弹性力学第四章习题
- 格式:ppt
- 大小:1.10 MB
- 文档页数:74
第四章 习题解答4-14-2、解:本题为轴对称应力问题,相应的径向位移为: ()()()()()θ+θ+⎥⎦⎤⎢⎣⎡υ-+υ-+-υ-+υ+-=sin cos ln K I Cr 12Br 311r Br 12r A 1E 1u r (1) 轴对称应力通式为()()02ln 232ln 2122=+++-=+++=θθτσσr r C r B rAC r B r A由应力边界条件()()()()0,00,===-=====b r r b r r a r r a r r q θθτστσ并结合位移单值条件可知B=0,求得:22222222ab qa C a b qb a A -=--= 因半径的改变与刚体位移I ,K 无关,且为平面应变问题,将A 、B 、C 代入(1)式,并将υυυυ-→-→1,12EE 得:内半径的改变:()()()⎪⎪⎭⎫⎝⎛-+-+-=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυυυ11*111112222222222222a b a b Eqa a a b qa a a b q b a E u ar r外半径的改变:()()()2222222222221*11111a b ab E qa b a b qa b a b q b a Eu br r --=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+-=∆=υυυυυυ 圆筒厚度的改变:()()()⎪⎪⎭⎫⎝⎛-++---=∆-∆=∆==υυυ112a b a b E qa u u R ar r b r r4-2另解:半径为r 的圆筒周长为r π2,受载后周长则为 ()θθεπεππ+=+1222r r r , 于是半径为 ()θε+1r ,半径的改变量则为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛---=C r A C rA r E E r r r 212111*2222υυυσυυσυεθθ将对应的A 、C 及r=a,b 分别代入,可求出内外半径的改变及圆筒厚度的改变。
第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。
如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。
例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角α0max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。
最大正应力σmax 所在截面的方位角为α0max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成π4方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。
这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。
(2)取极坐标系如图。
由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中α为小孔的半径,而孔边最大与最小正应力由式(b ),在ρ=α处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当φ=0,π时,孔边最小正应力为(σφ)min=−4q ,当φ=±π2时,孔边最大正应力为(σφ)max=4q 。
分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。
也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。
习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。
第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。
如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。
例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。
最大正应力 所在截面的方位角为max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。
这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。
(2)取极坐标系如图。
由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中 为小孔的半径,而孔边最大与最小正应力由式(b ),在 处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当 , 时,孔边最小正应力为,当时,孔边最大正应力为。
分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。
也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。
习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。
【解】 (1)极坐标,直角坐标中的平衡微分方程10210f f ρρϕρϕρρϕϕρϕϕστσσρρϕρτστρρϕρ∂∂-⎧+++=⎪∂∂⎪⎨∂∂⎪+++=⎪∂∂⎩ 00yxx x y xy yf xy f y x τσστ∂⎧∂++=⎪∂∂⎪⎨∂⎪++=⎪∂∂⎩将极坐标中的平衡微分方程与直角坐标中的平衡微分方程相比较,第一式中,前两项与直角坐标相似;而项是由于正 面上的面积大于负 面上的面积而产生的,是由于正负 面上的正应力 在通过微分体中心的 方向有投影而引起的。
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
弹性力学知到章节测试答案智慧树2023年最新浙江大学第一章测试1.从下面哪个假设出发(),可以认为物体内部的应力、应变和位移等都是连续的。
参考答案:连续性假设2.理想弹性假设只考虑应力和应变成线性关系的情形。
()参考答案:对3.物体在外界荷载作用下发生变形,当外界荷载被消除后,该变形可完全恢复的性质称为弹性。
()参考答案:对4.根据连续性假设,弹性力学问题的应力、应变和位移可表示成坐标的连续函数。
()参考答案:对5.在研究下面对象的宏观力学行为时,各向同性假设不成立的是()。
参考答案:纤维增强复合材料;木材6.下面属于研究弹性力学问题基本假设的是()。
参考答案:均匀性假设;连续性假设;完全弹性假设;各向同性假设第二章测试1.已知矢量,张量,按照求和约定,表达式的值是()。
参考答案:22.已知物体内一点的应力张量为,下面叙述正确的是()。
参考答案:三个主应力分别是(3,0,-2),最大切应力 2.53.在给定应力状态下,一点的主应力方向必相互垂直。
()参考答案:错4.物体内一点的主应力仅与该点的应力状态有关,与所选取的参考坐标系无关。
()参考答案:对5.过一点的任意截面上的应力分量相互独立。
()参考答案:错6.如图所示三角形水坝刚性固结在基础上,坝高为h,坝基底宽为l,水位线离坝顶O点距离为h0,水的密度为,若略去坝体自重,下面关于坝体应力边界条件描述正确的是()。
参考答案:OB边上各点的应力分量有:当时,;OA边上各点的应力分量有:;OA边上各点的应力分量有:;OB边上各点的应力分量有:当时,第三章测试1.已知位移场为,,,对应的应变张量为()。
参考答案:2.下面的应变分量中,哪个可能发生()。
参考答案:3.在一定的应变状态下,物体内任一点的三个应变主方向必相互垂直。
()参考答案:错4.如果物体是单连通的,应变分量满足应变协调方程是保证物体连续的充分必要条件。
()参考答案:对5.下面关于三个主应变叙述正确的是()。
第四章 习题解答(仅供参考)4.3 如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0. 解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1), 这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得 (m + M ) v 02/2 = kA 2/2, 所以振幅为A v =10-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得 φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为 x = 5×10-2cos(40t - π/2).4.4 如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+,这也是它们振动的初速度.设振动方程为 x = A cos(ωt + φ), 其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .图4.3图4.4取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x0 = x1 - x2 = -mg/k.因此振幅为A===初位相为arctanvx ϕω-==4.14三个同方向、同频率的简谐振动为10.08cos(314)6x t π=+,20.08cos(314)2x t π=+,350.08c o s(314)6x t π=+.求:(1)合振动的圆频率、振幅、初相及振动表达式;(2)合振动由初始位置运动到x A=所需最短时间(A为合振动振幅).[解答] 合振动的圆频率为ω = 314 = 100π(rad·s-1).设A0 = 0.08,根据公式得A x = A1cosφ1 + A2cosφ2 + A3cosφ3 = 0,A y = A1sinφ1 + A2sinφ2 + A3sinφ3 = 2A0 = 0.16(m),振幅为A=,初位相为φ = arctan(A y/A x) = π/2.合振动的方程为x = 0.16cos(100πt + π/2).(2)当/2x=时,可得cos(100/2)2tππ+,解得100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s.。