/10409239109114069>3SantaLucia J(1996)<doi:10.1021/bi951907q>4SantaLucia J(1998)<doi:10.1073/pnas.95.4.1460>5SantaLucia J(1998)<doi:10.1073/pnas.95.4.1460>6Owczarzy R(2004)<doi:10.1021/bi034621r>7Owczarzy R(2008)<doi:10.1021/bi702363u>methods1-4:Tm(new)=Tm(old)+correctionmethod5:deltaS(new)=deltaS(old)+correctionmethods6+7:Tm(new)=1/(1/Tm(old)+correction)Author(s)Junhui LiReferencesSchildkraut C.Dependence of the melting temperature of DNA on salt concentration[J].Biopoly-mers,2010,3(2):195-208.Wetmur J G.DNA Probes:Applications of the Principles of Nucleic Acid Hybridization[J].CRC Critical Reviews in Biochemistry,1991,26(3-4):3Santalucia,J,Allawi H T,Seneviratne P A.Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability,[J].Biochemistry,1996,35(11):3555-3562.SantaLucia,J.A unified view of polymer,dumbbell,and oligonucleotide DNA nearest-neighbor thermodynamics[J].Proceedings of the National Academy of Sciences,1998,95(4):1460-1465.Owczarzy R,You Y,Moreira B G,et al.Effects of Sodium Ions on DNA Duplex Oligomers: Improved Predictions ofMelting Temperatures[J].Biochemistry,2004,43(12):3537-3554.Owczarzy R,Moreira B G,You Y,et al.Predicting Stability of DNA Duplexes in Solutions Containing Magnesium and Monovalent Cations[J].Biochemistry,2008,47(19):5336-5353. Examplesntseq<-c("acgtTGCAATGCCGTAWSDBSYXX")salt_correction(Na=390,K=20,Tris=0,Mg=10,dNTPs=25,method="Owczarzy2008",ntseq)Tm_GC Calculate the melting temperature using empirical formulas based onGC contentDescriptionCalculate the melting temperature using empirical formulas based on GC content with different optionsUsageTm_GC(ntseq,ambiguous=FALSE,userset=NULL,variant=c("Primer3Plus","Chester1993","QuikChange","Schildkraut1965","Wetmur1991_MELTING","Wetmur1991_RNA","Wetmur1991_RNA/DNA","vonAhsen2001"),Na=0,K=0,Tris=0,Mg=0,dNTPs=0,saltcorr=c("Schildkraut2010","Wetmur1991","SantaLucia1996","SantaLucia1998-1", "Owczarzy2004","Owczarzy2008"),mismatch=TRUE,DMSO=0,fmd=0,DMSOfactor=0.75,fmdfactor=0.65,fmdmethod=c("concentration","molar"),outlist=TRUE)Argumentsntseq Sequence(5’to3’)of one strand of the nucleic acid duplex as string or vectorof characters.ambiguous Ambiguous bases are taken into account to compute the G and C content whenambiguous is TRUE.userset A vector of four coefficient ersets override value sets.variant Empirical constants coefficient with8variant:Chester1993,QuikChange,Schild-kraut1965,Wetmur1991_MELTING,Wetmur1991_RNA,Wetmur1991_RNA/DNA,Primer3Plus and vonAhsen2001Na Millimolar concentration of Na,default is0K Millimolar concentration of K,default is0Tris Millimolar concentration of Tris,default is0Mg Millimolar concentration of Mg,default is0dNTPs Millimolar concentration of dNTPs,default is0saltcorr Salt correction method should be chosen when provide’userset’.Options are"Schildkraut2010","Wetmur1991","SantaLucia1996","SantaLucia1998-1","Owczarzy2004","Owczarzy2Note that"SantaLucia1998-2"is not available for this function.mismatch If’True’(default)every’X’in the sequence is counted as mismatchDMSO Percent DMSOfmd Formamide concentration in percentage(fmdmethod="concentration")or molar(fmdmethod="molar").Tm_GC11 DMSOfactor Coeffecient of Tm decreases per percent DMSO.Default=0.75von Ahsen N (2001)<PMID:11673362>.Other published values are0.5,0.6and0.675.fmdfactor Coeffecient of Tm decrease per percent formamide.Default=0.65.Several pa-pers report factors between0.6and0.72.fmdmethod"concentration"method for formamide concentration in percentage and"molar"for formamide concentration in molaroutlist output a list of Tm and options or only Tm value,default is TRUE.DetailsEmpirical constants coefficient with8variant:Chester1993:Tm=69.3+0.41(Percentage_GC)-650/NQuikChange:Tm=81.5+0.41(Percentage_GC)-675/N-Percentage_mismatchSchildkraut1965:Tm=81.5+0.41(Percentage_GC)-675/N+16.6x log[Na+]Wetmur1991_MELTING:Tm=81.5+0.41(Percentage_GC)-500/N+16.6x log([Na+]/(1.0+0.7 x[Na+]))-Percentage_mismatchWetmur1991_RNA:Tm=78+0.7(Percentage_GC)-500/N+16.6x log([Na+]/(1.0+0.7x[Na+])) -Percentage_mismatchWetmur1991_RNA/DNA:Tm=67+0.8(Percentage_GC)-500/N+16.6x log([Na+]/(1.0+0.7x [Na+]))-Percentage_mismatchPrimer3Plus:Tm=81.5+0.41(Percentage_GC)-600/N+16.6x log[Na+]vonAhsen2001:Tm=77.1+0.41(Percentage_GC)-528/N+11.7x log[Na+]Author(s)Junhui LiReferencesMarmur J,Doty P.Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.[J].Journal of Molecular Biology,1962,5(1):109-118.Schildkraut C.Dependence of the melting temperature of DNA on salt concentration[J].Biopoly-mers,2010,3(2):195-208.Wetmur J G.DNA Probes:Applications of the Principles of Nucleic Acid Hybridization[J].CRC Critical Reviews in Biochemistry,1991,26(3-4):33.Untergasser A,Cutcutache I,Koressaar T,et al.Primer3–new capabilities and interfaces[J].Nucleic Acids Research,2012,40(15):e115-e115.von Ahsen N,Wittwer CT,Schutz E,et al.Oligonucleotide melting temperatures under PCR conditions:deoxynucleotide Triphosphate and Dimethyl sulfoxide concentrations with comparison to alternative empirical formulas.Clin Chem2001,47:1956-1961.Examplesntseq<-c("ATCGTGCGTAGCAGTACGATCAGTAG")out<-Tm_GC(ntseq,ambiguous=TRUE,variant="Primer3Plus",Na=50,mismatch=TRUE)outout$Tmout$OptionsTm_NN Calculate melting temperature using nearest neighbor thermodynam-icsDescriptionCalculate melting temperature using nearest neighbor thermodynamicsUsageTm_NN(ntseq,ambiguous=FALSE,comSeq=NULL,shift=0,nn_table=c("DNA_NN4","DNA_NN1","DNA_NN2","DNA_NN3","RNA_NN1","RNA_NN2","RNA_NN3","R_DNA_NN1"),tmm_table="DNA_TMM1",imm_table="DNA_IMM1",de_table=c("DNA_DE1","RNA_DE1"),dnac1=25,dnac2=25,selfcomp=FALSE,Na=0,K=0,Tris=0,Mg=0,dNTPs=0,saltcorr=c("Schildkraut2010","Wetmur1991","SantaLucia1996","SantaLucia1998-1", "SantaLucia1998-2","Owczarzy2004","Owczarzy2008"),DMSO=0,fmd=0,DMSOfactor=0.75,fmdfactor=0.65,fmdmethod=c("concentration","molar"),outlist=TRUE)Argumentsntseq Sequence(5’to3’)of one strand of the nucleic acid duplex as string or vectorof characters.ambiguous Ambiguous bases are taken into account to compute the G and C content whenambiguous is TRUE.Default is FALSE.comSeq Complementary sequence.The sequence of the template/target in3’->5’direc-tionshift Shift of the primer/probe sequence on the template/target sequence,default=0.for example:when shift=0,thefirst nucleotide base at5‘end of primer align tofirst one at3‘end of template.When shift=-1,the second nucleotide base at5‘end of primer align tofirst one at3‘end of template.When shift=1,thefirst nucleotide base at5‘end of primer align to second oneat3‘end of template.The shift parameter is necessary to align primer/probeand template/target if they have different lengths or if they should have danglingends.nn_table Thermodynamic NN values,eight tables are implemented.For DNA/DNA hybridizations:DNA_NN1,DNA_NN2,DNA_NN3,DNA_NN4For RNA/RNA hybridizations:RNA_NN1,RNA_NN2,RNA_NN3For RNA/DNA hybridizations:R_DNA_NN1tmm_table Thermodynamic values for terminal mismatches.Default:DNA_TMM1imm_table Thermodynamic values for internal mismatches,may include insosine mismatches.Default:DNA_IMM1de_table Thermodynamic values for dangling ends.DNA_DE1(default)and RNA_DE1dnac1Concentration of the higher concentrated strand[nM].Typically this will be theprimer(for PCR)or the probe.Default=25.dnac2Concentration of the lower concentrated strand[nM].selfcomp Sequence self-complementary,default=False.If’True’the primer is thoughtbinding to itself,thus dnac2is not considered.Na Millimolar concentration of Na,default is0K Millimolar concentration of K,default is0Tris Millimolar concentration of Tris,default is0Mg Millimolar concentration of Mg,default is0dNTPs Millimolar concentration of dNTPs,default is0saltcorr Salt correction method should be chosen when provide’userset’Options are"Schildkraut2010","Wetmur1991","SantaLucia1996","SantaLucia1998-1","SantaLucia1998-2","Owczarzy2004","Owczarzy2008".Note that NA means no salt correction.DMSO Percent DMSOfmd Formamide concentration in percentage(fmdmethod="concentration")or molar(fmdmethod="molar").DMSOfactor Coeffecient of Tm decreases per percent DMSO.Default=0.75von Ahsen N(2001)<PMID:11673362>.Other published values are0.5,0.6and0.675.fmdfactor Coeffecient of Tm decrease per percent formamide.Default=0.65.Several pa-pers report factors between0.6and0.72.fmdmethod"concentration"method for formamide concentration in percentage and"molar"for formamide concentration in molar.outlist output a list of Tm and options or only Tm value,default is TRUE.DetailsDNA_NN1:Breslauer K J(1986)<doi:10.1073/pnas.83.11.3746>DNA_NN2:Sugimoto N(1996)<doi:10.1093/nar/24.22.4501>DNA_NN3:Allawi H(1998)<doi:10.1093/nar/26.11.2694>DNA_NN4:SantaLucia J(2004)<doi:10.1146/annurev.biophys.32.110601.141800>RNA_NN1:Freier S(1986)<doi:10.1073/pnas.83.24.9373>RNA_NN2:Xia T(1998)<doi:10.1021/bi9809425>RNA_NN3:Chen JL(2012)<doi:10.1021/bi3002709>R_DNA_NN1:Sugimoto N(1995)<doi:10.1016/S0048-9697(98)00088-6>DNA_TMM1:Bommarito S(2000)<doi:10.1093/nar/28.9.1929>DNA_IMM1:Peyret N(1999)<doi:10.1021/bi9825091>&Allawi H T(1997)<doi:10.1021/bi962590c> &Santalucia N(2005)<doi:10.1093/nar/gki918>DNA_DE1:Bommarito S(2000)<doi:10.1093/nar/28.9.1929>RNA_DE1:Turner D H(2010)<doi:10.1093/nar/gkp892>Author(s)Junhui LiReferencesBreslauer K J,Frank R,Blocker H,et al.Predicting DNA duplex stability from the base se-quence.[J].Proceedings of the National Academy of Sciences,1986,83(11):3746-3750.Sugimoto N,Nakano S,Yoneyama M,et al.Improved Thermodynamic Parameters and Helix Ini-tiation Factor to Predict Stability of DNA Duplexes[J].Nucleic Acids Research,1996,24(22):4501-5.Allawi,H.Thermodynamics of internal C.T mismatches in DNA[J].Nucleic Acids Research,1998, 26(11):2694-2701.Hicks L D,Santalucia J.The thermodynamics of DNA structural motifs.[J].Annual Review of Biophysics&Biomolecular Structure,2004,33(1):415-440.Freier S M,Kierzek R,Jaeger J A,et al.Improved free-energy parameters for predictions of RNA duplex stability.[J].Proceedings of the National Academy of Sciences,1986,83(24):9373-9377.Xia T,Santalucia,J,Burkard M E,et al.Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson-Crick Base Pairs,[J].Biochemistry, 1998,37(42):14719-14735.Chen J L,Dishler A L,Kennedy S D,et al.Testing the Nearest Neighbor Model for Canonical RNA Base Pairs:Revision of GU Parameters[J].Biochemistry,2012,51(16):3508-3522.Bommarito S,Peyret N,Jr S L.Thermodynamic parameters for DNA sequences with dangling ends[J].Nucleic Acids Research,2000,28(9):1929-1934.Turner D H,Mathews D H.NNDB:the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure[J].Nucleic Acids Research,2010,38(Database issue):D280-D282.Sugimoto N,Nakano S I,Katoh M,et al.Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes[J].Biochemistry,1995,34(35):11211-11216.Allawi H,SantaLucia J:Thermodynamics and NMR of internal G-T mismatches in DNA.Bio-chemistry1997,36:10581-10594.Santalucia N E W J.Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes[J].Nucleic Acids Research,2005,33(19):6258-67.Peyret N,Seneviratne P A,Allawi H T,et al.Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A-A,C-C,G-G,and T-T Mismatches,[J].Biochemistry,1999, 38(12):3468-3477.Examplesntseq<-c("AAAATTTTTTTCCCCCCCCCCCCCCGGGGGGGGGGGGTGTGCGCTGC")out<-Tm_NN(ntseq,Na=50)outout$OptionsTm_Wallace Calculate the melting temperature using the’Wallace rule’DescriptionThe Wallace rule is often used as rule of thumb for approximate melting temperature calculations for primers with14to20nt length.UsageTm_Wallace(ntseq,ambiguous=FALSE,outlist=TRUE)Argumentsntseq Sequence(5’to3’)of one strand of the DNA nucleic acid duplex as string or vector of characters(Note:Non-DNA characters are ignored by this method).ambiguous Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE.outlist output a list of Tm and options or only Tm value,default is TRUE.Author(s)Junhui LiReferencesThein S L,Lynch J R,Weatherall D J,et al.DIRECT DETECTION OF HAEMOGLOBIN E WITH SYNTHETIC OLIGONUCLEOTIDES[J].The Lancet,1986,327(8472):93.Examplesntseq=c( acgtTGCAATGCCGTAWSDBSY )#for wallace ruleout<-Tm_Wallace(ntseq,ambiguous=TRUE)outout$OptionsIndexc2s,2check_filter,3chem_correction,4complement,5GC,6print.TmCalculator,6s2c,7salt_correction,8Tm_GC,9Tm_NN,12Tm_Wallace,1517。
伽马卡兹m2硬调21尺参数表摘要:一、伽马卡兹m2 硬调21 尺参数表简介1.伽马卡兹m2 硬调21 尺的背景与概述2.产品定位与适用场景二、伽马卡兹m2 硬调21 尺的主要参数1.长度参数2.硬度参数3.调整参数4.其他重要参数三、伽马卡兹m2 硬调21 尺的优势与特点1.高精度调整2.稳定性能3.用户友好设计4.耐用性四、伽马卡兹m2 硬调21 尺在行业中的应用1.工业生产领域2.科学研究领域3.医疗领域正文:【伽马卡兹m2 硬调21 尺参数表简介】伽马卡兹m2 硬调21 尺是一款具有高精度、稳定性能和耐用性的测量工具。
它适用于各种工业生产、科学研究和医疗领域等需要精确测量的场景。
【伽马卡兹m2 硬调21 尺的主要参数】1.长度参数:伽马卡兹m2 硬调21 尺的长度为21 尺,即21 英尺,约等于6.4 米。
这样的长度范围可以满足大部分测量需求。
2.硬度参数:伽马卡兹m2 硬调21 尺采用了高硬度的材料,使得产品具有较长的使用寿命和抗磨损性能。
3.调整参数:伽马卡兹m2 硬调21 尺具有可调节的功能,用户可以根据实际需求对工具进行精确调整,提高测量精度。
4.其他重要参数:伽马卡兹m2 硬调21 尺还具备其他一些重要参数,如测量范围、分辨率、最大承载重量等,这些参数可以根据用户需求进行选择。
【伽马卡兹m2 硬调21 尺的优势与特点】1.高精度调整:伽马卡兹m2 硬调21 尺具有出色的调整性能,能够实现精确到毫米级别的测量。
2.稳定性能:产品在测量过程中表现出稳定的性能,有效降低因工具自身晃动导致的测量误差。
3.用户友好设计:伽马卡兹m2 硬调21 尺采用人性化设计,操作简单,易于上手。
4.耐用性:伽马卡兹m2 硬调21 尺采用高品质材料制造,具有良好的耐用性和抗磨损性能。
【伽马卡兹m2 硬调21 尺在行业中的应用】1.工业生产领域:伽马卡兹m2 硬调21 尺广泛应用于各类工业生产领域,如汽车制造、飞机制造、船舶制造等,帮助企业提高生产效率和产品质量。
T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .Product data sheetCharacteristicsMETSEPM2120EasyLogic PM2120, Power & Energy meter,up to the 15th harmonic, LED display, RS485,class 1MainRange EasyLogic Product name EasyLogic PM2100Device short name PM2120Product or component typePower meterComplementaryDevice application Sub billingPower monitoring Power quality analysis Total harmonic distortion Up to the 15th harmonicType of measurementApparent power min/max, totalActive and reactive power min/max, total Current min/max, avg Voltage min/max, avg Frequency min/max, avgTotal current harmonic distortion THD (I) per phase Total voltage harmonic distortion THD (U) per phase Power factor min/max, avg Apparent energy totalActive and reactive energy totalMetering typeCurrent I, I1, I2, I3Peak demand power PM, QM, SMActive, reactive, apparent energy (signed, four quadrant)Peak demand currents Active power P, P1, P2, P3Calculated neutral currentVoltage U, U21, U32, U13, V, V1, V2, V3Unbalance currentReactive power Q, Q1, Q2, Q3Demand power P, Q, SApparent power S, S1, S2, S3Accuracy classClass 1 active energy conforming to IEC 62053-21Class 1 reactive energy conforming to IEC 62053-24Class 5 harmonic distorsion (I THD & U THD)Measurement accuracyApparent power +/- 1 %Active energy +/- 1 %Reactive energy +/- 1 %Active power +/- 1 %Voltage +/- 0.5 %Power factor +/- 0.01Current +/- 0.5 %Frequency +/- 0.05 %Measurement current 5…6000 mAMeasurement voltage35…480 V AC 50/60 Hz between phases20…277 V AC 50/60 Hz between phase and neutral 480…999000 V AC 50/60 Hz with external VT Frequency measurement range 45…65 Hz[Us] rated supply voltage44...277 V AC 45...65 Hz +/- 10 %44...277 V DC +/- 10 %Network frequency50 Hz60 HzRide-through time100 Ms 120 V AC typical400 Ms 230 V AC typical50 ms 125 V DC typicalLine Rated Current1 A5 AMaximum power consumption in VA6 VA 277 V ACMaximum power consumption in W 3.3 W (power lines (AC))2 W at 277 V (power lines (DC))Input impedance Current (impedance <= 0.3 mOhm)Voltage (impedance > 5 MOhm)Tamperproof of settings Protected by access codeDisplay type7 segments LEDDisplay colour RedMessages display capacity 3 fields of 4 charactersDisplay digits12 - 0.56 in (14.2 mm)Demand intervals Configurable from 1 to 60 minInformation displayed Demand current (past value)Demand current (present value)Demand power (past value)Demand power (present value)VoltageCurrentFrequencyEnergy consumptionHarmonic distortionPower factorActive powerApparent powerReactive powerUnbalanced in %Control type 3 x buttonLocal signalling Red LED: output signal 1...9999000 pulse/ k_h (kWh, kVAh, kVARh)Green LED: module operation and integrated communicationNumber of inputs0Number of outputs0Communication port protocol Modbus RTU 4800 bps, 9600 bps, 19200 bps, 38.4 Kbps even/odd or none - 2wires 2500 VCommunication port support Screw terminal block: RS485Data recording Time stampingMin/max for 8 parametersFunction available Real time clockSampling rate64 samples/cycleCybersecurity Enable/disable communication portsCommunication service Remote monitoringProduct certifications CE IEC 61010-1CULus UL 61010-1CULus conforming to CSA C22.2 No 61010-1RCMEACC-TickMounting mode Clip-onMounting position VerticalMounting support FrameworkProvided equipment 1 x Installation guideMeasurement category Category III 480 VCategory II 480…600 VElectrical insulation class Double insulationClass IIFlame retardance V-0 conforming to UL 94Connections - terminals Current transformer screw connection bottom) 6Voltage inputs screw connection top) 4Material PolycarbonateWidth 3.78 in (96 mm)Depth Total 3.00 in (76.09 mm)Embedded 2.43 in (61.64 mm)Height 3.78 in (96 mm)Net Weight10.58 oz (300 g)Compatibility code PM2120EnvironmentService life7 year(s)IP degree of protection IP54 front: conforming to IEC 60529Body IP30 IEC 60529Relative humidity5…95 % 122 °F (50 °C)Pollution degree2Ambient air temperature for operation14…140 °F (-10…60 °C)Ambient air temperature for storage-13…158 °F (-25…70 °C)Operating altitude<= 6561.68 ft (2000 m)Electromagnetic compatibility Electrostatic discharge conforming to IEC 61000-4-2Radiated radio-frequency electromagnetic field immunity test IEC 61000-4-3Electrical fast transient/burst immunity test conforming to IEC 61000-4-4Surge immunity test IEC 61000-4-5Conducted RF disturbances conforming to IEC 61000-4-6Magnetic field at power frequency conforming to IEC 61000-4-8Voltage dips and interruptions immunity test IEC 61000-4-11Emission tests conforming to FCC part 15 class AOvervoltage category IIIOrdering and shipping detailsGTIN03606480800146Nbr. of units in pkg.1Package weight(Lbs)10.67 oz (302.5 g)Packing UnitsUnit Type of Package 1PCEPackage 1 Height 3.78 in (9.6 cm)Package 1 width 2.65 in (6.72 cm)Package 1 Length 4.00 in (10.16 cm)Unit Type of Package 2BB1Number of Units in Package 21Package 2 Weight14.25 oz (404 g)Package 2 Height 4.53 in (11.5 cm)Package 2 width 3.43 in (8.7 cm)Package 2 Length 4.72 in (12 cm)Unit Type of Package 3S03Number of Units in Package 318Package 3 Weight17.04 lb(US) (7.73 kg)Package 3 Height11.81 in (30 cm)Package 3 width11.81 in (30 cm)Package 3 Length15.75 in (40 cm)Offer SustainabilitySustainable offer status Green Premium productREACh Regulation REACh DeclarationEU RoHS Directive Compliant EU RoHS DeclarationMercury free YesRoHS exemption information YesChina RoHS Regulation China RoHS DeclarationEnvironmental Disclosure Product Environmental Profile Circularity Profile End Of Life Information。
仁爱版九年级上册英语单词Unit 1 The Developing World.Topic 1 Our country has developed rapidly.1. proper ['prɒpə(r)] adj. 恰当的,合适的;真正的。
2. by the way 顺便说。
3. volunteer [ˌvɒlən'tɪə(r)] n. 义务工作者;志愿者。
4. bell [bel] n. 钟(铃)声;铃,钟;钟状物。
5. grandpa ['ɡrænpɑ:] n. (口语)爷爷;外公。
6. chairwoman ['tʃeəwʊmən] n. 女主席,女会长;女议长。
7. grandson ['ɡrænsʌn] n. (外)孙子。
8. disabled [dɪs'eɪbld] adj. 残疾的,残废的。
9. shut [ʃʌt] v. 关上,封闭;禁闭;合拢。
10. rope [rəʊp] n. 绳子,绳索。
11. teenager ['ti:neɪdʒə(r)] n. (13 - 19岁的)青少年,十几岁的少年。
12. granny ['ɡræni] n. 奶奶;外婆;老太太。
13. describe [dɪ'skraɪb] v. 描写,叙述。
14. in detail 详细地。
15. education [ˌedʒu'keɪʃn] n. 教育;培养。
16. childhood ['tʃaɪldhʊd] n. 童年,幼年时代。
17. support [sə'pɔ:t] v. & n. 供养,抚养;支持,赞助。
18. laborer ['leɪbərə(r)] n. (尤指户外的)体力劳动者,劳工,工人。
19. development [dɪ'veləpmənt] n. 发展;发达;开发;冲洗(照片)20. rapid ['ræpɪd] adj. 快的,迅速的。
0.1um粒子计量校准
0.1微米粒子计量校准通常涉及到粒子计数设备的准确性和灵敏度的检验。
这类设备可能包括粒子计数器、颗粒测量仪器等,用于测量和计数空气或液体中的微小颗粒。
以下是可能涉及到该领域的一些相关标准和要求:
ISO 21501系列标准: ISO(国际标准化组织)的ISO 21501系列标准涉及粒子计数设备的性能和校准。
例如,ISO 21501-4标准关注液体中颗粒计数器的性能评估和校准。
JIS B 9925标准: 这是日本工业标准,涉及空气中颗粒计数器的性能和校准。
NIST (美国国家标准与技术研究院):NIST可能提供有关粒子计数设备校准的相关信息和服务。
NIST的文档和实验室通常是衡量设备性能的参考。
EPA标准: 美国环保署 (EPA)可能发布一些与颗粒计数和空气质量监测相关的标准,特别是在环境监测方面。
在进行0.1微米粒子计量校准时,通常要考虑设备的准确性、精确性、重复性和灵敏度等性能指标。
实施校准的机构通常会提供符合相关国际或国家标准的服务。
您可能需要联系专业的校准实验室或仪器制造商,以获取更具体的信息和服务。