变压吸附气体分离技术
- 格式:ppt
- 大小:160.00 KB
- 文档页数:30
变压吸附技术摘要:变压吸附气体分离技术在工业上得到了广泛应用,已逐步成为一种主要的气体分离技术。
它具有能耗低、投资小、流程简单、操作方便、可靠性高、自动化程度高及环境效益好等特点。
简单介绍了变压吸附分离技术的特点,重点介绍了近年来变压吸附技术各方面的进步和变压吸附技术目前所达到的水平(工艺流程、气源、产品回收率、吸附剂、程控阀、自动控制等方面),并对变压吸附技术未来的发展趋势进行了预测。
l前言变压吸附(PreureSwingAdorption,PSA)的基本原理是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性,通过周期性的压力变换过程实现气体的分离或提纯。
该技术于l962年实现工业规模的制氢。
进入70年代后,变压吸附技术获得了迅速的发展,装置数量剧增,规模不断增大,使用范围越来越广,工艺不断完善,成本不断下降,逐渐成为一种主要的、高效节能的气体分离技术。
变压吸附技术在我国的工业应用也有十几年历史。
我国第一套PSA工业装置是西南化工研究设计院设计的,于l982年建于上海吴淞化肥厂,用于从合成氨弛放气中回收氢气。
目前,该院已推广各种PSA工业装置600多套,装置规模从数m3/h到60000m3/h,可以从几十种不同气源中分离提纯十几种气体。
在国内,变压吸附技术已推广应用到以下九个主要领域:1.氢气的提纯;2.二氧化碳的提纯,可直接生产食品级二氧化碳;3.一氧化碳的提纯;4.变换气脱除二氧化碳;5.天然气的净化;6.空气分离制氧;7.空气分离制氮;8.瓦斯气浓缩甲烷;9.浓缩和提纯乙烯。
在H2的分离和提纯领域,特别是中小规模制氢,PSA分离技术已占主要地位,一些传统的H2制备及分离方法,如低温法、电解法等,已逐渐被PSA等气体分离技术所取代。
PSA法从合成氨变换气中脱除CO2技术,可使小合成氨厂改变其单一的产品结构,增加液氨产量,降低能耗和操作成本。
PSA分离提纯CO技术为Cl化学碳基合成工业解决了原料气提纯问题。
变压吸附技术
变压吸附技术是一种用于分离和回收低浓度混合气体的有效技术,它克服了传统吸附技术的气体分离效率低的缺点,可以有效地提高气体分离效率。
它的工作原理是将一定数量的吸附剂放入容器中,通过调节压力来改变混合气体的分布,从而达到分离和回收低浓度混合气体的目的。
变压吸附技术的优势在于它可以有效地改变混合气体的分布,从而提高气体分离效率。
此外,变压吸附技术还具有可控性强、操作简单、成本低和环保友好等优势,可以有效地减少污染物的排放量,提高能源利用率,从而降低生产成本。
变压吸附技术应用广泛,在工业生产中可以用来回收气态化合物,如乙烯、氢气、甲烷等;在燃料电池中可以用来回收水分子;在冶金工业中可以用来回收氩气、氮气等;在精细化工中可以用来回收乙醇、氯乙烯、氯丙烯等。
变压吸附技术是一种有效的气体回收技术,它可以有效地提高气体分离效率,改善生产环境,减少污染物的排放量,降低能源消耗,从而降低生产成本,值得广泛应用。
变压吸附技术在气体分离提纯中的应用摘要:变压吸附技术作为一种重要的气体分离与提纯方法,在工业生产和环境保护中具有广泛的应用前景。
本文通过深入探讨变压吸附技术的特点及其在氢气回收与提纯、一氧化碳回收与提纯、回收制取高纯度二氧化碳等方面的应用,展示了其在气体分离提纯领域的重要作用。
关键词:变压吸附技术;气体分离提纯;技术应用引言气体分离与提纯技术在化工、能源、环保等领域具有重要意义。
变压吸附技术作为一种经典的分离方法,通过调节吸附材料在不同压力下的吸附能力,实现了不同气体成分的分离与提纯。
近年来,随着新材料和先进技术的引入,变压吸附技术在气体分离提纯领域得到了更加广泛的应用,极大地促进了相关产业的发展。
1.变压吸附技术概述变压吸附技术是一种重要的气体分离与纯化方法,利用吸附剂在不同压力条件下对气体分子的吸附和解吸现象,实现气体混合物的分离和纯化。
这一技术的特点以及在多个领域的应用,使其在现代工业中具有重要的地位和广阔的前景。
1.1变压吸附技术的特点变压吸附技术是一种重要的分离与吸附过程,其特点在于其能够基于不同吸附材料的特性,通过调节压力来实现气体分离、提纯和吸附。
这一技术被广泛应用于气体分离、气体储存、气体纯化等领域,具有许多独特的特点和优势。
变压吸附技术适用范围广泛。
它可以用于各种气体的分离与纯化,包括氢气、氧气、氮气、一氧化碳等。
吸附材料针对不同种类的气体分子在不同的压力下具有不同的吸附能力,这为变压吸附技术的应用提供了广泛的可能性。
变压吸附技术能够实现高效分离。
通过调节吸附剂的压力,可以实现对气体混合物的高效分离。
对于需要高纯度气体的应用,变压吸附技术可以实现高效的纯化过程,从而获得所需的气体成分。
变压吸附技术具有较好的可控性和灵活性。
通过调节压力和温度等操作参数,可以实现对吸附过程的控制,从而达到更好的分离效果。
这种可控性和灵活性使得变压吸附技术可以根据不同的应用需求进行调整和优化。
变压吸附技术还具有循环利用的优势。
空气分离的几种主要技术变压吸附(PSA)空气分离技术自世界上第一套变压吸附制氧设备用于废水处理出现来,PSA工艺得到了迅猛的发展,相继用于提取氢气、氦气、氩气、甲烷、氧气、二氧化碳、氮气、干燥空气等应用中。
与此同时,各种吸附剂品种和性能也得到显著的提高。
随着吸附剂性能和品种不断提高,新的纯化分离技术被用于优化的吸附工艺。
变压吸附制氧工艺经历了超大气压常压解吸流程到穿透大气压真空解吸流程。
吸附床数量也有数床转化到双床直至单床。
使流程更实用经济。
1.变压吸附工艺一般包括以下四个步骤:(1)原料空气通过吸附床的入口端,在高吸附压力下选择吸附氮气(根据生产气而定),而未被吸附的产品(氧)从吸附床的另一端释放出来。
(2)吸附床泄压到较低的解吸压力,解吸出来的氮气从吸附床的进料端排出。
(3)通过引入吹除气进一步解吸被吸附的氮气。
(4)吸附床重新增压到较高的吸附压力。
在一个周期内按照上述顺序重复操作并随后按需补入原料气即可继续得到产品气。
2.VPSA双床制氧工艺过程简介, 双床VPSA制氧工艺流程简图1 -12所示。
系统包括一台空气增压机,内装高效吸附能力的合成氟石分子筛,切换阀门一套,真空泵一台,富氧缓冲罐一台以及计算机控制系统。
该装置在一个循环周期内大致经历(1)吸附床以某一中间压力增压到高的吸附压力。
(2)在较高吸附压力条件下,从吸附床进料端引入原料空气并从吸附床出口端流出很少被吸附的富氧产品气。
(3)顺放(或均压)用吸附床产品端释放出来的气体对系统中的另一初始压力较低的吸附床充压至某一中间压力。
(4)逆流泄压到较低的解吸压力,吸附床内废气从原料进口端释放出来。
(5)接着,吸附床被均压到前面所说的某一中间压力,均压气流经吸附床产品端,它来于系统中另一初始压力较高的吸附床。
1进口过滤器2空气压气机3冷却器4真空泵5、6吸附床7储气罐8备用液态氧9氧压机10负载跟踪装置11计算机控制和分析装置12远程控制中心图1-12双床流程简图此外,在每只吸附床的相同部位对床层内温度进行监测,以便跟踪每个床内的温度曲线。
深冷空分法、变压吸附法、膜分离法制氮优缺点对比表全文共四篇示例,供读者参考第一篇示例:深冷空分法、变压吸附法和膜分离法是目前常用的三种制氮技术。
它们各有优点和缺点,下面将分别对这三种方法进行比较,帮助大家更好地选择适合自己需求的制氮技术。
一、深冷空分法深冷空分法是一种通过空分设备将空气中的氧气和氮气分离得到高纯度氮气的方法。
其优点主要包括以下几点:1. 高纯度:深冷空分法可以得到高纯度的氮气,一般可以达到99.999%以上的纯度,适用于对氮气纯度要求较高的应用。
2. 高效:深冷空分法可以在较短的时间内制备大量的氮气,生产效率高。
3. 稳定性好:深冷空分法在稳定性和可靠性方面表现优秀,操作简单,维护成本低。
深冷空分法也存在一些缺点:1. 能耗高:深冷空分法需要通过液氮等冷冻设备来冷却空气,能耗较高。
2. 设备昂贵:深冷空分设备制造成本较高,需要一定的投资。
3. 操作成本:深冷空分设备对操作人员的要求较高,需要专业技术支持。
二、变压吸附法变压吸附法是一种利用吸附剂对空气中的氧气和氮气进行分离的方法,其优点包括:1. 低成本:变压吸附法设备制造成本低,投资相对较少。
2. 灵活性强:变压吸附法可以灵活控制制氮的纯度和流量,适用于不同的应用场景。
3. 节能环保:变压吸附法不需要液氮等冷冻设备,节能环保。
1. 制氮效率低:变压吸附法制备氮气的速度较慢,不适合对氮气需求量较大的场合。
2. 纯度不稳定:由于吸附剂的性能限制,变压吸附法得到的氮气纯度可能不够稳定。
3. 维护困难:变压吸附法设备需要定期更换吸附剂,维护成本较高。
三、膜分离法1. 无需能源消耗:膜分离法无需额外的能源消耗,节能环保。
2. 操作简单:膜分离法操作简单,维护成本低。
3. 适用范围广:膜分离法适用于各种规模的制氮需求,具有很强的通用性。
1. 纯度较低:膜分离法制备的氮气纯度一般不高,一般在95%左右。
2. 流量受限:膜分离法对氮气的流量有一定限制,不适合在氮气需求量极大的场合使用。
变压吸附技术一、概况:变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。
(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。
(3)设备简单,操作、维护简单。
(4)连续循环操作,可完全达到自动化。
因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。
1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。
70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。
其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。
随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。
二、基本原理:利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。
变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。
吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。
故每个吸附器在实际过程中必须经过吸附和再生阶段。
对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。
多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附状态,使产品能连续稳定地输出:保证适当的均压次数,使产品有较高的回收率。
psa气体变压吸附分离技术PSA气体变压吸附分离技术: 从简到繁,由浅入深导语:气体分离和纯化是工业领域的一个关键过程,而PSA (Pressure Swing Adsorption)气体变压吸附分离技术,作为一种高效、经济、灵活的分离技术方案,日益受到广泛关注和应用。
本文将从深度和广度的角度,全面评估PSA气体变压吸附分离技术,并通过多个层面的探讨,帮助读者更好地理解这一重要的技术。
一、基础概念1.1 PSA气体变压吸附分离技术的定义和原理PSA气体变压吸附分离技术是一种基于吸附剂对气体成分具有不同的吸附亲和力的原理上所实现的分离技术。
该技术通过高压吸附和低压解吸的循环操作,利用吸附剂对气体成分的选择性吸附特性,实现对混合气体分离和纯化的目的。
该技术主要应用于各类气体的纯化、富集、去除杂质等过程,可以高效、经济地达到对目标成分的高纯度分离。
1.2 PSA气体变压吸附分离技术的发展历程PSA技术的发展可以追溯到上世纪50年代早期,最早用于氢气的分离和纯化。
随着科学技术的不断进步和工业需求的增长,PSA技术逐渐应用于多个领域,涉及的气体种类也从氢气扩展到氧气、氮气、甲烷等多种气体。
近年来,PSA技术在能源、化工、环保等行业得到广泛应用,成为气体处理领域的一项重要技术工艺。
二、关键工艺与技术参数2.1 吸附剂的选择和设计吸附剂是PSA技术中的核心元素,其选择和设计直接影响系统的性能和效率。
根据不同的气体吸附特性,需要选择适合的吸附剂,并根据工艺要求进行载气和吸附剂的匹配。
常用的吸附剂有活性炭、分子筛、硅胶等。
吸附剂的选择应综合考虑吸附容量、吸附速度和再生能力等因素,以达到对目标成分高效吸附与解吸的要求。
2.2 PSA循环过程参数的优化PSA循环过程包括吸附、解吸、排附和再生等多个阶段,其中各阶段的参数优化对系统的性能至关重要。
如吸附时间和解吸时间的选择、吸附和解吸压力的调节、再生步骤的优化等,都需要综合考虑吸附剂的性能和工艺的经济性,以实现气体分离的高效率和低能耗。
变压吸附气体分离概述变压吸附(Pressure Swing Adsorption)分离技术最广泛的应用是工业气体的分离提纯。
在分离过程中,气体组份在升压时吸附,降压时解吸,不同组份由于其吸附和解吸特性不同,在压力周期性的变化过程中实现分离,这一过程称之为变压吸附分离过程(简称PSA)。
变压吸附分离过程一般在中等的压力(低于6.0MPa)下进行,操作简单,自动化程度高,设备不需要特殊材料等优点。
原料气中的杂质组份如H2O,NH3,硫化物等工业上常见的有害组份可同时除去,预处理和分离过程同时进行,省去了繁琐的预处理装置,简化流程,操作费用低。
变压吸附(PSA)分离技术主要应用于以下领域:1.变压吸附法(PSA)提纯氢气(H2)2.变压吸附法(PSA)提纯一氧化碳(CO)3.变换气脱除二氧化碳(CO2)4.变压吸附法(PSA)回收二氧化碳(CO2)5.变压吸附法(PSA)提纯一氧化碳(CO2)6.变压吸附法(PSA)空气分离制氧(O2)7.变压吸附法(PSA)空气分离制氮(N2)8.变压吸附法(PSA)回收乙烯(C2H4)9.变压吸附法(PSA)聚丙烯尾气回收丙烯(C3H6)10.变压吸附法(PSA)天然气回收轻烃11.变压吸附法(PSA)回收聚氯乙烯尾气技术特点1.变压吸附(PSA)技术是一种低能耗的气体分离技术。
PSA工艺所要求的压力一般在0.1~2.5MPa,允许压力变化范围较宽,一些有压力的气源,如氨厂弛放气、变换气等,本身的压力可满足变压吸附(PSA)工艺的要求,可省去再次加压的能耗。
对于处理这类气源,PSA制氢装置的消耗仅是照明、仪表用电及仪表空气的消耗,能耗很低;PSA装置压力损失很小,一般不超过0.05MPa。
2.变压吸附(PSA)装置可获得高纯度的产品气,如PSA制氢装置,可得到98.0~99.999%的产品氢气;3.变压吸附(PSA)工艺流程简单,无需复杂的预处理系统,一步或两步可实现多种气体的分离,可处理各种组成复杂的气源,对水、硫化物、氨、烃类等杂质有较强的承受能力,4.变压吸附(PSA)装置的运行由计算机自动控制,装置自动化程度高,操作方便,装置启动后短时间内即可投入正常运行,输出合格产品。