数学实验-数列极限与函数极限

  • 格式:doc
  • 大小:80.50 KB
  • 文档页数:2

下载文档原格式

  / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础 数列极限与函数极限

一、实验目的

从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。

二、实验材料

1.1割圆术

中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。

“割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。

以n S 表示单位圆的圆内接正123-⨯n 多边形面积,则其极限为圆周率π。用下列

Mathematica 程序可以从量和形两个角度考察数列{n S }的收敛情况:

m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正123-⨯n 多边形边长)

s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正123-⨯n 多边形面积)

r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1];

Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]]

]

t=Table[{i,s[i]},{i,m,n}] (数组)

ListPlot[t] (散点图)

1.2裴波那奇数列和黄金分割

由2110;1;0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n

n n F F R 11--=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511

1++⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=n n n F ; 2

15lim lim 1-==+∞→∞→n n n n n F F R 。 用下列Mathematica 程序可以从量和形两个角度考察数列{n R }的收敛情况:

n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2;

f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项)

rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1];

Print[i," ",rn," ",Rn," ",dn];

] t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t]

1.3收敛与发散的数列

数列}{1∑=-n

i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。 1.4函数极限与数列极限的关系

用Mathematica 程序

m=0;r=10^m;x0=0;

f[x_]=x*Sin[1/x]

Plot[f[x],{x,-r,r}]

Limit[f[x],x->x0]

观察1sin )(-=x x x f 的图象可以发现,函数在0=x 点处不连续,且函数值不存在,但在0=x 点处有极限。

令100,,2,1,/1 ===n n a x n ,作函数的取值表,画散点图看其子列的趋向情况

k=10;p=25;

a[n_]=1/n;

tf=Table[{n,N[f[a[n]],k]},{n,1,p}]

ListPlot[tf]

Limit[f[a[n]],n→Infinity,Direction→1]

分别取不同的数列n a (要求0→n a ),重做上述过程,并将各次所得图形的分析结果比

较,可知各子列的极限值均为上述函数的极限值。

对于1sin )(-=x x g ,类似地考察在0=x 点处的极限。

三、实验准备

认真阅读实验目的与实验材料后要正确地解读实验,在此基础上制定实验计划(修改、补充或编写程序,提出实验思路,明确实验步骤),为上机实验做好准备。

四、实验思路提示

3.1考察数列敛散性

改变或增大n ,观察更多的项(量、形),例如,n 分别取50,100,200,…;扩展有效数字k ,观察随n 增大数列的变化趋势,例如,k 分别取20,30,50;或固定50;或随n 增大而适当增加。对实验要思考,例如,定义中的指标与柯西准则中的指标间的差异;数列收敛方式;又例如,如何估计极限近似值的误差。

3.2考察函数极限与数列极限的关系

改变函数及极限类型,例如,考虑六种函数极限,既选取极限存在也选取极限不存在的例子;改变数列,改变参数观察更多的量,考察形的变化趋势;扩展有效数字k ,提高计算精度。要对实验思考,归纳数列敛散与函数敛散的关系。