d射流泵内部三维流场的数值模拟
- 格式:pdf
- 大小:237.65 KB
- 文档页数:4
基于CFD新型喷射泵内流场数值分析CFD新型喷射泵内流场数值分析CFD,即计算流体动力学,是通过数值方法对流体流动、传热、传质等问题进行数值模拟和预测的一种工程计算方法。
在工程领域中,CFD已成为一种不可或缺的工具,可以有效优化产品设计和生产过程。
新型喷射泵是一种高效节能的流体输送设备,广泛应用于工业生产过程中。
为了更好地优化和设计新型喷射泵,需要对其内部流动情况进行研究和分析。
基于CFD技术,可以通过建立新型喷射泵的数值模型,进行内部流场数值分析,从而找到最佳设计方案。
喷射泵的结构特点是利用液流物理效应通过层层喷嘴剥离出中央空气区域,形成低压区,从而实现吸入液体的目的。
对于新型喷射泵,其内部流场情况往往较为复杂,因此需要精细模拟和分析。
在进行数值模拟前,需要对新型喷射泵的几何结构和工作条件进行建模。
通过建立三维几何模型,并设置边界条件和工作参数,可以得到新型喷射泵内部流场的数值模拟结果。
通过数值模拟,可以分析得到新型喷射泵内部流场的速度、压力和液体浓度分布等信息。
在分析过程中,需要注意如何选取合适的网格质量和算法,以保证数值模拟的精度和准确性。
在分析新型喷射泵内部流场后,可以进一步进行优化设计。
例如,优化喷嘴结构、液体注入量和气体流量等参数,以达到最佳的流动效果和输送性能。
这样不仅可以提高新型喷射泵的运行效率,还可以节省能源和减少生产成本。
综上所述,基于CFD技术对新型喷射泵内部流场进行数值分析,可以有效优化喷射泵的设计和生产过程,提高其运行效率和性能。
未来,随着CFD技术的不断发展和应用,在各行各业中,将会有更多的工程问题将得以通过CFD方法进行解决和优化。
由于缺少具体的新型喷射泵内部流场数值模型数据,以下将以一组流量为0.5 m³/h的喷射泵数据进行简要分析。
首先,通过数值模拟得出的新型喷射泵内部流速分布图,可以看出喷射泵的中心区域具有较低的流速,周围区域的流速则较高,这与喷射泵工作原理相符合。
基于CFD的离心泵内部流场数值模拟作者:郑玉彬张旭明来源:《科技创新与应用》2014年第21期摘要:为研究CFD技术在离心泵内部流场分析方面的应用,通过三维软件Pro/E对核主泵内部流道进行三维造型,基于雷诺时均N-S方程和k-ε湍流模型两方程及SIMPLEC算法,应用计算流体力学软件CFX对泵进行了定常数值模拟和分析。
结果表明:由于蜗壳的扩压作用,在0.6Q~1.3Q泵的内部压力变化梯度明显,从叶轮进口向蜗壳出口方向,压力逐渐增加。
在0.9Q~1.1Q工况,泵内的压力变化更加均匀,这表明在设计点附近,泵的流动更加稳定。
而在1.2Q和1.3Q工况,在第八断面附近,出现高压流体和低压流体交汇,流场分布不均匀,这表明泵在大流量区域流动不稳定。
应用CFD技术能很好的分析离心泵的内部流场。
关键词:CFD;离心泵;数值模拟随着工业和城市化的进一步发展,我国面临着水污染严重,污水治理起步晚、基础差、要求高的形势,因此开发高效节能的排污泵能够降低能耗,达到节能的效果,可以为国家带来巨大的经济效益[1]。
施卫东[2]为实现低比转速潜水排污泵高扬程、高效率、无过载性能的统一,对WQS150-48-37型低比转速潜水排污泵采用不同设计方法,经优化得出3种方案,应用Pro/E软件建模,结合Fluent软件对3种方案进行了多工况内部流场分析和性能预测,并与外特性试验结果对比。
丛小青[3]针对低比速排污泵轴功率曲线随流量增大而增大这一特点,从理论上推导了排污泵产生无过载轴功率的条件,分析了主要几何参数对扬程曲线斜率的影响,给出了无过载排污泵水力设计中主要几何参数的选择原则和范围,同时通过设计实例,阐述了无过载排污泵的设计方法。
刘厚林[4]通过对双流道泵叶轮和蜗壳里的水力损失、容积损失、机械损失的分析,提出了双流道泵扬程曲线、效率曲线的性能预测方法,分别给出了双流道泵叶轮和蜗壳内各种摩擦损失、扩散损失,及主要局部损失的计算方法。
加药用射流泵的数值模拟及性能预测摘要:文章对在污水厂加药系统中射流泵的应用进行性能研究,采用FLUENT6.2软件对实况下射流泵三维流场进行数值模拟,并对计算结果进行性能预测。
对于了解射流泵内部流动状况,提高在实际应用中射流泵的效率,为射流泵的进一步研究提供可靠依据。
关键词:射流泵;FLUENT;数值模拟射流泵是利用射流湍流扩散作用进行传质传能的流体机械和混合反应设备。
它由于本身没有运动部件,并且具有结构简单、密封性好、可靠性高、便于维护和加工容易等优点,使其在放射、易燃、易爆等特殊场合中具有不可替代的优势,如今已在各项工程中得到了广泛的应用。
而能够在各种环境下高效率的运行成为了射流泵发展应用所面临的主要问题。
随着计算机的发展和各种专业计算软件的开发,对射流泵进行全三维数值模拟已经可以实现。
本文借助FLUENT6.2软件对液体射流泵的整个流场进行了三维数值模拟。
为了壁面的粘性效应明显,壁面采用相应的变化梯度划分网格。
本文对射流泵在污水加药系统中的新型应用进行内部流场的模拟,得出了一些有价值的性能信息。
1.3 计算模型本文根据选择动力泵的规格以及文献[1]中给出的射流泵设计最优公式,文献[2]中给出的选取最佳喉管距的方法,以及文献[3]中给出的选取最佳喉管长度的方法,初步确定所采用的射流泵的部分参数,建立实验模型来进行分析,其结构如图1所示,具体尺寸如表2所示。
按照射流泵结构尺寸,用UG NX6.0软件对其内部流场进行三维实体造型。
1.4 网格划分用UG NX6.0软件将射流泵内部流场的三维模型导出IGS文件,将文件导入FLUENT的前处理模块GAMBIT中,进行模型的网格划分以及的边界面的定义。
为了结果的计算精确性,本文采用Tet/Hybrid方式进行网格划分,网格总计1 241 584个。
1.5 边界条件工作液体进口设为压力进口,根据动力泵的规格设为0.3 MPa,吸入液体进口与混合液出口都定为压力边界条件。
蒙特卡罗法对射流泵模型内部流场的数值模拟随着科学技术的不断发展,人们对于流场研究的需求越来越高。
而数值模拟则成为现代科学研究中不可或缺的一部分。
本文将围绕“蒙特卡罗法对射流泵模型内部流场的数值模拟”这一主题展开讲解,带领小伙伴们一步一步深入了解相关知识。
第一步,了解射流泵模型的内部流场特性。
射流泵是利用高速流体的动能来传递压缩气体或输送液体的机械设备,其内部流场特性主要包括压力分布、速度分布、流线分布等。
这些特性对于射流泵的性能有着决定性的影响。
第二步,介绍蒙特卡罗法。
蒙特卡罗法是一种基于概率统计的数值模拟方法,其主要思想是利用多次重复采样的方法,通过统计得到随机事件的概率分布。
在流场模拟中,可以应用蒙特卡罗法模拟粒子在流场中的运动状态,进而得到流场的特性数据。
第三步,探索蒙特卡罗法在射流泵模型内部流场数值模拟中的应用。
通过对射流泵模型的内部流场进行数值模拟,我们可以得到流场中各个位置的速度、压力、流线等特性数据。
基于这些数据,可以对射流泵的性能进行准确的预报,也可以更加深入地了解流场特性。
第四步,总结蒙特卡罗法在射流泵模型内部流场数值模拟中的优势。
相较于传统的数值模拟方法,蒙特卡罗法具有计算量小、可靠性高、适用范围广等优点。
在射流泵模型内部流场数值模拟中应用蒙特卡罗法,可以更加准确地描述流场的特性,提高研究的精度和可信度。
综上所述,蒙特卡罗法对射流泵模型内部流场的数值模拟具有重要意义和应用价值。
通过深入理解射流泵模型内部流场特性,熟练掌握蒙特卡罗法的基本原理和计算流程,我们可以更加准确地预报射流泵的性能、优化流场设计、提高产品的质量和效率。
双向流道泵装置内三维流动数值模拟刘超;金燕【摘要】为了防止和消除双向流道泵装置进水流道内的漩涡和涡带,确保水泵机组的安全运行,在双向进水流道底部泵进口下方加设曲线导流墩.通过CFD软件对设导流墩的双向流道泵装置内部流动进行数值模拟,获得泵装置内部的三维流动速度场,并预测了泵装置的性能.结合模型泵装置试验的内外特性,着重研究了双向进水流道的出口流速分布及其对泵装置性能的影响.计算结果表明加设导流墩的双向进水流道出口断面流速分布较为均匀,流速均匀度达到93%,满足水泵运行的需要;装置性能良好,最优工况点的装置效率为68.89%.模型试验观测显示导流墩的设置有效地防止水泵进口下方涡带的产生,在各种试验工况下进水流道内均未发现涡带,水泵运转平稳无振动,可保证机组安全可靠运行.比较进水流道出口流速分布的计算结果与模型试验结果,二者在总体结构上相近,数值模拟对泵装置性能预测结果在最优工况点与试验结果基本吻合.%In order to prevent and eliminate vortex and the vortex tube occurred in the suction passage of two-way-reversible pumping system for the safe operation of the pump unit, an additional curved guide pier was placed on the bottom of suction passage under pump mouth. By using the CFD software the numeric simulation was made to obtain three-dimensional flow fields inside the pumping system with the additional guide pier and predict the performance of the pumping system. Combined with the model test, this paper focused on the velocity distribution of suction passage outlet, and its influences on the pump system performance. Both the computation and the measurement results showed that the additional guide pier on the bottom inside the suctionpassage did not effect on the velocity distribution of suction passage. The velocity evenness of suction passage outlet reach 93% with guide pier, which can meet the needs of pump operation. The performance of the pumping system was good and the high efficiency of the system at BEP is 68. 89% . Experimental observations showed that the set of the guide pier could effectively prevent the vortex generation under pump inlet, the vortices were not found within the suction passage under different operation conditions. The pump ran smoothly without vibration. Comparing the calculated results with the model test results of the outlet velocity distribution of the suction passage, both of them are similar in overall structure and pump performance prediction at BEP is consistent with the test results.【期刊名称】《农业机械学报》【年(卷),期】2011(042)009【总页数】5页(P74-78)【关键词】双向泵装置;进水流道;三维流动;导流墩;数值模拟【作者】刘超;金燕【作者单位】扬州大学水利科学与工程学院,扬州225009;扬州大学水利科学与工程学院,扬州225009【正文语种】中文【中图分类】TV131.4引言在沿江滨湖地区建有众多的低扬程双向抽水泵站,双向进出水流道的应用越来越多[1]。
离心泵内部流场三维数值模拟的开题报告一、选题背景离心泵是一种普遍应用于各种流体输送中的重要泵类。
为了更好地研究离心泵的流场特性及性能,提高离心泵的输送效率和运行稳定性,需要对离心泵内部流场进行三维数值模拟,以获得更全面和准确的流态信息和性能数据。
本文的选题意义在于探究离心泵内部流场的三维数值模拟,为离心泵的性能优化和设计改进提供重要参考和方向。
二、论文内容本文将通过建立离心泵的三维几何模型,采用计算流体力学(CFD)方法,对离心泵内部流场进行三维数值模拟,研究其流态特征和性能。
主要内容包括以下几个方面:1. 离心泵的几何模型建立:通过三维建模软件建立离心泵内部几何模型,并进行网格划分,以便进行后续的数值模拟分析。
2. 数值模型的建立:建立离心泵的数值模型,采用数值方法求解流场中的运动方程,以及速度、压力等关键参数。
主要采用流体动力学(CFD)方法进行求解,运用不同的求解方案、求解方法和求解器,对离心泵内部不同工况下的流场进行三维数值模拟分析。
3. 数值模拟分析:通过数值模拟软件对离心泵内部流场进行分析,主要关注离心泵内部流场的流态特征、速度分布、压力分布等参数,了解离心泵的运行状态,并深入探究不同工况下的流场特性及其影响因素。
4. 结果分析与讨论:通过对不同工况下的数值模拟结果进行比较分析,探究不同工况下流场的特性和性能数据变化规律。
同时,通过对比理论计算结果和实测数据,验证数值模拟结果的准确性和可靠性,为离心泵的设计优化和性能提高提供科学依据和参考数据。
三、研究意义离心泵是一种广泛应用于各种流体输送领域的重要设备,其性能及输送效率对应用过程的安全和稳定运行起着至关重要的作用。
通过对离心泵内部流场进行三维数值模拟,可以更全面、准确地了解其流态特性和性能数据,为离心泵的设计优化、性能提高和应用领域拓展提供科学依据和参考数据。
四、研究方法本文采用计算流体力学(CFD)方法,通过建立离心泵的三维几何模型,对其内部流场进行数值模拟分析。