力学与热学作业习题答案
- 格式:doc
- 大小:1.83 MB
- 文档页数:29
第一章热力学第一定律练习题一、判断题(说法对否):1.当系统的状态一定时,所有的状态函数都有一定的数值。
当系统的状态发生变化时,所有的状态函数的数值也随之发生变化。
2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态完全确定。
3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。
4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。
5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W的值一般也不相同。
6.因Q P = ΔH,Q V = ΔU,所以Q P与Q V都是状态函数。
7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。
8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。
9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。
若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。
10.一个系统经历了一个无限小的过程,则此过程是可逆过程。
11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。
12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。
13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。
14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。
15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。
16.(?U/?V)T = 0 的气体一定是理想气体。
17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 03.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
第2章 热力学第一定律2-1 定量工质,经历了下表所列的4个过程组成的循环,根据热力学第一定律和状态参数的特性填充表中空缺的数据。
过程 Q/ kJ W/ kJ△U/ kJ1-2 0 100 -1002-3-11080 -1903-4 300 90 210 4-1 20 -60802-2 一闭口系统从状态1沿过程123到状态3,对外放出47.5 kJ 的热量,对外作功为30 kJ ,如图2-11所示。
(1) 若沿途径143变化时,系统对外作功为6 kJ ,求过程中系统与外界交换的热量; (2) 若系统由状态3沿351途径到达状态1,外界对系统作功为15 kJ ,求该过程与外界交换的热量;(3) 若U 2=175 kJ ,U 3=87.5 kJ ,求过程2-3传递的热量,及状态1的热力学能U 1。
图2-11 习题2-2解:(1)根据闭口系能量方程,从状态1沿途径123变化到状态3时,12313123Q U W −=∆+,得1347.5kJ 30kJ 77.5kJ U −∆=−−=−从状态1沿途径143变化到状态3时,热力学能变化量13U −∆保持不变,由闭口系能量方程14313143Q U W −=∆+,得14377.5kJ 6kJ 71.5kJ Q =−+=−,即过程中系统向外界放热71.5kJ(2)从状态3变化到状态1时,()31133113U U U U U U −−∆=−=−−=−∆,由闭口系能量方程35131351Q U W −=∆+,得35177.5kJ 15kJ 62.5kJ Q =−=,即过程中系统从外界吸热92.5kJ(3)从状态2变化到状态3体积不变,323232323232Q U W U pdV U −−−=∆+=∆+=∆∫,因此23233287.5kJ 175kJ 87.5kJ Q U U U −=∆=−=−=−由1331187.577.5kJ U U U U −∆=−=−=−,得1165kJ U =2-3 某电站锅炉省煤器每小时把670t 水从230℃加热到330℃,每小时流过省煤器的烟气的量为710t ,烟气流经省煤器后的温度为310℃,已知水的质量定压热容为 4.1868 kJ/(kg ·K),烟气的质量定压热容为1.034 kJ/(kg ·K),求烟气流经省煤器前的温度。
2-13. 某反应器容积为31.213m ,内装有温度为0227C 的乙醇45.40kg 。
现请你试用以下三种方法求取该反应器的压力,并与实验值(2.75MPa )比较误差。
(1)用理想气体方程;;(2)用RK 方程;(3)用普遍化状态方程。
解:(1)用理想气体方程M P a V n R T P 38.310213.115.50010314.8987.063=⨯⨯⨯⨯== 误差:%9.22 (2)用R-K 方程乙醇:K T C 2.516=, MPa P C 38.6=765.2625.22108039.21038.62.51610314.842748.042748.0⨯=⨯⨯⨯⨯==CCP T R a 0583.01038.62.51610314.808664.008664.063=⨯⨯⨯⨯==C C P RT b 3229.1987.0213.1m V ==()()MPab V V T a b V RT P 76.2109247.7105519.30583.0229.1229.115.500108039.20583.0229.115.50010314.85625.0735.0=⨯-⨯=⨯+⨯--⨯⨯=+--=误差:%36.0(3)用三参数普遍化关联 (2<r V 用维里方程关联,MPa P 7766.2=)635.0=ω, 43.038.675.2===C r P P P , 97.02.51615.500==r T 查图2-12~2-13:82.00=Z , 055.01-=Z7845.0055.0645.082.010=⨯-=+=Z Z Z ω MPa V ZRT P 65.210229.115.50010314.87845.063=⨯⨯⨯⨯== 误差:%64.32-21 一个0.5 m 3压力容器,其极限压力为2.75 MPa ,若许用压力为极限压力的一半,试用普遍化第二维里系数法计算该容器在130℃时,最多能装入多少丙烷?已知:丙烷T c =369.85K ,P c =4.249MPa ,ω=0.152。
热⼒学基础练习题答案版热⼒学基础练习题1、热⼒学第⼀定律ΔU=Q+W 只适⽤于( D )(A) 单纯状态变化 (B) 相变化(C) 化学变化 (D) 封闭物系的任何变化2、关于焓的性质, 下列说法中正确的是( D )(A) 焓是系统内含的热能, 所以常称它为热焓(B) 焓是能量, 它遵守热⼒学第⼀定律(C) 系统的焓值等于内能加体积功(D) 焓的增量只与系统的始末态有关3、第⼀类永动机不能制造成功的原因是( A )(A) 能量不能创造也不能消灭(B) 实际过程中功的损失⽆法避免(C) 能量传递的形式只有热和功(D) 热不能全部转换成功4、下列叙述中不具状态函数特征的是( D )A.系统状态确定后,状态函数的值也确定B.系统变化时,状态函数的改变值只由系统的初终态决定C.经循环过程,状态函数的值不变D.状态函数均有加和性5、下列叙述中,不具可逆过程特征的是( C )A.过程的每⼀步都接近平衡态,故进⾏得⽆限缓慢B.沿原途径反向进⾏时,每⼀⼩步系统与环境均能复原C.过程的初态与终态必定相同D.过程中,若做功则做最⼤功,若耗功则耗最⼩功6、在下列关于焓的描述中,正确的是( C )A.因为ΔH=Q,所以焓是恒压热PB.⽓体的焓只是温度的函数C.⽓体在节流膨胀中,它的焓不改变D.因为ΔH=ΔU+Δ(PV),所以任何过程都有ΔH>0的结论7、下⾯关于标准摩尔⽣成焓的描述中,不正确的是( C )C.⽣成反应的温度必须是298.15KD.⽣成反应中各物质所达到的压⼒必须是100KPa8、选出下列性质参数中属于容量性质的量 ( C )A.温度TB.浓度cC.体积VD.压⼒p9、关于节流膨胀, 下列说法正确的是( B )(A) 节流膨胀是绝热可逆过程 (B) 节流膨胀中系统的内能变化(C) 节流膨胀中系统的焓值改变(D) 节流过程中多孔塞两边的压⼒不断变化10、如图,在绝热盛⽔容器中,浸⼊电阻丝,通电⼀段时间,通电后⽔及电阻丝的温度均略有升⾼,今以电阻丝为体系有:( B )(A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0(C) W <0,Q <0,U >0 (D). W <0,Q =0,U >011、若将⼈作为⼀个体系,则该体系为 ( C )A.孤⽴体系B.封闭体系C.敞开体系D.⽆法确定12、刚性绝热箱内发⽣⼀化学反应,则反应体系为 ( A )A.孤⽴体系B.敞开体系C.封闭体系D.绝热体系13、下列性质属于强度性质的是 ( D )A.内能和焓B.压⼒与恒压热容C.温度与体积差A.状态⼀定,值⼀定B.在数学上有全微分性质C.其循环积分等于零D.所有状态函数的绝对值都⽆法确定15、关于等压摩尔热容和等容摩尔热容,下⾯的说法中不正确的是 ( B )A.Cp,m 与Cv,m不相等,因等压过程⽐等容过程系统多作体积功B.Cp,m –Cv,m=R既适⽤于理想⽓体体系,也适⽤于实际⽓体体系C.Cv,m=3/2R适⽤于单原⼦理想⽓体混合物D.在可逆相变中Cp,m 和Cv,m都为⽆限⼤16、对于理想⽓体,⽤等压热容Cp计算ΔH的适⽤范围为 ( C )A.只适⽤于⽆相变,⽆化学变化的等压变温过程B.只适⽤于⽆相变,⽆化学变化的等容变温过程C.适⽤于⽆相变,⽆化学变化的任意过程D.以上答案均不正确17、H=Q p此式适⽤于哪⼀个过程:( B )(A)理想⽓体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5Pa (B)在0℃、101325Pa下,冰融化成⽔(C)电解CuSO4的⽔溶液(D)⽓体从(298K,101325Pa)可逆变化到(373K,10132.5Pa )2=2NH3的反应进度ξ=1mol时,它表⽰系统中 ( A )A.有1molN2和3molH2变成了2molNH3B.反应已进⾏完全,系统中只有⽣成物存在C.有1molN2和3molH2参加了反应D.有2molNH3参加了反应19、对于化学反应进度,下⾯表述中正确的是 ( B )A.化学反应进度之值,与反应完成的程度⽆关B.化学反应进度之值,与反应式写法有关C.对于指定反应,化学反应进度之值与物质的选择有关D.反应进度之值与平衡转化率有关20、对于化学反应进度,下⾯表述中不正确的是 ( B )A.化学反应进度随着反应进⾏⽽变化,其值越⼤,反应完成的程度越⼤B.化学反应进度之值与反应式写法⽆关C.对于指定的反应,反应进度之值与物质的选择⽆关D.化学反应进度与物质的量具有相同的量纲21、欲测定有机物的燃烧热Q p ,⼀般使反应在氧弹中进⾏,实测得热效为Q V。
第二章 热力学第二定律练习题一、判断题(说法正确否):1.自然界发生的过程一定是不可逆过程。
2.不可逆过程一定是自发过程。
3.熵增加的过程一定是自发过程。
4.绝热可逆过程的∆S = 0,绝热不可逆膨胀过程的∆S > 0,绝热不可逆压缩过程的∆S < 0。
5.为了计算绝热不可逆过程的熵变,可以在始末态之间设计一条绝热可逆途径来计算。
6.由于系统经循环过程后回到始态,∆S = 0,所以一定是一个可逆循环过程。
7.平衡态熵最大。
8.在任意一可逆过程中∆S = 0,不可逆过程中∆S > 0。
9.理想气体经等温膨胀后,由于∆U = 0,所以吸的热全部转化为功,这与热力学第二定律矛盾吗?10.自发过程的熵变∆S > 0。
11.相变过程的熵变可由T H S ∆=∆计算。
12.当系统向环境传热时(Q < 0),系统的熵一定减少。
13.一切物质蒸发时,摩尔熵都增大。
14.冰在0℃,pT H S ∆=∆>0,所以该过程为自发过程。
15.自发过程的方向就是系统混乱度增加的方向。
16.吉布斯函数减小的过程一定是自发过程。
17.在等温、等压下,吉布斯函数变化大于零的化学变化都不能进行。
18.系统由V 1膨胀到V 2,其中经过可逆途径时做的功最多。
19.过冷水结冰的过程是在恒温、恒压、不做其他功的条件下进行的,由基本方程可得∆G = 0。
20.理想气体等温自由膨胀时,对环境没有做功,所以 -p d V = 0,此过程温度不变,∆U = 0,代入热力学基本方程d U = T d S - p d V ,因而可得d S = 0,为恒熵过程。
21.是非题:⑴“某体系处于不同的状态,可以具有相同的熵值”,此话对否? ⑵“体系状态变化了,所有的状态函数都要变化”,此话对否? ⑶ 绝热可逆线与绝热不可逆线能否有两个交点?⑷ 自然界可否存在温度降低,熵值增加的过程?举一例。
⑸ 1mol 理想气体进行绝热自由膨胀,体积由V 1变到V 2,能否用公式:⎪⎪⎭⎫⎝⎛=∆12ln VV R S计算该过程的熵变?22.在100℃、p 时,1mol 水与100℃的大热源接触,使其向真空容器中蒸发成 100℃、p 的水蒸气,试计算此过程的∆S 、∆S (环)。
第 二 章 热力学第一定律一、思考题1. 判断下列说法是否正确,并简述判断的依据(1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。
答:是对的。
因为状态函数是状态的单值函数。
(2)状态改变后,状态函数一定都改变。
答:是错的。
因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变。
(3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗?答:是错的。
∆U ,∆H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。
(4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量。
答:是错的。
根据热力学第一定律U Q W ∆=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。
所以功的转化形式不仅有热,也可转化为热力学能系。
(5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0答:是错的。
这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。
(6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。
如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。
答:是对的。
Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值∆H 1和∆H 2相等。
2 . 回答下列问题,并说明原因(1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火车的速度加快? 答?不能。
热机效率hQ W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。
但可逆热机循环一周是一个缓慢的过程,所需时间是无限长。
力学与热学作业习题参考答案第七章7.1.3 某发动机飞轮在时间间隔t 内的角位移为34at bt ct θ=+- (:rad,t :s).θ球t 时刻的角速度和角加速度.[解 答]34at bt ct θ=+-23d a 3bt 4ct dt θω==+- 2d 6bt 12ct dt ωβ==-7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm ,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h 的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹.[解 答]取地球为基本参考系,飞机为运动参考系。
(1)研究桨头相对于运动参考系的运动: nR 1.5314.16(m /s)30πνω==⨯=相(2)研究桨头相对于基本参考系的运动:,321.7(m /s)νννννν=+⊥∴==绝相牵相牵绝由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。
故桨头轨迹应是一个圆柱螺旋线。
7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置.(1)圆锥体为均质;(2)密度为h 的函数:h (1),Lρρρ=-为正常数.[解 答]建立如图坐标O-x,由对称轴分析知质心在x 轴上。
由cdm dv dv dm dv dv x x x x ρρ===⎰⎰⎰⎰⎰⎰ 得:(1)L2c 2(a /L)d 3L 14a L 3x x x ππ==⎰质量 21m v a L 3ρπρ==(2)L200c 200a h ()(1)d 4L L L(h=L )h a 5(1)()d L L x x x x x x x ππρρπ⋅⋅-==--⋅⎰⎰质量22000h a Lm (1)()d a L L 4x x πρπρπ=-⋅=⎰ 7.3.5 一转动系统的转动惯量为2I 8.0kg.m =,转速为41.9rad/s ω=,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为0.4μ=,轮半径为r 0.4m =,从开始制动到静止需要用多少时间?[解 答] zz z MI β=∑z2zzM 15.68(rad /s )I β∴==-∑xz 0z z t=41.915.68tt=2.67(s)ωωβ=+-7.3.8 斜面倾角为θ,位于斜面顶端的卷扬机鼓轮半径为R ,转动惯量为I ,受到驱动力矩M ,通过绳索牵引斜面上质量为m 的物体,物体与斜面间的摩擦系数为μ,求重物上滑的加速度.绳与斜面平行,不计绳质量.[解 答]分析受力及坐标如图。
z 轴垂直纸面向外。
列标量方程组:T mgsin mg cos maθθμ--=(1)M T R=Iβ'-+-(2)a R β=(3)T T '=(4)解得:2T mg sin mg cos maR(M mgR sin mgR cos )a=I mR θθμθθμ--=--+θmg补充例题:分别求细圆棒和圆筒的转动惯量J:细圆棒:2.圆筒:7.4.2 质量为2.97kg,长为1.0m的均质等截面细杆可绕水平光滑的轴线O转动,最初杆静止于铅直方向.一弹片质量为10kg,以水平速度200m/s射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角 .[解答]取子弹和杆为物体系。
分两个过程。
过程1:子弹嵌入前一瞬时开始到完全嵌入时为止。
此过程时间极短,可视为在原地完成。
此时受力为mg ,Mg,N 为转轴对杆的支承力,对于轴,外力矩为零。
有角动量守恒。
规定逆时针为转轴正方向。
得:20020m m I 1I M 3νωω⎧=+⎪⎨=⎪⎩解得:2022m 2.0(rad /s)1M m3νω==+过程2:由过程1末为始到物体系摆至最高点为止。
此过程中一切耗散力做功为零。
故物体系机械能守恒。
取杆的最低点为重力势能零点。
有2222111Mg m M (1cos )mg (1cos )Mg Mg222322ωωθθ++=-+-+解得 2211(M m)23cos 10.864M(m)g 230.3ωθθ+=-=+∴=7.5.3 由长为,质量各为m 的均质细杆制成正方形框架,其中一角连于光滑水平转轴O ,转轴与框架所在平面垂直.最初,对角线OP 处于水平,然后从静止开始向下摆动.求对角线OP 与水平成45时P 点的速度,并求此时框架对支点的作用力.[解 答]框架对O 点转动惯量22222201110I 2m 2[m m()]m 31243=⨯+++=由机械能守恒:2241100mg m 223ω=-+26g 6g ,55ωω==p 12g 5νω∴==先求支点O 对框架作用力N ,o op22M 4mgsin 454mg 2mg 422===∑由转动定理o o M I β=∑o2oM 2mg3g 10I 5m 3β===∑c op 32a g 2210τββ∴===由质心运动定理: c i F ma =∑外投影得:c 2n c c 4mgcos 45N 4ma N 4mg sin454m r r 2ττω⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩解得:n N mg =N 5τ=-N 6.32mg ∴==设N 与ˆi -方向夹角为θ,则n N 11tg ,79.7N 2τθθ==∴=7.5.4 质量为m 长为的均质杆,其B 端放在桌面上,A 端用手支住,使杆成水平.突然释放A 端,在此瞬时,求: (1)杆质心的加速度, (2)杆B 端所受的力.[解 答]取杆为隔离体,受力分析及建立坐标如图。
规定顺时针为转动正方向。
依据质心运动定理有:c N mg ma ττ-= (1)依据转动定理:B mgI 2β= (2)依据角量与线量关系:c a 2τβ=- (3)此外,2c n cn N ma m/2τν==2B 1I m 3= (4)由c c n 0.0,N 0τνν=∴==联立上述四个方程求得:nτc 3a g41N mg4ττ=-=7.5.6 板的质量为M ,受水平力F 的作用,沿水平面运动.板与水平面间的摩擦系数为μ.在板上放一半径为R 质量为2M 的实心圆柱,此圆柱只滚动不滑动.求板的加速度.[解 答]设所求板对地的加速度为a ,(方向与F 相同)。
以板为参照系(非惯性系)。
取圆柱体为隔离体,分析受力如图,z 轴垂直纸面向里。
依质心运动定律有:022c f f M a *-=板 (1)依据转动定理有:20021f R I M R 2βθ-==(2)依据角量与线量关系有:c a R β=板 (3)此外:22N M g = (4)惯性力 22f m a *= (5)取板为隔离体,受力如图,并建立如图坐标系。
列标量方程有:12N N Mg=0'-- (6)1F f f f 0*'---= (7) 1f Ma *= (8)1f N μ= (9)22N N '= (10) 00f f '= (11)2f *Ox 0f 2W yW1f*0f 'f将上述十一个方程联立求解得:223[F (M M )g]a 3M M μ-+=+7.6.1 汽车在水平路面上匀速行驶,后面牵引旅行拖车,假设拖车仅对汽车施以水平向后的拉力F 。
汽车重W ,其重心于后轴垂直距离为a ,前后轴距离为。
h 表示力F 与地面的距离。
问汽车前后轮所受地面支持力与无拖车时有无区别?是计算之。
[解 答]取汽车为隔离体,设车受前后轮的支持力分别为1N ,2N ,方向水平向上。
前后轮受地面摩擦力分别为1f ,2f ,方向分别先后和向前。
建立坐标系,水平向右为x 轴正方向,z 轴垂直纸面向外。
汽车匀速运动,受力平衡:i iF 0M 0==∑∑当有F 时:12a 1N N W 0W Fh N 0+-=⎧⎨--=⎩(以后轴为轴)解得:a 1a2W FhN W FhN W -=-=-当无F 时:12a 1N N =W W N 0''+⎧⎨'-=⎩解得:aa12W W N ,N W ''==-比较 1122N N ,N N ''与与 可知1122N <N ,N >N ''第九章9.2.1 一刚体可绕水平轴摆动.已知刚体质量为m ,其重心C 和轴O 间的距离为h ,刚体对转动轴线的转动惯量为I.问刚体围绕平衡位置的微小摆动是否是简谐运动?如果是,求固有频率,不计一切阻力.9.2.2 轻弹簧与物体的连接如图所示,物体质量为m ,轻弹簧的劲度系数为1k 和2k ,支承面是理想光滑面,求系统振动的固有频率.[解 答]以物体m 为隔离体,水平方向受12k ,k 的弹性力12F ,F ,以平衡位置为原点建立坐标系O x -,水平向右为x 轴正方向。
设m 处于O 点对两弹簧的伸长量为0,即两个弹簧都处于原长状态。
m 发生一小位移x 之后,弹簧1k 的伸长量为x ,弹簧2k 被压缩长也为x 。
故物体受力为:x 1212F k x k x=(k k )x =---+ (线性恢复力) m 相当于受到刚度系数为12k=k k +的单一弹簧的作用 由牛顿第二定律:m1k 2k21222122d xm (k k )x dt d xm (k k )x=0dt =-+++2120k k mω+=9.2.6一弹簧振子,弹簧的劲度系数为k 9.8N/m =,物体质量为20g现将弹簧自平衡位置拉长并给物体一远离平衡位置的速度,其大小为7.0m/s ,求该振子的运动学方程(SI).[解 答]以平衡位置为原点建立坐标系O-x,水平向右为正方向。
弹簧振子的运动方程为:0cos(),9.8(/),200x A t k N m m g ωα=+==故07(/)rad s ω==0t =时,00),7.0(/)x x cm cm s νν====2310()A m -==⨯0t =时,000cos sin x A A ανωα=⎫⎬=-⎭→0.34()rad α=- 弹簧振子的运动方程:2310cos(70.34)x t -=⨯-9.2.7质量为31.010g ⨯的物体悬挂在劲度系数为61.010dyn /cm ⨯的弹簧下面.(1)求其振动的周期.(2)在t 0=时,物体距平衡位置的位移为0.5cm +,速度为15cm /s +,求其运动学方程.[解 答]以平衡位置为原点,建立坐标系O-x ,竖直向下为正方向。
(1)220.199()mT s k ππω===(2)设运动方程为:00000cos()31.6cos 0sin x A t kmx A t A ωαωανωα=+==⎧=⎨=-⎩时,即 000cos 0.726sin 0.688x A A αναω⎧==⎪⎪⎨⎪=-=--⎪⎩故 0.759()43.49rad α=-=- 所以运动学方程为:36.8910cos(31.60.759)x t -=⨯-9.2.13 求第四章习题4.6.5题中铅块落入框架后的运动学方程.9.3.2 弹簧下面悬挂质量为50g 的物体,物体沿竖直方向的运动学方程为x 2sin10t =,平衡位置为势能零点(单位时间:s ,长度单位:cm ).(1)求弹簧的劲度系数,(2)求最大动能,(3)总能量.[解 答](1)根据弹簧振子20k m ω=2320k m 501010 5.0(N /m)ω-==⨯⨯=(2)由2sin10t 2cos(10t )2x π==- 则d 20sin(10t )dt 2x πν==--速度最大值2max2010(m/s)ν-=⨯ 故最大动能23kmax max 1E m 1.0010(J)2ν-==⨯(3)总能即等于最大动能3k max E E 1.0010(J)-==⨯ 或231E kA 1.0010(J)2-==⨯第十章10.2.4 写出振幅为A ,f ν=,波速为c ϑ=,沿Ox 轴正方向传播的平面简谐波方程.波源在原点O ,且当t=0时,波源的振动状态被称为零,速度沿Ox 轴正方向.10.2.10 图(a )、(b )分别表示t 0=和t 2s =时的某一平面简谐波的波形图。