最后得出原空间中的二次曲线:
[w*
]1
2[w*
]2[
x]1
2[w*
]3[
x]2
2[w*
]4[
x]1[
x]2
[w*]5[
x]12
[w*]6[
x]2 2
b
0
21
-
22
-
应用
• SVM可以用来分类和预测 • 应用领域:
手写数字识别、 对象识别、 语音识别、 基准时间序列预测检验
23
-
8
-
SVM相关概念解释
9
-
SVM原理—数据线性可分
• 2个类的问题
设两类问题训练样本集为
(X1,y1), (X2,y2),…,(Xn,yn),其中
Xi∈Rn, yi={1,-1}, i=1,…,n,这
里线性可分就是指,存在着超 平面(Hyper-plane)直线
f(x) = wX+ b,使得训练样本 中的一类输入和另一类输入分 别位于该超平面的两侧.
[w]1[X ]1 2[w]2[X ]2 2[w]3[X ]3 2[w]4[X ]4 [w]5[X ]5 [w]6[X ]6 b 0
20
-
• 可见,只要利用变换,把 x 所在的2维空间的两类输入 点映射到 x 所在的6维空间,然后在这个6维空间中,使 用线性学习机求出分划超平面:
(w* x) b* 0,其中w* ([w*]1, [w*]6 )T
1
支持向量机SVM
-
主要内容
2
-
1.SVM简介 2.SVM相关概念解释 3.SVM原理
3.1线性可分 3.2线性不可分
3
-
支持向量机简介