EDA、Multisim仿真、模拟电路报告
- 格式:doc
- 大小:1.46 MB
- 文档页数:16
Multisim电路仿真实验报告精33张聪20130106571实验目的:熟悉电路仿真软件Muitisim的功能,掌握使用Muitisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NIMultisimstudentV12。
(其他版本的软件界面稍有不同)3预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Globalpreferences,选择Components标签,将SymbolStandard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Globalpreferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments(仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulationswitch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Masterdatabase(主库)、Corporatedatabase (协作库)和Userdatabase(用户库)。
一、实习背景随着电子技术的飞速发展,仿真电路软件在电子设计领域发挥着越来越重要的作用。
为了提高自身的实践能力和对电子电路的理解,我参加了仿真电路软件实习。
本次实习主要使用Multisim软件进行电路仿真,通过搭建和仿真电路,加深了对电路原理的理解,提高了电路设计和分析的能力。
二、实习目的1. 掌握仿真电路软件Multisim的基本操作和功能;2. 学会使用Multisim搭建电路原理图,并进行仿真实验;3. 熟悉电路仿真中的参数设置、波形分析等操作;4. 提高电路设计和分析的能力,为以后的实际工作打下基础。
三、实习内容1. 学习Multisim软件的基本操作:包括新建项目、导入元件、绘制电路图、设置参数、仿真实验等。
2. 搭建电路原理图:以常见的放大电路为例,搭建了共射极放大电路、共集电极放大电路、共基极放大电路等,并对电路参数进行了设置。
3. 进行仿真实验:通过设置输入信号,观察电路输出波形,分析电路性能。
例如,对共射极放大电路,观察其输入信号、输出信号、电压放大倍数等参数。
4. 波形分析:通过Multisim软件中的示波器、波特图等工具,对电路输出波形进行分析,了解电路的动态特性。
5. 总结仿真结果:根据仿真结果,分析电路性能,找出存在的问题,并提出改进措施。
四、实习收获1. 掌握了仿真电路软件Multisim的基本操作和功能,为以后电路设计和分析奠定了基础;2. 通过搭建和仿真电路,加深了对电路原理的理解,提高了电路设计和分析的能力;3. 学会了如何使用示波器、波特图等工具对电路输出波形进行分析,为以后的实际工作提供了便利;4. 培养了严谨的实验态度和团队合作精神。
五、实习总结本次仿真电路软件实习让我受益匪浅,不仅提高了我的电路设计和分析能力,还让我对电子设计领域有了更深入的了解。
在今后的学习和工作中,我将继续努力,不断提高自己的实践能力和综合素质。
以下是我在实习过程中的一些体会:1. 仿真电路软件是电子设计的重要工具,熟练掌握其操作对电路设计和分析至关重要;2. 在实际工作中,要注重理论与实践相结合,不断提高自己的动手能力和分析能力;3. 团队合作是成功的关键,要学会与他人沟通交流,共同解决问题。
绪论Multisim 9.0是一款优秀的EDA仿真软件,在这个平台下,我们可以对原理图、波形图或者硬件描述语言为系统功能描述手段完成的设计文件自动的完成编译、化简、综合、优化、布局布线、仿真. EDA软件能够提高设计效率、缩短开发周期。
是现代电子工业中不可缺少的一项技术。
电子工作平台Multisim 9.0是加拿大Interactive Image Technologies 公司推出的电子电路仿真的虚拟工作台软件。
它具有这样一些特点:①采用直观的图形界面创建电路,在计算机上仿真实验室的工作台,创建电路需要的元器件,而且,电路仿真所需要的测试仪器如万用表、示波器等都可以直接从屏幕上选取。
操作方便。
②Multisim提供的虚拟仪器的控制面板和操作方式都与实物相似(像安捷伦示波器就是全仿实际的示波器外观)。
可以实时的显示测量结果③Multisim还具有强大的电路分析功能,提供了直流分析、交流分析、瞬时分析、傅立叶分析、传输函数分析等19种分析功能。
并且可以同其他电路分析、设计和制版软件交换数据。
④Multisim同时也是一个优秀的电子技术训练工具,利用它可以熟悉常用电子仪器的测量方法。
本次实习就是通过对各种电路的仿真熟悉Multisim 9.0的操作方法,以便在日后的学习和工作中能够通过仿真调试自己设计的电路,从而提高设计效率,缩短开发周期。
并且能够在以后的工作中充分展现电气类学生的综合素质以及娴熟技能,因此,这次的实习具有及其重要的意义。
目录实习目的 (4)实验内容: (5)第一章、方波-三角波发生器的设计与实现 (5)实验目的: (5)实验要求: (5)实验原理: (5)第二章、偏置放大电路的设计 (8)实验目的: (8)实验要求: (8)实验原理: (8)第三章、集成运放电路的设计与实现 (12)实验目的: (12)实验要求: (12)实验原理: (12)实习总结 (15)实习目的1)初步掌握Multisim 9.0仿真软件的使用方法;2)学习在Multisim9.0仿真软件工作平台上测试单极共射放大电路的静态工作点、电压放大倍数和输入、输出电阻;3)通过仿真了解电路元件参数对静态工作点及放大倍数的影响;4)掌握用Multisim9.0对电路进行瞬态分析的方法,观察测量运行结果;5)通过用Multisim9.0软件来绘制差动放大电路、功率放大器、波形产生电路及直流稳压电源电路图,并测试其性能指标、静态工作点及输入、输出波形;6)通过用Multisim9.0软件进一步加深对电路原理的理解。
模拟电子线路m u l t i s i m仿真实验报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
2.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R62.重启仿真。
28.仿真动态三1.测量输入端电阻。
在输入端串联一个的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。
数据为VL测量数据为VO1.画出如下电路图。
2.元件的翻转4.去掉r7电阻后,波形幅值变大。
实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器 交流毫伏表 数字万用表三、实验步骤1实验电路图如图所示;2.直流工作点的调整。
如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。
7.出现如图的图形。
10.单击工具栏,使出现如下数据。
11.更改电路图如下、17思考与练习。
1.创建整流电路,并仿真,观察波形。
XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。
Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。
⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。
由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。
因此仿真实验结果符合理论要求。
3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。
EDA(一)数字部分电子线路仿真实验报告
实验名称:编码器译码器的仿真
姓名:杨思远
学号:110405264
班级:电气2班
时间:2010.5.17
南京理工大学紫金学院电光系
一、实验目的(四号+黑体)
1)熟悉Multisim7仿真软件数电部分的使用
2)掌握编码器、译码器和数码管逻辑功能和使用方法
3)能够利用编码器、译码器设计简单键盘编码显示电路
二、实验原理
1、用Multisim7软件实现一位全加器,验证正确性。
并将其设计成子电路,分别用字发生器,逻辑转换仪验证,并用逻辑分析仪分析。
2、用74147设计简单键盘编码电路,通过显示译码器实现数字码显示;
3、利用74147、7447和七段显示数码管设计简单键盘编码显示电路。
三、实验内容
(格式同上,5张图:1、全加器2、字信号发生器+逻辑转换仪+全加器3、逻辑分析仪+全加器4、74147键盘电路5、74147+7447键盘电路)
四、小结与体会
通过此次实验,我认识到了平时学习中所没有注意到得问题,并努力的解决了。
明白了“纸上得来终觉浅”,经过实践才能检验出学习的知识是否掌握。
无论如何,在今后的学习生活中,我将继续努力。
MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图V110mVrms 1kHz0°R1100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V4521R75.1kΩ9XMM16E级对地电压25.静态数据仿真记录数据,填入下表仿真数据(对地数据)单位;V计算数据单位;V基级集电极发射级Vbe Vce RP10k 26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
V110mVrms 1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52R75.1kΩXSC1A BExt Trig++__+_6192.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R6V110mVrms1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52XSC1A BExt Trig++__+_6192.重启仿真。
记录数据.仿真数据(注意填写单位)计算Vi有效值Vo有效值Av3.分别加上,300欧的电阻,并填表填表.4.其他不变,增大和减少滑动变阻器的值,观察VO的变化,并记录波形28.仿真动态三1.测量输入端电阻。
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
实验一RLC 串联电路频响仿真一.电路原理固定R 、L 、C 的值,并保持信号源电压不变,根据所选的L 、C 值求固有频率:LC π21f 0=,改变输入电压的频率或者电路参数均可使电路发生谐振二.Multisim 电路设计图三.仿真分析1. 计算出频率为15.923kHz2.仿真内容包括幅频、相频特性,给出相应图示幅频特性仿真图相频特性仿真图仿真波形图3.实验分析品质因数与选频作用Q值越高,曲线越尖锐,电路的选择性越好,通频带也越窄从Multisim 10仿真软件进行RLC串联谐振电路实验的结果来看,RLC串联谐振电路在发生谐振时,电感上的电压UL与电容上的电压Uc大小相等,相位相反。
这时电路处于纯电阻状态,且阻抗最小,激励电源的电压与回路的响应电压同相位。
谐振频率fo与回路中的电感L和电容C有关,与电阻R和激励电源无关。
品质因数Q值反映了曲线的尖锐程度,电阻R的阻值直接影响Q值.四.总结与展望本次实验用Multisim仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。
并且得到了RLC串联谐振电路有几个主要特征1.谐振时,电路为阻性,阻抗最小,电流最大。
可在电路中串入一电流表,在改变电路参数的同时观察电流的读数,并记录,测试电路发生谐振时电流是否为最大。
2.谐振时,电源电压与电流同相。
这可以通过示波器观察电源电压和电阻负载两端电压的波形中否同相得到。
3.谐振时,电感电压与电容电压大小相等,相位相反。
这可以通过示波器观察电感和电容两端的波形是否反相得出,还可用电压表测量其大小。
总的来说,本次实验比较成功,不仅仿真出了正确的结果,也对Multisim仿真软件的功能及其应用也有了更深的提高实验二.三相电路仿真实验一.电路原理1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
一、实验目的1.认识并了解Multisim的元器件库;2.学习使用Multisim绘制电路原理图;3.学习使用Multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】1.仿真电路如图所示。
2.修改参数,方法如下:双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。
三、数据计算1.由表中数据可知,测量值和估算值并不完全相同。
可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.2.电压放大倍数测量值A u =−13.852985 ;估算值A u =−14.06 ;相对误差=−13.852985−(−14.06)−14.06×100% =−1.47%由以上数据可知,测量值和估算值并不完全相同,可能的原因有:1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,r be =300+(β+1)∙26I E等与仿真电路并不完全相同。
2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。
3. 输入输出电阻验相同的原因外(不再赘述),还有:万用表本身存在电阻。
4.去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。
说明R E1减小了放大倍数,增大了输入电阻。
四、感想与体会电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。
在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。
用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。
但必须考虑实际测量与仿真的不同之处,并应以实测值为准。
Multisim模拟电路仿真实验Multisim 模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用Multisim的仿真手段对电路性能作较深入的研究。
2.实验内容实验19-1 基本单管放大电路的仿真研究(1)(2)理论分析(仿真电路符号如图):在V的情况下,可计算出则对比分析:经过比较,I(B)的误差较大。
而由实验结果也可看出,并不等于60,说明实际的三极管工作是由于电容、电阻各方面的因素β并不等于理论值,这即是I(B)误差较大的原因。
(3)理论分析:即放大倍数为14.07,相位相差180°输入电压最大值为1.41mV,输出最大值为19.5mV,相位正好相差180°,故实际的放大倍数为相对误差为1.71%可以看到,这与理论值还是十分接近的,相对误仅差为1.71% (4)幅频特性:上限截止频率18.070MHz下限截止频率17.694Hz则放大倍数,相对误差为1.56%带宽为(5)交流分析使用游标功能可测量出在输入频率为1000Hz时,放大倍数,相对误差为1.51%如上图,相位差为179.999°,相对误差趋0。
(6)当输入电压为300mV时此时失真度为21.449%.(7)理论分析:实验结果:测量输入电阻采用“加压求流法”,测输入端的电压(已知)和电流即可。
输入电流为2.951毫安于是,相对误差为2.1%,误差较小。
测量输出电阻采用改变负载电阻测输出电压进而估算输出电阻的方法。
00r 1o L oL U R U ??=-? ??? 00r 1o L oL U R U ??=-? ???,0o U 是输出端空载时的输出电压,oL U 是接入负载L R 时的输出电压,输出信号频率是1000KHz 。
于是,相对误差为1.97%,误差也是比较小(8)将1E R 去掉,将2E R 的值改为1.2k于是根据y2=95.2477得到放大倍数幅频特性上限截止频率18.911MHz 下限截止频率105.775Hz 则放大倍数95.25(此处可以通过示波器的显示结果验证)带宽为则输入电阻为(9)对比分析:结论:在去掉后,放大倍数、上下限截止频率都会增加,输入电阻会减小。
EDA技术及其应用实训报告1、实训目的1.1实训目的(1)掌握EDA技术及开放流程。
(2)掌握Multisim的使用方法和仿真操作。
(3)能够用Multisim软件进行搭建电路原理图,并对电路进行仿真。
(4)熟练运用Multisim软件并掌握其界面模块的功能。
(5)理解并掌握EDA技术在电路以及模电、数字电路设计中的应用。
1.2 实训要求(1)利用Multisim仿真L、C串联谐振电路,并用波特图仪测定频率特性。
(2)利用Multisim仿真三相三线制Y形非对称电路,并按要求分析。
(3)利用Multisim仿真模拟电路,并按要求进行分析。
(4)利用Multisim仿真数字电路,并按要求进行分析。
2、实验内容2.1 模拟电路部分要求:单管共射极分压式放大电路1、分析静态工作点(直流分析)2、电压放大倍数、输入电阻、输出电阻(交流分析)解:①电路截图如下:② 电路示波器及电压表显示(截图)如下:由上图波形数据可知:实测数据7.76-438.4573.340-=≈UA③ 原电路直流通路如下:测量值如下:B U=C I=CE U④ 理论值计算◆ 静态工作点的分析Vk k kU R R R U CC b b b B 73.212511515212≈+=+=mA R U U I I e BE B E C 135.11000246.073.2=⨯-=-=≈()()VR R I U R I R I U U e C C CC e E C C CC CE 94.321.5135.112=+⨯-=+-=--=◆ 三极管的输入电阻1208.882uAm 073.1==≈A I I BQ CQ β()Ω=⨯+=++≈K I r r EQ bb be 071.3135.126121300261'β◆ 该放大电路的各项交流参数分别为Ω=≈Ω==Ω===⨯-=-=K R r K R R r r R R R r R A C O b b be i L C L be L u 1.538.2////k 2//87-071.3212021''β⑤ 经第三、第四步骤的比较,测量值与理论计算值存在一定的误差,差异范围很小,说明理论与实测相对来说是符合一致的。
模电multisim仿真报告多路复用就是将多个信号通过一个传输线路并行传输,共同分享传输带宽。
多路复用技术可以提高传输系统的使用效率,它也是信息系统中广泛使用的技术之一。
本实验的目的是在MultiSIM中模拟一个给定的4路模拟多路复用器,并使用网表进行检查。
首先,根据模拟实验实验要求,在MultiSIM软件中,利用基本电路元件,引出4路MIXER多路复用器。
其中,每一路多路复用器由四个电路元件(压控管,二极管,可选电容和可选电感)组成,每根调制线连接一个输出,经过可选的调制器可以实现线性调制,产生调制载波。
接下来,连接相应的测量仪表,如示波器、频率计、谐波畸变分析仪等,以检测多路复用器的调制输出信号。
其中,按照实验要求,在示波器设置中将模拟量参数设置为:发生类型——正弦波;变化波形型——上升或下降型;频率—— 2KHz;幅度0.5V,偏置电压1.5V,正电源3V,负电源-3V,耦合方式——直流耦合等。
此外,在示波器上采样通道设置为4ch,每个通道的波形型2应设置为正弦形。
最后,使用网表检查多路复用系统波形的实验结果,并根据实验结果概括出:经过可选的调制器对四路信号进行线性调制后,四个信号的调制载波在输出端按时间轮流在总线上传输,多路复用器的较低发生器频率2KHz,高发生器频率4KHz,4路调制信号的峰值电压分别为1.5V,2.25V,2.5V,3.25V,幅度在0.5V,相位之间有90度的差别,说明多路复用器的信号已经正确的实现了4路线性调制输出,实验效果理想。
总之,本实验通过Multi-SIM仿真程序模拟出一个具有四路MIXER多路复用器的实验电路,并使用示波器和网表检查其调制输出信号的实验结果,经过测试,四路信号的调制载波在输出端按时间轮流在总线上传输,实验结果表明多路复用器是一种有效提高传输系统使用效率的技术。
模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。
二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。
它能够复制或放大这些信号,以便更好地进行研究和分析。
模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。
三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。
2. 根据实验要求,添加所需的电子元件和电源。
3. 连接各元件,构成完整的模拟电路。
4. 调整电源和各元件的参数,观察并记录电路的输出结果。
5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。
6. 记录实验数据和结果,分析电路的工作原理。
7. 完成实验报告,总结实验过程和结果。
四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。
通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。
实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。
2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。
当电流通过电阻和电容时,会产生一个随时间变化的电压。
该电压在电容两端累积,直到达到某个阈值,才会发生振荡。
通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。
此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。
这表明该电路具有较好的频率特性和波形质量。
五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。
通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。
建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。
同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。
一、实习背景随着电子技术的飞速发展,电路设计日益复杂,传统的手工设计方法已经无法满足现代电子设计的需要。
仿真电路软件作为一种辅助设计工具,可以帮助设计人员快速、准确地完成电路设计、分析和验证。
为了提高自身设计能力,我参加了本次仿真电路软件实习,通过实际操作和理论学习,对仿真电路软件有了更深入的了解。
二、实习目的1. 掌握仿真电路软件的基本操作和功能。
2. 学会使用仿真电路软件进行电路设计、分析和验证。
3. 提高电路设计能力和动手实践能力。
4. 熟悉电子设计自动化(EDA)的基本概念和应用。
三、实习内容本次实习主要使用Multisim软件进行电路仿真,实习内容如下:1. 软件界面及基本操作首先,熟悉Multisim软件的界面布局和基本操作。
软件界面主要由菜单栏、工具栏、元件库、电路窗口、参数窗口、仿真结果窗口等组成。
通过学习,掌握了软件的基本操作,如新建、打开、保存电路文件,添加、删除元件,设置元件参数等。
2. 电路设计在实习过程中,我设计了以下几种电路:(1)基本放大电路:通过添加输入信号源、放大器、输出信号源等元件,搭建了一个简单的放大电路。
在电路窗口中,我调整了放大器的增益参数,通过仿真结果观察到了放大效果。
(2)滤波电路:设计了低通、高通、带通、带阻等滤波电路,并调整了滤波器的截止频率、品质因数等参数,观察了滤波效果。
(3)稳压电路:设计了线性稳压电路和开关稳压电路,通过仿真结果分析了稳压效果。
3. 电路分析在仿真过程中,我运用了以下分析方法:(1)直流分析:通过设置仿真类型为直流分析,观察电路的静态工作点,如放大电路的输入、输出电压,滤波电路的截止频率等。
(2)交流分析:通过设置仿真类型为交流分析,观察电路的频率响应,如放大电路的增益、滤波电路的带宽等。
(3)瞬态分析:通过设置仿真类型为瞬态分析,观察电路在一段时间内的动态变化,如放大电路的输出波形、滤波电路的输出波形等。
4. 仿真结果分析通过对仿真结果的观察和分析,我总结出以下结论:(1)放大电路的增益与放大器参数、输入信号源有关。
EDA电路仿真报告班级:2008211113 学号:08210XXX班内序号:XX 姓名:XXX实验名称:共射—共集直接耦合放大电路一实验目的:1.熟悉EDA仿真软件的分析方法2.进一步了解共射—共集直接耦合放大电路的工作原理与特性3.提高实验设计的能力二电路设计:实验电路如下本电路中,NPN型三极管Q1构成第一级放大电路——为共射电路,其中Rb1和Rb2分压电路为其提供直流偏置电压;PNP型三极管Q2构成第二级放大电路——为共集放大电路。
本电路中,主要由第一级共射电路提供电压放大,而由第二级共集电路增强本电路的高频特性。
在Rb1和Rb2上并联大阻值的Rb,主要是为了提高电路的输入阻抗,以改善它的电流驱动能力。
Re1和Re2两个电阻主要起到稳定Q点的作用。
三、实验内容1.静态工作点的分析:执行Bias Point分析,得到各结点电压、电流如下图。
根据两个放大管各级的电压关系,可知都满足三极管放大的条件:发射结正偏,集电结反偏。
其中Q1的工作电流为:I=9.433mA,Q2的工作电流为I=8.626mA.当输入信号为100mA,1KHz的交流信号时的瞬态分析,可得如下波形:由波形可知,输出电压峰值为3.765V,且反相放大倍数为37.6903,Au=-37.69033.Ac-Sweep 频率分析①通频带下图为此放大电路的输出电压的频率特性由图可知,本电路为低通电路——通频带宽度为821.630KHz。
通频带已经较高,主要是由于二级放大电路中的共集结构。
②输入电阻的频率特性曲线由波形随频率的变化趋势可见:在50MHz左右之前,输入电阻尚无变化,当超过后,输入电阻将急剧下降。
③输出电阻的频率特性曲线由波形随频率的变化趋势可见:输出电阻在中频段较稳定,在低频和高频都会有大幅变化。
中频时,其值仅为8.9748Ω。
这主要是因为第二级共集放大电路的性质决定:低输出电阻,高输入电阻。
4.温度特性分析下图为不同温度下的输出波形。
竭诚为您提供优质文档/双击可除模拟电路仿真软件实验报告篇一:模拟电路仿真实验报告一、实验目的(1)学习用multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。
②依照电路图修改各个电阻与电容的参数。
③设置信号发生器的参数为Frequency1khz,Amplitude10mV,选择正弦波。
④修改晶体管参数,放大倍数为40,。
(2)电路调试,主要调节晶体管的静态工作点。
若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。
(3)仿真(↑图1)(↓图2)2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。
信号发生器1设置成1khz、10mV的正弦波,作为ui1;信号发生器2设置成1khz、20mV的正弦波,作为ui2。
满足运算法则为:u0=(1+Rf/R1)*(R2/R2+R3)*ui2-(Rf/R1)*ui1仿真图如图3图1-2图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。
电路图如图1-4,仿真结果如图4.篇二:multisim模拟电路仿真实验报告1.2.3.一、实验目的认识并了解multisim的元器件库;学习使用multisim 绘制电路原理图;学习使用multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】仿真电路如图所示。
1.2.修改参数,方法如下:双击三极管,在Value选项卡下单击eDITmoDeL;修改电流放大倍数bF为60,其他参数不变;图中三极管名称变为2n2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1%或更小。
Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NI Multisim student V12。
(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。
EDA技术及其应用实训报告1、实训目的1.1实训目的(1)掌握EDA技术及开放流程。
(2)掌握Multisim的使用方法和仿真操作。
(3)能够用Multisim软件进行搭建电路原理图,并对电路进行仿真。
(4)熟练运用Multisim软件并掌握其界面模块的功能。
(5)理解并掌握EDA技术在电路以及模电、数字电路设计中的应用。
1.2 实训要求(1)利用Multisim仿真L、C串联谐振电路,并用波特图仪测定频率特性。
(2)利用Multisim仿真三相三线制Y形非对称电路,并按要求分析。
(3)利用Multisim仿真模拟电路,并按要求进行分析。
(4)利用Multisim仿真数字电路,并按要求进行分析。
2、实验内容2.1 模拟电路部分要求:单管共射极分压式放大电路1、分析静态工作点(直流分析)2、电压放大倍数、输入电阻、输出电阻(交流分析)解:①电路截图如下:② 电路示波器及电压表显示(截图)如下:由上图波形数据可知:实测数据7.76-438.4573.340-=≈UA③ 原电路直流通路如下:测量值如下:B U=C I=CE U④ 理论值计算◆ 静态工作点的分析Vk k kU R R R U CC b b b B 73.212511515212≈+=+=mA R U U I I e BE B E C 135.11000246.073.2=⨯-=-=≈()()VR R I U R I R I U U e C C CC e E C C CC CE 94.321.5135.112=+⨯-=+-=--=◆ 三极管的输入电阻1208.882uAm 073.1==≈A I I BQ CQ β()Ω=⨯+=++≈K I r r EQ bb be 071.3135.126121300261'β◆ 该放大电路的各项交流参数分别为Ω=≈Ω==Ω===⨯-=-=K R r K R R r r R R R r R A C O b b be i L C L be L u 1.538.2////k 2//87-071.3212021''β⑤ 经第三、第四步骤的比较,测量值与理论计算值存在一定的误差,差异范围很小,说明理论与实测相对来说是符合一致的。
比较量 B UC ICE UU A实测值 2.624V 1.073mA 4.162V -76.7 理论值2.730V1.135mA3.94V-782.2 数字电路部分要求:用555定时器,观察波形,说明原理和功能,观察周期和占空比,与理论计算值比较,分析误差原因 ◆ 施密特触发器 ① 电路图(截图)如下:② 示波器波形(截图)如下:由上波形图可知:正弦波周期 ms 1us 134.998≈=T◆ 由上图波形可知:方波周期1.007ms T = ; 高电平时间615.672us T 1= 因此,占空比611.0ms007.1us672.615q 1===T T◆ 由以上图可知:跳变电压为1.558V 、3.418V③ 理论值计算可知信号源频率z k 1fH =那么 ms 1f1==T跳变电压:VV V VV V CC CC 33.33267.13121====令()()33.3t in 267.1t in 221==ωωS V S V CC CC解得ms 615.0t -t t 21≈=∆因此占空比615.01615.0T t q ===∆ ④ 实测与理论值比较数值周期 T跳变电压 V1跳变电压V2∆t占空比q实测值 1.007ms1.670V 3.418V 0.615m s0.611 理论值 1.000ms1.558V 3.333V 0.615ms0.615④ 实测和理论的误差分析(1)读数误差,即在电脑分析时使用游标确定数值时,游标所移动的位置难免由于操作问题,而出现误差,导致数值显示不精准。
(2)仿真时,程序运行时可能会存在误差。
(3)可能在软件定义元器件的参数时,与我们实际计算时,会存在误差。
⑤ 由555定时器组成的施密特触发器的工作原理输入信号Vi,对应的输出信号为V o,假设未接控制输入Vm(1)当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时V o=1。
以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出V o维持1不变。
(2)当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出V o=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。
(3)当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出V o=1。
3、(附加题)组成单稳态触发器①电路图如下:②波形图如下:③工作原理解释单稳态触发器的特点是电路有一个稳定状态和一个暂稳状态。
在触发信号作用下,电路将由稳态翻转到暂稳态,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态,并在输出端获得一个脉冲宽度为tw的矩形波。
在单稳态触发器中,输出的脉冲宽度tw,就是暂稳态的维持时间,其长短取决于电路的参数值。
由555构成的单稳态触发器电路中,RC为外接定时元件,输人的触发信号Ui接在低电平触发端。
稳态时,输出Uo为低电平,即无触发器信号时,电路处于稳定状态。
在Ui负脉冲作用下,低电平触发端得到低于1/3倍的Vcc,触发信号,输出Uo为高电平,放电管VT截止,电路进入暂稳态,定时开始。
在暂稳态期间,电源+Vcc→R→C→地,对电容充电,充电时间常数T=RC,Uc按指数规律上升。
当电容两端电压Uc上升到2/3倍的Vcc后,输出Uo变为低电平,放电管VT导通,定时电容C充电结束,即暂稳态结束。
电路恢复到稳态Uo为低电平的状态。
当第二个触发脉冲到来时,又重复上述过程。
4、L、C串联谐振电路要求:试用NI Mutisim仿真软件提供示波器观察L、C串联谐振电路外加电压与谐振电流的波形,并用波特图仪测定频率特性。
解:电路图如下◆示波器的波形如图所示:◆波特图频率特性:◆原理解释:串联谐振时,电感电压与电容电压等值异号,即电感电容吸收等值异号的无功功率,使电路吸收的无功功率为0;电场能量和磁场能量都在不断变化,但此增彼减,互相补偿,这部分能量在电场和磁场之间振荡,全电路电磁场能量总和不变;激励供给电路的能量全转化为电阻发热。
◆为了维持振荡,激励必须不断供给能量补偿电阻的发热消耗,与电路中总的电磁场能量相比每振荡一次电路消耗的能量越少,电路的品质越好。
◆谐振条件:在电阻、电感及电容所组成的串联电路内,当容抗XC=感抗XL相等时,即发生串联谐振,此时电路中的电压U与电流I的相位相同。
电路发生串联谐振时,电路的阻抗Z=√R2+XC-XL2=R,电路中总阻抗最小,电流将达到最大值。
5、三相三线制Y形非对称电路,要求:电源为220V,50HZ,0deg,电路如图所示,求各相的相电压、线电压及总功率。
并求各相开路、短路时的电压、电流。
解:电路图如下:◆ 正常工作时总功率W P 655.51755.17755.17145.16=++=◆ 通过Multisim 进行仿真测量后,各数值如下:条件 物理量 A 相 B 相 C 相 AB BC CA 正常工作时 电压(V ) 161.899 256.450 256.440 381.051 381.051 381.051 电流(mA ) 177.960133.720 133.333 177.850 135.550 134.353A 相开路 电压(V ) 329.050190.450 190.451 381.051 381.051 381.051 电流(mA ) 0100.200 100.521 0 100.210 100.513B 相开路 电压(V ) 125.520340.500 255.881 381.051 381.051 381.051 电流(mA ) 135.6250 135.006 177.850 0 135.050C 相开路 电压(V ) 122.550258.005 334.005 381.051 381.051 381.051 电流(mA ) 135.789136.158 0 136.200 136.215 0A 相短路 电压(V ) 162.521256.320 255.980 381.051 381.051 381.051 电流(mA ) 178.005135.720 133.521 178.123 133.802 133.790B 相短路 电压(V ) 161.890256.286 254.145 381.051 381.051 381.051 电流(mA ) 178.892133.889133.870178.890133.890133.699C相短路电压(V)162.012 256.301 253.382 381.051 381.051 381.051 电流(mA)178.013 134.005 133.752 177.860 134.560 133.890。