分层线性模型操作方法
- 格式:doc
- 大小:11.05 KB
- 文档页数:2
重复测量数据分析系列:再谈多层混合效应模型(基于Stata)感觉从来没有⼀个模型有这么多的称谓。
混合效应模型的不同称谓多层混合效应线性模型(Mu l ti l e v e l Mi x e d-E ffe c t L i n e a r Mo d e l);多⽔平模型(Mu l ti l e v e l Mo d e l),分层线性模型(H i e ra rc h i c a l L i n e a r Mo d e l);混合效应模型(Mi x e d E ffe c t Mo d e l),混合线性模型(Mi x e d L i n e a r Mo d e l);随机截距-斜率发展模型(R a n d o m i n te rc e p t a n d s l o p Mo d e l,R IS Mo d e l);随机效应模型(R a n d o m C o e ffi c i e n t Mo d e l),随机系数模型(R a n d o m C o e ffi c i e n t Mo d e l);随机斜率模型(R a n d o m S l o p Mo d e l);随机截距模型(R a n d o m i n te rc e p tMo d e l),⽅差成分模型(V a ri a n c e C o mp o n e n t Mo d e l);残差⽅差/协⽅差模式模型(R e s i d u a l C o v a ri a n c e P a tte rn Mo d e l)……简单地说,混合效应模型(Mixed Effect Model)/混合线性模型(Mixed Linear Model)是既包含固定效应⼜包括随机效应的模型。
在很多统计⽅法都能看到固定效应(fixed effect)和随机效应(random effect)的⾝影,⽐如⽅差中的固定因素和随机因素,Meta分析中的固定效应和随机效应,以及多⽔平模型中的固定截距/斜率和随机截距/斜率。
关于分层线性模型样本容量问题的研究张璇王嘉宇2011-12-13 14:33:23 来源:《统计与决策》(武汉)2010年15期第4~8页内容提要:文章运用Jackknife和Boostrap的方法,对参数估计的方差进行改进,构造了合适的参数估计的置信区间。
通过样本组数和组内个体数的变化,利用数据模拟的方法进行研究,表明参数估计的可靠性很大程度上依赖于组数;对于固定效应参数,组数取30就可以得到可靠的估计值。
对于σ和方差协方差成分T,组数分别取50和70才能得到可靠的估计。
关键词:分层线性模型参数估计的覆盖率 Jackknife Boostrap 数据模拟作者简介:张璇(1979-),女,湖南湘潭人,中国人民大学统计学院博士研究生,讲师,研究方向:统计模型及其计算、计量经济学(北京100084);王嘉宇,卡尔斯塔德大学国民经济与统计系,乌普萨拉大学信息科学与统计系(瑞典65188)。
1研究背景很多社会研究都涉及分层数据结构,例如,经济学家探求在多个国家中经济政策是如何影响居民的消费行为,研究采集的观测数据不仅包括以国家为层次的经济指标,还包括以家庭为单位的信息,因此整个观测的数据结构是分层的。
此时,同属一个层次的个体之间的相关性会大于来自不同层次的个体之间的相关性,整个观测样本就不再具有独立同分布性质,如果继续使用经典的线性回归模型,就会得到有偏的参数估计和错误的统计推断结果。
近年来,随着分层线性模型统计理论的发展,一套完整的应用于分层结构数据的统计推断方法已经建立起来,并且能得到有效的参数估计。
分层线性模型(hierarchical linear models)的称谓最早由Lindley和Smith(1972)[1]提出。
这个模型在不同的研究领域有不同的称呼,在社会学研究中,它经常被称为多层线性模型(multilevel linear model);在生物统计研究中常用的名字是混合效应模型(mixed-effects models)和随机效应模型(random-effects models);计量经济学文献称之为随机系数回归模型(random-coefficient regression models)等。
分层线性模型操作方法
分层线性模型(Hierarchical Linear Model,简称HLM)是一种用于分析多层数据结构的统计模型。
它将数据分类到不同的层次,并在每个层次上拟合线性模型,然后将这些层次之间的关系建模。
以下是分层线性模型的操作方法:
1. 确定层次结构:首先需要确定数据的层次结构,即数据是如何分成不同层次的。
例如,研究可以有多个学校,每个学校有多个班级,每个班级有多个学生。
在这种情况下,学校可以被定义为第一层,班级为第二层,学生为第三层。
2. 数据准备:准备好所需的层次数据。
这意味着将每个层次的数据分为不同的变量或列。
例如,在上述例子中,可以为每个学生收集学校、班级和个人的信息,然后将其分为不同的列。
3. 建立模型:使用统计软件或编程语言,将分层线性模型拟合到数据中。
通常,HLM的建模过程包括选择固定效应和随机效应,指定相应的层次结构和层次间关系。
4. 检验模型:一旦建立了HLM模型,需要对其进行检验以评估其拟合优度。
这可以通过检查模型参数的统计显著性、模型拟合度量(如R方)以及残差分析来完成。
5. 解释和解读结果:在完成模型检验后,可以解释和解读结果以回答研究问题。
这可能涉及解释固定效应和随机效应之间的差异以及层次间关系的影响。
6. 进行推断和预测:最后,可以使用已建立的HLM模型进行推断和预测。
这可以通过根据模型参数和已知变量的值来预测响应变量的值,或者通过使用模型进行假设检验和置信区间构建来推断总体水平上的差异。
总的来说,分层线性模型的操作方法包括确定层次结构、准备数据、建立模型、检验模型、解释和解读结果,以及进行推断和预测。