重点-手机天线的基本参数
- 格式:doc
- 大小:380.50 KB
- 文档页数:20
天线的基本参数1.1天线的基本参数从左侧的传输线的⾓度看,天线是⼀个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的⾃由空间⾓度来看,天线的特征可以⽤辐射⽅向图(radiation pattern)或者包含场量的⽅向图。
R r不等于天线材料⾃⼰的电阻,⽽是天线、天线所处的环境(⽐如温度)和天线终端的综合结果。
影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。
对于⽆损天线来说,天线温度T A和天线材料本⾝的温度⼀点都没有关系,⽽是与⾃由空间的温度有关。
确切地说,天线温度与其说是天线的固有属性,还不如说是⼀个取决于天线“看到”的区域的参数。
从这个⾓度看,⼀个接收天线可以被视作能遥感测温设备。
辐射电阻R r和天线温度T A都是标量。
另⼀⽅⾯,辐射⽅向图包括场变量或者功率变量(功率变量与场变量的平⽅成正⽐),这两个变量都是球体坐标θ和Φ的函数。
1.2天线的⽅向性(D,Directivity)和增益(G,Gain)D=4π/ΩA,其中ΩA是总波束范围(或者波束⽴体⾓)。
ΩA由主瓣范围(⽴体⾓)ΩM+副瓣范围(⽴体⾓)Ωm。
如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。
各向同性天线具有最低的⽅向性,所有实际的天线的⽅向性都⼤于1。
如果⼀个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。
简单短偶极⼦具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。
如果⼀个天线的主瓣在θ平⾯和Φ平⾯的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg)≈103≈20dBi(dB over isotropic)。
天线的主要技术指标天线是用于发送和接收电磁波的装置,它在无线通信、雷达、无线电电视和卫星通信等领域中起着关键作用。
天线的性能取决于一系列的技术指标,下面是一些主要的技术指标及其解释:1. 增益(Gain)天线的增益是指天线沿一些特定方向的辐射强度相对于理想的点源天线的辐射强度的增加量。
增益通常以分贝(dB)为单位表示。
增益越大,天线在特定方向上的辐射和接收效果越好。
2. 方向性(Directivity)方向性是天线在特定方向上辐射或接收电磁波的能力。
具有高方向性的天线能够更好地定向发送或接收信号,减少信号的散失。
3. 前后比(Front-to-Back Ratio)前后比是指天线在前方与后方的辐射强度之比。
高的前后比表示天线在前方的辐射强度较高,而在后方的辐射强度较低。
4. 驻波比(Standing Wave Ratio, SWR)驻波比是指天线输入端与输出端之间的匹配程度。
SWR值越小,表示天线负载和信号发生器之间的匹配越好,信号的传输效率越高。
5. 带宽(Bandwidth)带宽是指天线能够有效工作的频率范围。
带宽越宽,天线能够工作的频率范围就越广,能够发送或接收不同频率的信号。
6. 前向波束宽度(Forward Beamwidth)前向波束宽度是指天线在辐射方向上的角度范围。
辐射范围越窄,波束越集中,增强了天线的方向性。
7. 侧向波束宽度(Sidelobe Level)侧向波束宽度是指天线在辐射方向之外的角度范围内的辐射强度。
低的侧向波束宽度表示天线的辐射主要集中在主波束上,减少了对其他方向的干扰。
8. 阻抗(Impedance)阻抗是指天线输入端对于信号源的阻力。
天线的输入阻抗需要和信号源的输出阻抗匹配,以达到最大效率的信号传输。
9. 析波效率(Radiation Efficiency)析波效率是指天线将输入功率转化为辐射功率的能力。
较高的析波效率意味着更多的输入功率被转换为辐射,减少了能量的损失。
LTE天线参数的标准包括以下几个方面:
1. 增益:增益是衡量天线辐射能力的重要指标。
在LTE系统中,通常要求天线具有较高的增益,以保证信号的覆盖范围和接收质量。
2. 波束宽度:波束宽度表示天线向不同方向辐射电磁波的能力。
在LTE系统中,通常要求天线具有较窄的波束宽度,以便更好地控制信号的传播方向和覆盖范围。
3. 极化:极化是指天线发送的电磁波的振动方向。
在LTE系统中,通常要求天线具有水平极化或垂直极化,以适应不同场景的需求。
4. 阻抗:阻抗是衡量天线与馈线之间匹配程度的重要指标。
在LTE系统中,通常要求天线具有50欧姆的阻抗,以确保信号传输的稳定性和效率。
需要注意的是,不同的LTE频段和不同的天线类型可能有不同的天线参数标准。
因此,在实际应用中,需要根据具体情况选择合适的天线参数标准。
天线相关参数解释天线相关参数解释1、天线的输⼊阻抗天线的输⼊阻抗是天线馈电端输⼊电压与输⼊电流的⽐值。
天线与馈线的连接,最佳情形是天线输⼊阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输⼊阻抗随频率的变化⽐较平缓。
天线的匹配⼯作就是消除天线输⼊阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。
匹配的优劣⼀般⽤四个参数来衡量即反射系数,⾏波系数,驻波⽐和回波损耗,四个参数之间有固定的数值关系,使⽤那⼀个纯出于习惯。
在我们⽇常维护中,⽤的较多的是驻波⽐和回波损耗。
⼀般移动通信天线的输⼊阻抗为50Ω。
2、驻波⽐它是⾏波系数的倒数,其值在1到⽆穷⼤之间。
驻波⽐为1,表⽰完全匹配;驻波⽐为⽆穷⼤表⽰全反射,完全失配。
在移动通信系统中,⼀般要求驻波⽐⼩于1.5,但实际应⽤中VSWR应⼩于1.2。
过⼤的驻波⽐会减⼩基站的覆盖并造成系统内⼲扰加⼤,影响基站的服务性能。
3、回波损耗它是反射系数绝对值的倒数,以分贝值表⽰。
回波损耗的值在0dB的到⽆穷⼤之间,回波损耗越⼤表⽰匹配越差,回波损耗越⼩表⽰匹配越好。
0表⽰全反射,⽆穷⼤表⽰完全匹配。
在移动通信系统中,⼀般要求回波损耗⼤于14dB。
4、天线的极化⽅式所谓天线的极化,就是指天线辐射时形成的电场强度⽅向。
当电场强度⽅向垂直于地⾯时,此电波就称为垂直极化波;当电场强度⽅向平⾏于地⾯时,此电波就称为⽔平极化波。
由于电波的特性,决定了⽔平极化传播的信号在贴近地⾯时会在⼤地表⾯产⽣极化电流,极化电流因受⼤地阻抗影响产⽣热能⽽使电场信号迅速衰减,⽽垂直极化⽅式则不易产⽣极化电流,从⽽避免了能量的⼤幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,⼀般均采⽤垂直极化的传播⽅式。
另外,随着新技术的发展,最近⼜出现了⼀种双极化天线。
就其设计思路⽽⾔,⼀般分为垂直与⽔平极化和±45°极化两种⽅式,性能上⼀般后者优于前者,因此⽬前⼤部分采⽤的是±45°极化⽅式。
天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。
这些参数是衡量天线质量好坏的重要指标。
【天线的方向性】是指天线向一定方向辐射电磁波的能力。
它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。
所以方向性是衡量天线优劣的重要因素之一。
天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的性和抗干扰性。
【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。
实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。
在这个立体图中,由于所取的截面不同而有不同的方向性图。
最常用的是水平面的方向性图(即和平行的平面的方向性图)和垂直面的方向性图(即垂直于的平面的方向性图)。
有的专业书籍上也称赤道面方向性图或子午面方向性图。
【波瓣宽度】有时也称波束宽度。
系指方向性图的主瓣宽度。
一般是指半功率波瓣宽度。
当 L/λ数值不同时,其波瓣宽度也不同。
L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。
因此,波瓣宽度越小,其方向性越强,性也强,干扰邻台的可能性小。
所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。
【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。
为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。
任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。
按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。
通常如果不特别指出,就以最大辐射方向的方向性系数作为定向天线的方向性系数。
在中波和短波波段,方向性系数约为几到几十;在米波围,约为几十到几百;而在厘米波波段,则可高达几千,甚至几万。
天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。
以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。
一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。
平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。
一般地,GSM定向基站水平面半功率波瓣宽度为65°,在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。
2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。
理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。
我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。
3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。
增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。
由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。
一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外,表征天线增益的参数有dBd和dBi。
DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。
相同的条件下,增益越高,电波传播的距离越远。
4、入阻输入阻抗输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。
1.1天线的基本参数从左侧的传输线的角度看,天线是一个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的自由空间角度来看,天线的特征可以用辐射方向图(radiation pattern)或者包含场量的方向图。
R r不等于天线材料自己的电阻,而是天线、天线所处的环境(比如温度)和天线终端的综合结果。
影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。
对于无损天线来说,天线温度T A和天线材料本身的温度一点都没有关系,而是与自由空间的温度有关。
确切地说,天线温度与其说是天线的固有属性,还不如说是一个取决于天线“看到”的区域的参数。
从这个角度看,一个接收天线可以被视作能遥感测温设备。
辐射电阻R r和天线温度T A都是标量。
另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量的平方成正比),这两个变量都是球体坐标θ和Φ的函数。
1.2天线的方向性(D,Directivity)和增益(G,Gain)D=4π/ΩA,其中ΩA是总波束范围(或者波束立体角)。
ΩA由主瓣范围(立体角)ΩM+副瓣范围(立体角)Ωm。
如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。
各向同性天线具有最低的方向性,所有实际的天线的方向性都大于1。
如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。
简单短偶极子具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。
如果一个天线的主瓣在θ平面和Φ平面的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。
4g天线的参数标准
随着移动互联网的迅速发展,4G技术网速越来越快,越来越多的消费者需要更好的4G天线来享受高速网络。
而4G天线的参数标准也是消费者购买时需要了解的重要因素之一。
1. 频段参数
首先,要了解4G天线的频段参数。
由于不同的运营商在不同地区使用不同的频段,因此消费者需要知道他们所在地的运营商使用的频段。
此外,不同的频段对应的天线也不同,一些天线可能只适用于特定的频段。
因此,在购买之前必须查明自己所需的频段以及所购买的天线适用的频段。
2. 增益参数
其次,4G天线的增益参数也是消费者需要了解的。
增益指的是天线转化接受或发射电磁波的能力,在相同条件下,增益越高,信号的强度也越大。
因此,消费者需要根据自己的需求选择合适的增益。
但是,在室内使用4G天线时应注意,增益太高可能会导致信号过盈,需要根据自己的需求选择合适的增益。
3. 阻抗参数
阻抗是指电磁波在天线和设备之间传输的电阻。
阻抗不匹配会导致信号过弱甚至没有信号,因此,消费者需要选择阻抗与所连接设备相适应的天线,以确保信号传输的可靠性。
4. VSWR参数
VSWR是指天线输入阻抗与输出阻抗的比值,在工作频率下的反射功率所引起的电压与加在天线上的电压比值。
VSWR越小,代表天线能更好地匹配设备与信号的阻抗,从而减少信号反射和能量损失。
综上所述,4G天线的频段、增益、阻抗、VSWR等参数都是消费者需要考虑的重要标准。
只有通过了解这些参数,才能选择到适合自己需求且性价比高的4G天线,让自己在使用移动互联网时拥有更好的体验。
5g天线技术参数一、引言5G技术的快速发展,使得5G天线技术成为了热门话题。
5G天线技术是指用于5G系统中的天线技术,它是实现5G通信的重要组成部分。
本文将详细介绍5G天线技术参数,包括频段、增益、波束宽度等。
二、频段1. 低频段:600MHz-900MHz2. 中频段:1.8GHz-2.6GHz3. 高频段:24GHz-40GHz4. 毫米波频段:30GHz-300GHz三、增益1. 定义:增益是指天线在某个方向上的辐射功率与同样条件下理论点源辐射功率之比。
2. 常见增益值:低频段:6dBi-12dBi中频段:10dBi-15dBi高频段:15dBi-20dBi毫米波频段:20dBi以上四、波束宽度1. 定义:波束宽度是指天线主瓣内沿两条垂直方向上3dB降幅点之间的夹角。
2. 常见波束宽度值:低频段:60°-90°中频段:45°-60°高频段:30°-45°毫米波频段:10°-30°五、极化方式1. 定义:极化是指电磁波在传播过程中电场向量的方向。
2. 常见极化方式:水平极化、垂直极化、左旋圆极化、右旋圆极化。
六、天线类型1. 定义:天线类型根据其结构和工作原理不同可分为多种类型。
2. 常见天线类型:微带贴片天线、螺旋天线、柱形天线、饼形天线等。
七、总结5G技术的快速发展,使得5G天线技术成为了热门话题。
本文详细介绍了5G天线技术参数,包括频段、增益、波束宽度等。
这些参数对于5G通信系统的设计和优化具有重要意义,未来将会有更多的5G天线技术问世。
手机天线的基本参数1,VSWR 驻波比V oltage standing wave ratio. Measures the peak to peak voltage on the input transmission line.一般高频传输线上都是行驻波。
电压驻波比是指传输线线相邻的电压振幅最大值和电压振幅最小值的绝对值的比值。
行波无反射状态,VSWR=1,为最佳情况。
全反射状态,VSWR为无穷大。
对于天线而言,我们希望反射的能量越少越好,那么就用驻波比来表示反射的多少,尽量接近1为最佳。
VSWR=(1+反射系数)/(1-反射系数)。
驻波比越小越好,表示反射系数越小越好。
驻波比反映了天馈系统的匹配情况。
它是以天线作为发射天线时发射出去和反射回来的能量(对于天线而言,重点强调的是能量关系,而不像传输线那样强调的是电压之间的关系)的比来衡量天线性能的。
驻波比是由天馈系统的阻抗决定的。
天线的阻抗与馈线的阻抗与接收机的阻抗一致,驻波比就小。
驻波比高的天馈系统,信号在馈线中的损失很大。
驻波比跟反射系数,也可以说的回波损耗是成正比的,回波损耗强调能量关系。
来自网络,仅供参考2,Return Loss 回波损耗The amount of power reflected by the antenna back to the generator.回波损耗是指某一点(对于手机天线而言是指天线的馈点处)反射波的功率与入射波的功率之比的10*log值。
也就是反射系数的平方的10*log值。
回波损耗=10*log(反射系数平方值)。
知道了驻波比,可以求出反射系数,进而就可以求出回波损耗。
单位是dB,有时候回波损耗也当成是反射系数,即20*log(反射系数),由于反射系数小于1,所以回波损耗为负数。
3,Directivity 方向系数Ratio of the power density in the direction of maximum power to the average power.能够定量的表示天线定向辐射能力的电参数。
定义:在同一距离及相同辐射功率的条件下,某天线在最大辐射方向上的辐射功率密度和无方向性天线(点源)的辐射功率密度之比。
方向系数与辐射功率在全空间的分布状态有关。
要使天线的方向系数大,不仅要求主瓣窄,而且要求全空间的副瓣电平小。
这个参数重点描述天线辐射性能的方向性。
方向系数的单位是dBi,理想点源天线的方向系数为10*log(1)=0dBi。
一般非理想点源天线的方向系数都是大于0dBi的。
不是所有的天线都有方向性的。
便携式收音机上的拉杆天线就没有方向性。
偶极天线有弱的方向性,八木等定向天线可以得到较好的方向性。
好的方向性意味着能够集中收集所需方向的电波,还有一个重要的能力就是能部分地减弱本地电台信号的影响。
但是定向天线并不是什么情况下都好。
当没有目标而等待的时候,定向天线就有可能使你错过天线背面的信号。
所以比较合理的方式,是用一个垂直天线和一付定向天线配合使用,用垂直天线等待,听到信号后,再用定向天线转过去对准了听。
对于手机天线而言,可以观察3D和2D的方向图,要求方向系数越弱越好,因为手机天线需要尽量做成全方向性(即没有方向性)的天线,而不是要求某个方向的辐射特别强。
4,Gain 增益Directivity scaled by the efficiency of the antenna.增益系数表示了天线的定向收益程度。
定义:在同一距离及相同的输入功率的条件下,某天线在最大辐射方向上的辐射功率密度和理想无方向性天线的辐射功率密度之比。
输入功率是指在天线馈点处的功率,并不是天线的辐射功率,天线的辐射功率等于输入功率和效率的乘积。
所以,Gain=Directivity*Efficiency。
它是综合衡量天线能量转换和方向特性的参数。
使用高增益天线可以在维持输入功率不变的条件下,增大有效辐射功率。
单位是dBi,因为是同理想点源天线的对比值。
对定义中的功率比值取10*log即可。
对于手机天线,我们也是希望能够得到较高的天线增益的。
如果要求高增益天线,那么我可以通过调高天线的效率来实现,也可以通过提高天线的方向系数来实现,如果用方向系数来实现,肯定是不合适了?(因为手机天线要求做成全方向性天线,方向性越差越好)所以,我们都是试图通过提高天线的效率来获得较高的天线增益的。
实际调试中,我们往往更关注天线的效率而不是增益本身。
一般而言,增益越高,带宽就会越窄。
其实这里的增益跟一般所说的放大倍数的概念是一样的,对于放大器而言,放大倍数的log值就是增益。
天线的增益的物理意义:描述了天线与理想无方向性天线相比在最大辐射方向上将输入功率放大的倍数。
如果将理想无方向性天线的放大倍数认为是1的话,那么某个天线的增益就是其在最大方向上将输入功率的放大倍数。
这就可以解释,虽然天线是无源的,但是有时候也会起到放大的作用,即增益有可能是正值。
增益反映了能量在空间的分配,这个方向的能量多,意味着其它方向的能量低。
方向性很强的天线实现了功率的空间分配。
也可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。
换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
5,Efficiency 效率Ratio of the total power radiated to the total power available at the input terminals.天线的效率是指天线的辐射功率(Prad)与输入功率(Pin)之比,也就是天线将馈点处的输入功率辐射出去的能力。
天线效率的单位是百分比,即%。
对于内置天线而言,要求效率至少在30%以上。
以手机天线为例进一步说明:手机上有一个天线开关,我们一般测得的手机输出功率是从手机开关测得的,然后这个功率经过一段微带线传输到天线馈点处,一部分能量由于电路的失配被反射回来,另一部分能量进入天线记作Pin。
用TRP表示天线的空间辐射功率Pout,那么天线的效率就是Pout/Pin。
这里就没有考虑到由于电路失配而导致的能量反射。
对于单独的天线而言,这就是天线效率的定义。
天线的效率是不必考虑传输线和反射损耗的,Prad/Pin就是天线的效率定义值。
天线的效率是很难通过计算获得的,天线本身的能量损耗主要是由于天线作为导体对信号的损耗,包括介质损耗(基板引起的和手机内磁铁引起的)和金属损耗(尽管很小),而回损和匹配电路的损耗是不应该记入的。
但是在实际的工程中,我们评估的手机天线的效率应该是将天线开关输出的功率作为Pin,这样计算得到的效率包括了反射的那部分能量,也包括了在微带传输线上的能量损耗,这个效率值应该比天线的实际效率差很多。
6,Reflection Coefficient 反射系数定义为某点的反射波电压与入射波电压之比7,Polarization 极化Direction of the electric field vector in the far field.极化是指该天线在给定方向上远区辐射场的空间取向。
一般而言,特指该天线在最大辐射方向上电场的空间取向。
同一个天线,在不同的辐射方向的极化可能不同。
天线的极化:在空间某一个位置上电场矢量端点随时间运动的轨迹,按其轨迹可以分为线极化、圆极化和椭圆极化。
补充:天线向周围辐射电磁波。
电磁波由电场和磁场构成。
人们规定:电场的方向就是天线极化方向。
一般使用的天线为单极化的,常用到垂直极化,有时也用到水平极化天线。
将两种极化方向不同的单极化天线组合在一起,就可以获得一种双极化天线。
垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。
右旋圆极化波要用具有右旋圆极化特性的天线来接收。
当来波的极化方向与接收天线的极化方向不一致时,接收到的信号就会变小,也就是说,会发生极化损失。
当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化波时,天线就完全接收不到来波的能量,这种情况下的极化损失最大,称为极化完全隔离。
但是,对于手机天线的极化,我还没有在什么资料里看到过相关说明,不过,手机天线和基站天线的极化形式应该是一致的,应该是最常用的垂直线极化波。
8,Bandwidth 带宽The range of frequencies over which the antenna meets performance criteria.带宽,即天线满足性能要求的工作频率范围。
天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。
这个范围就是带宽。
我们当然希望一付天线的带宽能覆盖一定的范围,最好是我们所收听的整个FM广播波段。
要不然换个台还要换天线或者调天线也太麻烦了。
天线的带宽和天线的形式、结构、材料都有关系。
一般来说,振子所用管、线越粗,带宽越宽;天线增益越高,带宽越窄。
天线的带宽有两种不同的定义:一种是指:在驻波比VSWR<=1.5条件下,天线的工作频带宽度;回波损耗<=-14dB。
一种是指:天线增益下降3dB范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比不超过1.5时,天线的工作频率范围。
9,Impedance 输入阻抗Radio of the input voltage to the input current at the terminals of the antenna.天线可以看做是一个谐振回路。
一个谐振回路当然有其阻抗。
我们对阻抗的要求就是匹配:和天线相连的电路必须有与天线一样的阻抗。
和天线相连的是馈线,馈线的阻抗是确定的,所以我们希望天线的阻抗和馈线一样。
一般生产的馈线,主要是300欧姆、75欧姆和50欧姆三种阻抗,国外过去还有450欧姆和600欧姆阻抗的馈线。
基本偶极天线的阻抗是75欧姆左右,V型偶极天线是50欧姆左右,基本垂直天线阻抗50欧姆。
其它天线一般阻抗都不是50或75欧姆,那么在把它们与馈线连接之前,需要有一定的手段来做阻抗变换。
10,Radiation Pattern 方向图Angular variation of radiated energy distribution around the antenna.11,Insertion Loss 插入损耗定义为某点上的传输电压与入射电压之比。