第九章吸附法.
- 格式:ppt
- 大小:1.69 MB
- 文档页数:29
吸附法的分类
吸附法主要可以分为物理吸附、化学吸附和离子交换吸附三类。
1. 物理吸附:基于吸附剂与溶质之间的分子间作用力即范德华力。
溶质在吸附剂上吸附与否或吸附量的多少主要取决于溶质与吸附剂极性的相似性和溶剂的极性。
一般物理吸附发生在吸附剂的整个自由表面,被吸附的溶质可通过改变温度、PH和盐浓度等物理条件脱附。
2. 化学吸附:会释放大量的热,吸附热高于物理吸附。
化学吸附一般为单分子层吸附,吸附稳定,不易脱附,故洗脱化学吸附质一般需采用破坏化学结合的化学试剂为洗脱剂。
化学吸附具有高选择性。
3. 离子交换吸附:所用吸附剂为离子交换剂。
离子交换剂表面含有离子基团或可离子化基团,通过静电引力吸附带有相反电荷的离子,吸附过程发生电荷转移。
离子交换的吸附质可以通过调节PH或提高离子强度的方法洗脱。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。
环境工程原理第九章吸附1.引言吸附是环境工程中一种常见的处理技术,它利用固体表面与溶质之间的相互作用力,将溶质从溶液中去除。
吸附过程是一个动力学过程,它包括吸附平衡和吸附速率两个方面。
本章将重点介绍吸附原理及其在环境工程中的应用。
2.吸附原理吸附是一种表面现象,它是在固体表面上形成一个液体或气体分子层的过程。
吸附分为物理吸附和化学吸附两种类型。
物理吸附是指分子在吸附剂表面上凝聚形成薄层的过程。
物理吸附的主要作用力是范德华力,范德华力是由于电子云的不规则运动而引起的,它的作用范围很短,只有几个分子层的距离。
物理吸附的吸附热一般在20-60 kJ/mol之间。
化学吸附是指溶质分子在吸附剂表面上与吸附剂形成化学键的过程。
化学吸附的主要作用力是化学键,它的作用范围比范德华力要长,可以达到几个分子层的距离。
化学吸附的吸附热一般在80-400 kJ/mol之间。
吸附过程是一个动态平衡过程,它可以用等温吸附线来描述。
等温吸附线是指在一定温度下,吸附系统中吸附剂表面上吸附物浓度与溶液中吸附物浓度之间的关系。
等温吸附线分为等温吸附线和等温吸附线两种类型。
等温吸附线是指在固定温度下,将吸附剂暴露在饱和蒸气中,记录吸附剂表面上吸附物的浓度和蒸气中吸附物的浓度之间的关系。
等温吸附线一般呈现为S型曲线,这是由于吸附过程的初始阶段存在物理吸附和化学吸附两个阶段的共存,随着吸附物浓度的增加,物理吸附的贡献逐渐减小而化学吸附的贡献逐渐增加。
等量吸附线是指在固定温度下,将吸附剂暴露在不同浓度的溶液中,记录吸附剂表面上吸附物的浓度和溶液中吸附物的浓度之间的关系。
等量吸附线和等温吸附线相似,都呈现为S型曲线。
3.吸附过程的影响因素吸附过程受多种因素的影响,主要包括吸附剂的性质、溶质的性质、溶液的性质和操作条件等。
吸附剂的性质是影响吸附过程的主要因素之一、吸附剂的孔径大小、比表面积和表面官能团等特征决定了它的吸附性能。
孔径大小对吸附剂的吸附能力有很大影响,较小的孔径能提高吸附剂的选择性,较大的孔径则有助于更大分子的扩散。
《大气污染控制工程》教案第九章《大气污染控制工程》教案第九章第九章固定源氮氧化物污染控制第一节氮氧化物性质及来源氮氧化物是造成大气污染的主要污染源之一。
我们通常所说的氮氧化物主要包括:n2o,no,n2o3,no2,n2o4和n2o5,大气中nox主要以no,no2形式存在,但最近研究发现n2o不仅对全球气候变暖有显著影响,而且也参与对臭氧层的破坏。
n2o又称笑气,是一种具有麻醉特征的惰性气体,它在环境大气中的含量非常少,显著低于对生物产生影响的限值。
大气中氮氧化物的来源主要存有两方面。
一方面就是由自然界中的固氮菌、雷电等自然过程所产生;另一方面就是化工生产中的硝酸生产、硝化过程、炸药生产和金属表面硝酸处置等。
第二节燃烧过程中氮氧化物的形成机理一、热力型氮氧化物构成的热力学1.一氧化氮生成量与温度的关系2.一氧化氮与二氧化氮之间的转变3.烟气冷却对一氧化氮和二氧化氮平衡的影响二、热力型氮氧化物构成的动力学―泽利多维奇模型三、瞬时一氧化氮的构成四、燃料型氮氧化物的构成第三节低氮氧化物燃烧技术一、传统的高氮氧化物冷却技术早期开发的低氮氧化物燃烧技术不要求对燃烧系统作大的改动,只是对燃烧装置的运行方式或部分运行方式作调整或改进。
因此简单易行,可方便的用于现存装置,但一氧化氮的降低幅度有限。
这类技术包括低氧燃烧、烟气循环燃烧、分段燃烧、浓淡燃烧技术等。
1.高空气短缺系数运转技术氮氧化物排放量随着炉内空气量的增加而增加,为了降低氮氧化物的排放量,锅炉应在炉内空气量较低的工况下运行。
采用低空气过剩系数运行技术,不仅可以降低氮氧化物的排放,而且减少了锅炉排烟热损失,可提高锅炉热效率。
-1-2.降低助燃空气预热温度课堂教学说明,这一措施不必用作燃煤、燃油锅炉,对于燃气锅炉,则存有减少氮氧化物排放量的显著效果。
3.烟气循环燃烧烟气循环冷却法使用冷却产生的部分烟气加热后,在循环送到冷却区,起著减少氧浓度和冷却区温度的促进作用,以达至增加一氧化氮生成量的目的。
化工原理第九章吸附分离
吸附分离,也称为吸收或吸收分离,是指利用一定的相互作用“粘合剂”或“吸附剂”使混合物中一些组成部分粘合或吸附到该粘合剂或吸附剂上,从而使混合物中一些组分有机地被分离出来的过程。
它是一种新型的分离方法,有可能替代传统的分离工艺,是现代化工的一项重要技术。
吸附分离的原理:吸附分离可以分为物理吸附和化学吸附两种形式。
物理吸附是指物质相互作用的结果,包括空气、气体、液体、溶剂等。
物理吸附是指在一些固体表面上建立的物理性相互作用,其实质是由于表面粗糙形成的能量障碍,而在能量障碍的阻碍下,物质相互作用,物质就被吸附在这种固体表面上。
如果这种固体表面在特定的温度和压力条件下,具有良好的表面化学稳定性,即可建立有效的物理吸附。
化学吸附又叫做专配吸附,是指物质间由于共价作用形成的固体表面和溶剂之间的作用过程。
它是一种特殊的吸附作用,是由于固体表面上化学基团构成的膜层,以及溶剂中的其中一种物质,在化学反应中形成化学键而发生的吸附作用。
吸附分离的应用:吸附分离已被广泛应用于催化剂分离、石油的湿气处理、空气净化、废气处理、提纯溶剂等行业。
初中化学吸附作用教案
一、教学目标
1. 知道吸附作用的基本概念和分类;
2. 了解吸附作用在生活和工业中的应用;
3. 能够初步解释吸附作用的原理;
4. 掌握吸附作用的影响因素和条件。
二、教学内容
1. 吸附作用的概念及分类;
2. 吸附作用的应用;
3. 吸附作用的原理;
4. 吸附作用的影响因素和条件。
三、教学重点和难点
重点:吸附作用的概念、分类和应用;
难点:吸附作用的原理和影响因素。
四、教学方法
1.讲解结合示例,让学生更好地理解吸附作用的概念;
2.通过实验演示,让学生亲自观察和体验吸附作用的现象;
3.让学生分组讨论,共同探讨吸附作用的机制和影响因素。
五、教学过程
1. 导入:通过展示一些与吸附作用相关的现象,引起学生的兴趣和思考;
2. 讲解:介绍吸附作用的概念、分类和应用,让学生了解吸附作用的基本知识;
3. 实验演示:进行一个简单的吸附实验,让学生亲自观察吸附作用的过程;
4. 分组讨论:让学生分组合作,探讨吸附作用的原理和影响因素;
5. 总结:对吸附作用的重点内容进行总结,巩固学生的学习成果。
六、作业布置
1.完成课堂练习,巩固吸附作用的相关知识;
2.观察生活中的吸附现象,写一篇小结。
七、教学反思
通过本堂课的教学,学生对吸附作用的概念和原理有了初步了解,能够简单解释吸附作用的影响因素。
但是在后续教学中,需要进一步加强实验教学和综合应用,让学生更深入地理解吸附作用在生活和工业中的重要性。
第九章活性炭吸附吸附是一种物质附着在另一物质表面上的过程,它可发生在气—液、气—固、液—固两相之间。
在水处理中,多孔性的固相物质可以用来作为吸附剂,如活性炭、活化煤(树脂、沸石)、焦炭、木屑等。
吸附是微量有机污染物(含量少危害大)去除的最有效方法。
许多工业废水含有难降解的有机物,这些有机物很难或根本不能用常规的生物法去除,例如ABS 和某些杂环化合物,这些物质可用吸附法加以去除。
9.1 吸附类型和吸附机理9.1.1 吸附的类型及其机理(一)吸附机理当二相物质相互接触时,二者界面上呈现一个内部组成、不同于原来任何一相的区域,同原来相内的物质浓度相比,界面上物质浓度的增加即称为吸附。
换句话说,吸附是指物质在二相之间界面上的积聚或浓缩,是一种建立在分子扩散一基础上的物质表面现象。
互相分子之间的吸引力促成吸附。
吸附作用可发生在液一液、气一液、气—固或液一固等任何二相的界面之间。
活性炭净水是液一固二相界面之间的吸附,是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法。
具有吸附能力的多孔性固体物质称为吸附剂,而废水中被吸附的物质则称为吸附质。
活性炭作为固体吸附物,称为吸附剂;水是液相介质,称为溶剂;水中杂质作为被吸附物,称为吸附质或溶质。
被吸附分子离开固体表面进入液相(或气体吸附中的气相),是吸附剂恢复吸附能力的再生过程,称之为解吸。
吸附质分子不停留在吸附剂的表面(包括几何外表面和由孔隙壁形成的内表面)上,而是近乎均匀地渗进团体的结构内部,有时甚至进入固体晶格的原子之间,这类过程称之为吸收。
在某些情况下,吸收与吸附可能同时发生,或是通过有某些固体相的成份参与的化学反应(例如在浸有能产生催化反应的盐类的活性炭上)或其它的吸附质结合机理(例如蒸气的毛细凝聚或离子交换)而结合起来,这类过程一般通称为吸着,它通常表示一相的组成物被移出,并积聚在另一相(特别是固相)。
固体物质上的吸着,既可在吸附质与吸附剂处于静止状态下(即静态条件下)发生,也可在吸附质与吸附剂相互移动的条件下(即动态条件下)发生(从气流或液流中的吸附),在静态吸附平衡时,吸附质在气相(或液相)和吸附相之间的分布在整个吸附剂层内是均匀相同的,而且仅由给定温度下的吸附等温线、即具体物质的可吸附性来决定。