实变函数04级期末考试题(A)(解答)
- 格式:docx
- 大小:34.51 KB
- 文档页数:7
华中师范大学 2006 –2007 学年第一学期期末考试试卷(A 卷)(解答)课程名称 实变函数 课程编号 83410014 任课教师判断题(判断正确、错误,请在括号中填“对”或“错”。
共5小题,每题3分,共5×3=15分)1、可数个可数集的并集是可数集。
( 对 )2、可测集E 上的非负可测函数必Lebesgue 可积。
( 错 )3、R n 上全体Lebesgue 可测集所组成的集类 具有连续势。
( 错 )4、非空开集的Lebesgue 测度必大于零。
( 对 )5、若()n f x (1n =,2,)和()f x 都为可测集E 上的可测函数,且lim ()()n n f x f x →∞=,..a e E ,则()()n f x f x ⇒,x E ∈。
( 错 )二、叙述题 (共5小题 , 每题3分,共5×3 =15分)1、单调收敛定理(即Levi 定理)答:设E 是Lebesgue 可测集,()n f x (1n =,2,)为E 上的非负可测函数,若{()n f x }是单调递增的,记()lim ()n n f x f x →∞=,则lim()()n n EEf x dx f x dx →∞=⎰⎰。
2、R n中开集的结构定理答:R n中的任一非空开集总可表示成R n中至多可数个互不相交的半开半闭区间的并。
(或R n中的任一开集或为空集或可表示成R n中至多可数个互不相交的半开半闭区间的并。
)3、R n中的集合E 是Lebesgue 可测集的卡氏定义(即C .Caratheodory 定义)答:设n E R ⊂,如果对任意nT R ⊂,总有***()()c m T m T E m T E =⋂+⋂则称E 为R n 中的Lebesgue 可测集,或称E 是Lebesgue 可测的。
4、F .Riesz 定理(黎斯定理)答:设E 为Lebesgue 可测集,()n f x (1n =,2,)和()f x 都是E 上的几乎处处有限的可测函数,如果()()n f x f x ⇒ x E ∈,则存在{()n f x }的一个子列{()k n f x },使得lim ()()k n k f x f x →∞=..a e 于E 。
《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
华屮师范大学2002——2003学年第二学期期(中、末)考试试卷(A、R卷)课程名称实变函数课程编号42111300 任课教师_________题型判断题叙述题简答题解答题总分分值151********得分一、判断题(判断正确、错课,并改正。
共5题,共5X3=15分)1、可数个冇限集的并集是可数集。
.(X )改正:可数个有限集的并集不一定是可数集。
2、存在开集使具余集仍为开集。
(V )co3、若可测集列E“单调递减,则m A E n = limrnE, o( X )n=\ ns改正:若可测集列乞单调递减,且存在〃0,使加£心<008则m A E n = lim mE n <>n=\n—4、若E是可测集,/(兀)是£上的实函数,则/(x)在E上可测的充要条件是:0 实数a,b(a<b) , E[x\a<f<b]都是可测集。
(X )改正:若£是可测集,/(Q是E上的实函数,则/(x)在E上可测的充耍条件是: 0实数a, E[x\f>a]都是可测集。
5、若E是可测集, /(兀)是E上的非负可测函数,则于(兀)在E上一定可积。
改正:若E是可测集, /(X)是E上的非负可测函数,则/(x)在E上不一定可积。
二.叙述题(共5题,共5X3=15分)1、集合的对等。
答:设A、B是两个集合,若A、BZ间存在一一对应,则称A与B对等。
2、可测集。
答:设E u R”,如果对任意T uR”,总有mV=/77*(Tn£) + m*(Tn£c),则称E为可测集。
3、可测集与几型集的关系。
答:设E为可测集,则存在人型集F,使F uE且加E二加F、加(E — F) = O。
4、叶果洛夫定理。
答:设mE < +oo , { f n(x))为E上儿乎处处有限的可测函数列,/(兀)也为E上儿乎处处有限的可测函数,如果AU)^/(x) a.e.于E,则对任意£>0,存在可测了集E£^E 使在E&上,f n (兀)一致收敛于/*(兀),而m{E-E G)< 8 o5、九(兀)在可测集E上依测度收敛于/(兀)的定义。
《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
《实变函数》试卷四注 意 事 项1、本试卷共6页。
2、考生答题时必须准确填写专业、班级、学号等栏目,字迹要清楚、工整。
一.单项选择题(3分×5=15分)1.设P 为Cantor 集,则(A )=P ℵ0 (B) 1=mP (C) P P =' (D) P P =2. 下列说法不正确的是( )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点3.设)(x f 在E 上L 可积,则下面不成立的是( )(A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限(C))(x f 在E 上有界 (D))(x f 在E 上L 可积4. 设}{n E 是一列可测集,12n E E E ⊆⊆⊆⊆ ,则有( )。
(A )1lim n n n n m E mE ∞=→∞⎛⎫⋃> ⎪⎝⎭ (B) 1lim n n n n m E mE ∞=→∞⎛⎫⋃= ⎪⎝⎭ (C )1lim n n n n m E mE ∞=→∞⎛⎫⋂= ⎪⎝⎭;(D )以上都不对 5.设)(x f 为],[b a 上的有界变差函数,则下面不成立的是( )(A))(x f 在],[b a 上L 可积 (B))(x f 在],[b a 上R 可积(C))('x f 在],[b a 上L 可积 (D))(x f 在],[b a 上绝对连续二. 填空题(3分×5=15分)1、设11[,2],1,2,n A n n n =-= ,则=∞→n n A lim _________。
2、设E R ⊂,若,E E ⊂'则E 是 集;若0E E ⊂,则E 是 __集;若'E E =,则E 是________集.3、设{}i S 是一列可测集,则11______i i i i m S mS ∞∞==⎛⎫⋃ ⎪⎝⎭∑4、鲁津定理:_____________________________________________________________________________________________________________________5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切划分,使 ________________________________,则称()f x 为[],a b 上的有界变差函数。
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就试卷 共 8 页 第 2 页得到列维定理的结论:。
一、单项选择题1.下列命题或表达式正确的是 DA .}{b b ⊂B .2}2{=C .对于任意集合B A ,,有B A ⊂或A B ⊂D .φφ⊂ 2.下列命题不正确的是 AA .若点集A 是无界集,则+∞=A m *B .若点集E 是有界集,则+∞<E m *C .可数点集的外测度为零D .康托集P 的测度为零 3.下列表达式正确的是 DA.}0),(m ax {)(x f x f -=+B .)()()(x f x f x f -++= C.)()(|)(|x f x f x f -+-=D .}),(min{)]([n x f x f n = 4.下列命题不正确的是 BA .开集、闭集都是可测集B .可测集都是Borel 集C .外测度为零的集是可测集D .σF 型集,δG 型集都是可测集 5.下列集合基数为a (可数集)的是 CA .康托集PB .)1,0(C .设i n nx x x x x A R A |),,,({,21 ==⊂是整数,},,2,1n i =D .区间)1,0(中的无理数全体二、计算题1. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰.解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰2. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰三、判断题 1. 若,A B 可测, A B ⊂且A B ≠,则mA mB <.(×)2. 设E 为点集, P E ∉, 则P 是E 的外点. (×)3. 点集11,2,,E n⎧⎫=⎨⎬⎩⎭的闭集.(×) 4. 任意多个闭集的并集是闭集.(×) 5. 若n ER ⊂,满足*m E =+∞, 则E 为无限集合.(√)6.非可数的无限集为c 势集。
师范大学期中/期末试卷(A )(简明答案)课程名称:实变函数学生姓名:___________________ 学 号:___________________ 专 业:___________________ 年级/班级:__________________ 课程性质:专业必修…………………………………………………………………………………………一.判别题(每题2分,共20分)1. 设()f x 在(,)-∞+∞上单调增,则()f x 的不连续点是可数的.2. 不可数个闭集的交集仍是闭集.3. 设{}n E 是一列可测集,且1,1,2,,n n E E n +⊂=L 则1()lim ().n n n n m E m E ∞→∞==I4. 任意多个可测集的交集是可测集.5. 若()f x 在E 上可测,则存在F σ型集,()0F E m E F ⊂-=,()f x 在F 上连续.6. 若,mE <∞{}()n f x 在E 上几乎处处有限,几乎处处收敛于几乎处处有限的(),f x 则0,δ∀>存在闭集,()F E m E F δδδ⊂-<,{}()n f x 在F δ上一致收敛于()f x .7.cos xx是[1,)+∞上勒贝格可积函数. 8. 若()f x 是[,]a b 上单调增连续函数,且()0f x '=几乎处处成立,则()f x 为常值函数. 9. 若()f x 是[0,1]上单调严格增绝对连续函数,()g x 在([0,1])f 满足李普西茨条件,则(())g f x 是[0,1]上绝对连续函数.10. 设(,)f x y 在{}(,):,()()D x y a x b g x y h x =≤≤≤≤上可积,其中(),()g x h x 是[,]a b 上连续函数,则()()()(,).bh x ag x Df P dP dx f x y dy =⎰⎰⎰二.(12分)若在可测集E 上,()()(),()()()n n f x f x n g x g x n ⇒→∞⇒→∞. 求证:在E 上,()()()()().n n f x g x f x g x n +⇒+→∞三. (12分)设()f x 在E 上可积,[],1,2,n E E f n n =≥=L . 求证:(1)lim ()0;n n m E →∞= (2)lim ()0.n n nm E →∞=四. (12分)若{}()n f x 是一列[,]a b 上有界变差函数,[,],lim ()(),n n x a b f x f x →∞∀∈=且0,M ∃>().1,2,.bn af M n ∨≤=L 求证:f 是[,]a b 上有界变差函数.五. (12分)设E 是可测集,{}n E 是E 内的一列可测子集.1,()(),1,2,0,\n nn E nx E f x x n x E E χ∈⎧===⎨∈⎩L求证:(1){}()n f x 在E 上一致收敛于1的充分且必要条件是:,,.n N n N E E ∃∀>= (2)()1n f x ⇒的充分且必要条件是:lim ()0.n n m E E →∞-=六. (12分)设()f x 在E 上可积,(),()(),1,2,0,()n f x f x nf x n f x n ⎧≤⎪==⎨>⎪⎩L求证:(1)()n f x 在E 上可积,1,2,n =L ;(2)lim ()()n EEn f x dx f x dx →∞=⎰⎰.七. (10分)设{}()n g x 是一列可测集E 上可积函数,lim ()()n n g x g x →∞=在E 上几乎处处成立,且lim ()()n EEn g x dx g x dx →∞=⎰⎰.{}()n f x 是一列E 上可测函数,lim ()()n n f x f x →∞=在E 上几乎处处成立,且,()(),1,2,n n x E f x g x n ∀∈≤=L . 求证: lim ()()n EEn f x dx f x dx →∞=⎰⎰.八.(10分)设E 是可测集,{}n E 是E 内的一列可测子集.1,()(),1,0,\n nn E n x E f x x n x E E χ∈⎧===⎨∈⎩L仿第五题(1) 给出lim ()1n n f x →∞=在E 上几乎处处成立的充分且必要条件,并证明;(2) 给出{}()n f x 在E 上“基本上”一致收敛于1的充分且必要条件,并证明.。