信号与系统答案
- 格式:docx
- 大小:277.90 KB
- 文档页数:5
【填空题】(为任意值)是________ (填连续信号或离散信号),若是离散信号,该信号____(填是或不是)数字信号。
【填空题】是________ (填连续信号或离散信号),若是离散信号,该信号____(填是或不是)数字信号。
【填空题】信号________ (填是或不是),若是周期信号,周期为__pi/5__。
【填空题】系统为____(填线性或非线性)系统、____(填时变或非时变)系统、____(填因果或非因果)系统。
【填空题】系统为____(填线性或非线性)系统、____(填时变或非时变)系统、____(填因果或非因果)系统。
【简答题】判断下图波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号。
连续时间信号【简答题】判断下图波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号。
离散时间信号且为数字信号【简答题】判断信号是功率信号还是能量信号,若是功率信号,平均功率是多少?若是能量信号,能量为多少?功率信号平均功率为4.5【简答题】线性时不变系统具有哪些特性?均匀性、叠加性、时不变性、微分性、因果性。
【填空题】的函数值为____。
2【填空题】的函数值为____。
【填空题】假设,的函数值为____。
1【填空题】假设,的函数值为____。
【填空题】的函数值为____。
我的答案:第一空:e^2-26【填空题】已知,将____(填左移或右移)____可得。
右移个单位7【简答题】计算的微分与积分。
8【简答题】什么是奇异信号?我的答案:奇异信号是指函数本身或其导数或高阶导数具有不连续点(跳变点)。
9【简答题】写出如下波形的函数表达式。
我的答案:f(t)=u(t)+u(t-1)+u(t-2)10【简答题】已知信号的图形如图所示,画出的波形。
我的答案:【简答题】信号微分运算具有什么特点?举一个应用实例。
特点:微分凸显了信号的变化部分。
微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题。
第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。
第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。
A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。
(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(错)第9题、满足均匀性和____条件的系统称为线性系统。
(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。
A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。
1.系统的激励是,响应为,若满足,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?)2.求积分的值为 5 。
3.当信号是脉冲信号时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4.若信号的最高频率是2kHz ,则的乃奎斯特抽样频率为 8kHz 。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的 截止频率 成反比。
7.若信号的,求该信号的。
8.为使LTI 连续系统是稳定的,其系统函数的极点必须在S 平面的 左半平面 。
9.已知信号的频谱函数是,则其时间信号为。
10.若信号的,则其初始值 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足 ( √ )2.满足绝对可积条件的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × )得分)t (e )t (r dt)t (de )t (r =dt )t ()t (212-+⎰∞∞-δf(t)f(t)t)f(23s F(s)=(s+4)(s+2)=)j (F ωj 3(j +4)(j +2)ωωω)s (H ))00(()j (F ωωδωωδω--+=f(t)01sin()t j ωπf(t)211)s (s )s (F +-==+)(f 0)()(t t -=δδ∞<⎰∞∞-dt t f )(3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)1.信号,信号,试求。
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 .A 。
非周期序列B 。
周期3=N C.周期8/3=N D 。
周期24=N2、一连续时间系统y(t)= x (sint),该系统是 .A.因果时不变 B 。
因果时变 C 。
非因果时不变 D 。
非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 .A 。
因果稳定B 。
因果不稳定 C.非因果稳定 D 。
非因果不稳定4、若周期信号x[n ]是实信号和奇信号,则其傅立叶级数系数a k 是 .A 。
实且偶 B.实且为奇 C.纯虚且偶 D 。
纯虚且奇 5、一信号x (t )的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C 。
t t 44sin D 。
t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 .A 。
∑∞-∞=-k k )52(52πωδπ B 。
∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k )10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n ]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B 。
)}(Re{ωj e XC. )}(Im{ωj e X jD. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x (nT )能唯一表示出原信号的最大采样周期为 。
A. 500 B 。
1000 C 。
0。
05 D. 0。
001 9、一信号x (t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 .A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
第一章 1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22m N N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1 易有:)3()(+-=n u n x , 01,3;M n =-=-1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x nx n ∴=-+-+-+-,1()()x n x n =()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
绪论单元测试1.输入和输出都是连续时间信号的系统是()A:混合系统B:数字系统C:离散系统D:连续系统答案:D第一章测试1.单位冲激信号既不是能量信号也不是功率信号。
()A:对B:错答案:A2.正弦信号可用相同周期的虚指数信号表示。
()A:错B:对答案:B3.若为偶函数,则为奇函数。
()A:错B:对答案:B4.正弦信号对时间的微分与积分仍然是同频率的正弦信号。
()A:错B:对答案:B5.一般情况离散时间正弦序列是周期的。
()A:错B:对答案:A第二章测试1.卷积积分的值为()A:B:C:D:答案:B2.任意信号f(t)在区间(t1,t2)可以由完备的正交信号集中各相互正交信号的线性组合表达。
()A:对B:错答案:A3.在系统中齐次性和叠加性是两个独立的性质。
()A:对B:错答案:A4.如果系统是稳定的自由响应通常是瞬态解,强迫响应是稳态响应。
()A:错B:对答案:A5.卷积等于()A:B:C:D:答案:A第三章测试1.信号的基波周期为()。
A:4B:16C:8D:信号为非周期序列,无基波周期答案:B2.任何连续信号的幅频响应是偶对称。
()A:错B:对答案:B3.频域的传输函数定义为系统响应的傅里叶变换与系统激励的傅里叶变换之比。
()A:对B:错答案:A4.若的傅里叶变换为,则的面积。
()A:对B:错答案:A5.两个周期信号之和一定为周期信号。
()A:对B:错答案:B6.11 .一个频域有限信号,其时域必为无限的。
()A:对B:错答案:A第四章测试1.全通系统为无失真传输系统。
()A:错B:对答案:A2.两个线性时不变系统的级联,其总的输入输出关系与它们在级联中的次序没有关系。
()A:对B:错答案:A3.连续时间系统稳定的条件是,系统函数H (s)的极点应位于s平面的右半平面。
()A:对B:错答案:A4.信号 .w65209931934s .brush0 { fill:rgb(255,255,255); } .w65209931934s .pen0 { stroke: rgb(0,0,0); stroke-width: 1; stroke-linejoin: round; } .w65209931934s .font0 { font-size: 406px;font-family: “Times New Roman”, serif; } .w65209931934s .font1 { font-size:262px; font-family: “Times New Roman”, serif; } .w65209931934s .font2{ font-style: italic; font-size: 406px; font-family: “Times New Roman”,serif; } .w65209931934s .font3 { font-style: italic; font-size: 262px; font-family: “Times New Roman”, serif; } .w65209931934s .font4 { font-style:italic; font-size: 373px; font-family: Symbol, serif; } .w65209931934s .font5{ font-size: 242px; font-family: Symbol, serif; } .w65209931934s .font6 { font-size: 373px; font-family: Symbol, serif; } .w65209931934s .font7 { font-weight: bold; font-size: 76px; font-family: System, sans-serif; } ) ( ) ( 4 t e t f te - = 的拉氏变换及收敛域为()。
第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。
3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。
4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。
(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。
答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。
答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。
信号与系统_北京邮电大学中国大学mooc课后章节答案期末考试题库2023年1.关于信号【图片】描述正确的是()。
参考答案:该信号的基波角频率是1 rad/s。
2.以频谱分割的方式进行频道划分,多路信号混合在一起传输,但每一信号占据着有限的不同频率区间,此区间不被其他信号占用。
这种复用方式称为频分复用。
参考答案:正确3.【图片】上图所示的周期矩形脉冲信号,其直流分量为【图片】。
参考答案:错误4.【图片】的能量是()。
参考答案:55.对于具有矩形幅度特性和线性相位特性的理性低通滤波器,【图片】是其截止频率,其阶跃响应【图片】波形如下图所示。
下面说法中不正确的是()【图片】参考答案:阶跃响应的上升时间为。
6.【图片】的收敛域是全s平面。
参考答案:正确7.因果信号【图片】的拉普拉斯变换为【图片】,则【图片】。
参考答案:正确8.【图片】的z变换为【图片】,收敛域为【图片】。
参考答案:正确9.线性时不变因果系统的单位阶跃响应【图片】与其单位冲激响应【图片】之间关系是【图片】。
参考答案:错误10.周期为T的冲激序列信号【图片】,有关该信号描述不正确的是()。
参考答案:该信号的频谱满足离散性、谐波性和收敛性。
11.在区间【图片】余弦信号【图片】与正弦信号【图片】相互正交。
参考答案:正确12.已知某离散时间线性时不变系统的单位样值响应为【图片】,则当输入信号为【图片】时,系统的零状态响应为【图片】。
参考答案:正确13.某系统的信号流图如下图所示。
则该系统的系统函数可表示为【图片】。
【图片】参考答案:正确14.某连续系统的系统函数为【图片】,该系统可以既是因果的,又是稳定的。
参考答案:正确15.因果系统的系统函数为【图片】,R>0,C>0,则该系统属于( )网络。
参考答案:高通滤波网络16.下图所示反馈系统,已知子系统的系统函数【图片】,关于系统函数及稳定性说法正确的是()。
【图片】参考答案:系统函数为,当时,系统稳定。
信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。
3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。
信号与系统答案Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】2011—2012学年度第1学期期末考试试卷(C 卷)开课学院:物电 课程名称:信号与系统 考试形式:闭卷 所需时间:120分注意事项:1、教师出题时请勿超出边界虚线;2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;.3、答题请用蓝、黑钢笔或圆珠笔。
一.填空题:(每题2分,共20分)1.[()(2)](22)u t u t t δ---等于 1()(1)2t δ-2.计算下列卷积32()3()t te u t e u t --*等于33()()tte e u t ---3.若()f t 的傅里叶变换为()F w ,求20()cos f t w t 的傅里叶变换2000001()cos [()*()()*()]4f t w t F w w F w w F w w F w w π↔+++--4.()dt t et12-⎰+∞∞--δ= e -2。
5.计算下列信号的傅里叶变换[]sin()cos()2x n n n π=+,则()jw X e =()[()()]22[(1)(1)],jw X e w w j w w w πππδδπδδππ=--++--+-≤≤6. 下列是各离散时间信号的傅里叶变换2113()11148jwjw jw j we X e e e ----=--,求相应于每一变换的信号[]x n = 2171[][][]9294nnx n u n u n ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭7.线性时不变离散系统,若该系统的单位阶跃响应为1()[]4n u n ,则该系统的单位脉冲响应为 111[]()[]()[1]44n n h n u n u n -=-- 8. 有一个因果LTI 滤波器,其频率响应()H jw 如图所示,给定的输入1()()(6)X jw jw jw =+,求经过滤波后的输出()y t = 6()2()t y t e u t -=-9. 已知10(2)(5)()(1)(3)s s F s s s s ++=++,{}0Re s >,求逆变换()f t =310010()20e e ()33t t f t u t --⎛⎫=--⎪⎝⎭10. 已知象函数2()(1)(2)z F z z z =+-,其收敛域分别为1<?z?<2,求逆z 变换()f n =12()(1)()(2)(1)33n n f n u n u n =----二.判断题:(每题2分,共10分,填入“√”或“×”)1. 若t<0时,有f(t)=0 , t ≥0时,有f(t) ≠0 ,则f(t)称为因果信号。
( √ )2. 离散时间系统的频率响应()j H e ω为H(z)在单位圆上的Z 变换。
( √ )3. 单位冲激δ(t)在零状态下系统产生的响应称为单位冲激响应。
( √ )4. 2()()y t x t =是不可逆系统,因为有两个不同的输入。
( √ )5. 21()[()]()y t x t x t '=满足线性性质。
( × )三.选择题(每题2分,共20分,在每题的四个备选答案中选择一个正确的答案。
)1. 下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、u (t )是功率信号;D 、e t 为能量信号;2. 序列的收敛域描述错误的是( B ): A 、对于有限长的序列,其双边z 变换在整个平面; B 、对因果序列,其z 变换的收敛域为某个圆外区域; C 、对反因果序列,其z 变换的收敛域为某个圆外区域; D 、对双边序列,其z 变换的收敛域为环状区域。
3. )2)(1()2(2)(-++=s s s s s H ,属于其极点的是( B )。
A 、1B 、2C 、0D 、-24. 将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )5. 下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δ C 、()()td u t δττ-∞=⎰ D 、)0(d )()(f t t t f =⎰+∞∞-δ 6.连续系统在输入()f t 作用下的零状态响应为()(4)y t f t =,则该系统为( B )A 、线性时不变系统B 、 线性时变系统C 、非线性时不变系统D 、 非线性时变系统 7. 已知信号1()2[(2)()](2)[()(2)]f t u t u t t u t u t =+-++--,则1()(12)[()(1)]2f t f t u t u t =-+--的波形是( B )。
8. 序列和()kn u n =-∞∑等于( D )A 、 1B 、 ()k δC 、 ()ku kD 、 (1)()k u k + 9. 以下列4个信号的拉普拉斯变换,其中( D )不存在傅里叶变换 A 、 1sB 、1C 、 12s +D 、 12s - 10. 已知()f k 的z 变换1()(0.5)(2)F z z z =++,()F z 的收敛域为( C )时是因果序列。
A 、 ||0.5z >B 、 ||0.5z <C 、 ||2z >D 、 0.5||2z <<四.计算和简答题(每题10分,共50分) 1.求如图所示离散系统的单位响应()h n 。
解:由图引入中间变量()q n ,则有1(1)()()2()2(1)2()q n f n q n y n q n q n +=+=+-,所以1(1)()2(1)2()2y n y n f n f n +-=+-。
移序算子为221()21122S H S S S -==---, 所以1121()2()()(1)211()()()(1)22k n n h t n u n u n u n δ---=--=--2.有一幅度为1,脉冲宽度为2ms 的周期矩形脉冲,其周期为8ms ,如图所示,求频谱并画出频谱图频谱图。
解:付里叶变换为Fn 为实数,可直接画成一个频谱图。
3.已知象函数)3)(2)(1)(21()1294()(23----++-=z z z z zz z z z z F ,其收敛域分别为:(1)?z?>3(2) 1<?z?<2,求逆z 变换。
解:32125.0)(-+--+-+--=z zz z z z z z z F (1)?z?>3 由收敛域可知,上式四项的收敛域满足?z?>3,1()()()2()(2)()(3)()2k k k f k u k u k u k u k =-+-+(2) 1<?z?<2由收敛域可知,上式前两项的收敛域满足?z?>1,后两项满足?z?<2。
1()()()2()(2)(1)(3)(1)2k k k f k u k u k u k u k =-++-----4. 若()f t 的波形如下图所示,求其相应的傅里叶变换()F w 。
ΩΩ=Ω-=-Ω-n n Tjn T t jn )2sin(2e 122τττF n ωτπ2τπ2-τπ441f(t)tT-T…12τ-2τy(n)∑ ∑ Df(n 22 1/2+++_''2()()f t f t =222()222j w jw jw j w F w e e e e --=-+-+22212()222()(0)()j w jw jw j wF w e e e e F w F w jw jwπδ---+-+=+=2211222()222()(0)()4cos 4cos j w jw jw j wF w e e e e F w F w jw w w w w πδ---+-+=+=---=5.简述频分多路复用(FDM)的概念。
用于传输信号的许多系统都可以提供一个比信号本身所要求的频带宽得多的带宽。
如果频谱互相重叠的单个信号,利用正弦幅度调制把他们的频谱在频率上进行搬移,使这些已调信号的频谱不再重叠,那么就能在同一宽带信道上同时传输这些信号。
这就是频分多路复用(FDM)的概念。