2 4 2 n 2 2 2 2 0
对于每一个n值均有相应径向波函数
2Z 3 (n l 1)! 12 2 l 2l 1 Rn ,l ( ) [( ) ] e Ln l ( ) 3 n 0 2n[(n 1)!]
2Zr , n 0
2l 1 n 1 d d 2 l 1 n l Ln l e e 2l 1 n l d d
2 2 2 2 2 2 0
1 1 1 [ (sin ) ] ( , ) k ( , ) sin sin
2 2 2
——勒让德方程
将 Y ( , ) ( ).( ) 代入,整理得:
Sin 2 2 Sin k Sin m
3 2
Zr Z2 r 2 27 18 2 2 0 0 Zr e
m 1 im 1 i e cos m sin m 2 2 2
它们的线性组合也是方程的解,由此得到方程的实函数解:
2C C ( m m ) cos m 2 i2D sin m D ( m m ) sin m 2
2s 2p
Z 0 Z 0
Zr Zr 2 e 0 Zr e
20
20
3 2
Zr 0
3s 3p
Z 2 R 3 , 0 r 81 3 0 Z 4 R 3 ,1 r 81 6 0 4 R 3 , 2 r 81 30
Θ(θ) 方程的解:
2 1 d m 由原方程得: (sin ) k 0 2 sin d sin