发动机曲柄连杆机构动力学仿真分析平台研究
- 格式:pdf
- 大小:697.59 KB
- 文档页数:5
发动机曲柄连杆机构多体系统动力学仿真研究的开题报告一、研究背景与意义随着汽车工业的发展,对于发动机的性能安全与经济性能有越来越高的要求。
发动机曲轴连杆机构是发动机的核心部件之一,它是将活塞的上下往复运动转变为旋转运动的关键。
因此,深入研究发动机曲轴连杆机构多体系统动力学特性,对于提高发动机的性能和可靠性具有重要的实用价值和理论意义。
当前,对于发动机曲轴连杆机构的多体系统动力学研究已经有了一定的基础,包括研究方法、仿真软件和实验设备的不断发展。
但是,目前存在一些问题如下:1.现有的研究方法普遍忽略了发动机曲轴连杆件之间的质量分布和相互作用,并且曲轴的弯曲和扭转也没有得到充分考虑,缺乏针对复杂工况下发动机曲轴连杆机构多体系统的优化设计理论。
2.现有仿真软件的建模和计算精度有限,不能充分反映发动机曲轴连杆机构的动力学特性,如曲轴的弯挠、摩擦、磨损等。
基于此,开展发动机曲轴连杆机构多体系统动力学研究,建立准确合理的发动机曲轴连杆机构模型,可以为发动机的优化设计提供科学依据和理论基础,进而推动发动机领域的发展。
二、研究目标与内容本研究的主要目标是建立准确的发动机曲轴连杆机构多体系统动力学模型,研究发动机曲轴连杆机构在复杂工况下的特性,以此为基础进行优化设计。
本研究的具体内容包括:1.建立发动机曲轴连杆机构多体系统动力学模型,考虑曲轴的弯曲、扭转、转轴偏移和曲轴连杆件之间的相互作用。
2.开发仿真软件,实现对于发动机曲轴连杆机构的动力学特性进行分析和计算,并对比分析不同工况下发动机曲轴连杆机构的性能。
3.针对不同工况下,优化设计发动机曲轴连杆机构的结构,提高发动机的性能和可靠性。
三、研究方法本研究采用多学科交叉的研究方法。
主要包括:1.理论方法:应用多体系统动力学理论,建立发动机曲轴连杆机构多体系统动力学模型。
2.仿真方法:通过开发相应的仿真软件,对发动机曲轴连杆机构的动力学特性进行分析和计算,同时进行实验数据验证和比对。
基于Workbench的仿真内燃机曲柄连杆机构动力学分析(机械与动力工程学院南京 211816)摘要:本文以S195 内燃机为例,对单缸内燃机的曲柄连杆机构简化模型进行了有限元分析。
根据力学分析结果和强度要求设计内燃机曲柄连杆机构结构,并应用UG软件建立该机构三维数字化虚拟装配模型,结合有限元理论及其分析软件ANSYS Workbench,模拟分析了曲柄连杆机构装配体动力学分析,结果表明,数字化模型结合装配体有限元分析,可解决曲柄连杆机构结构强度评价问题,有助于缩短汽油机开发周期和减少成本。
关键词:曲柄连杆,有限元分析,Workbench,动力学仿真。
Dynamic analysis of the crank connecting rod mechanismbased on Workbench simulation(Nanjing Technology of University, mechanical and power engineering,Yin Zhenhua, Nanjing, 211816)AbstractBased on the S195 diesel engine as an example, the crank connecting rod mechanism of single cylinder diesel engine was analyzed in finite element analysis. According to the mechanical analysis results and strength requirements, the structure of the engine crank connecting rod mechanism is designed, and the 3D digital virtual assembly model of the mechanism is established. Combined with the finite element theory and the analysis software ANSYS Workbench. The results show that the numerical model combined with the finite element analysis can solve the problem of structural strength evaluation of the crank link mechanism, which helps to shorten the development cycle and reduce the cost.Key words: crank connecting rod, finite element analysis, Workbench, dynamic simulation.0.引言随着发动机强化指标的不断提高,曲柄连杆机构的工作条件更加复杂[1-2]。
课程设计任务书目录1 绪论 (1)1.1CATIA V5软件介绍 (1)1.2ADAMS软件介绍 (1)1.3S IM D ESIGNER软件介绍 (2)1.4本次课程设计的主要内容及目的 (2)2 曲柄连杆机构的建模 (3)2.1活塞的建模 (3)2.2活塞销的建模 (5)2.3连杆的建模 (5)2.4曲轴的建模 (6)2.5汽缸体的建模 (8)3 曲柄连杆机构的装配 (10)3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10)4 曲柄连杆机构导入ADAMS (14)4.1曲柄连杆机构各个零部件之间运动副分析 (14)4.2曲柄连杆机构各个零部件之间运动副建立 (14)4.3曲柄连杆机构导入ADAMS (16)5 曲柄连杆机构的运动学分析 (17)结束语 (21)参考文献 (22)1 绪论1.1 CATIA V5软件介绍CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。
它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。
CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。
CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。
由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。
法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。
船舶柴油机曲柄连杆机构的运动仿真与动⼒分析船舶柴油机曲柄连杆机构的运动仿真与动⼒分析第⼀章绪论1.1课题来源及意义当今全球经济⽇益繁荣,国国之间外贸联系⽇益紧密,90%的进出⼝是靠船舶运输的。
柴油机有以下突出优点,a.经济性好b.功率范围宽⼴c.尺⼨⼩,重量轻d.机动性好 e.可靠性⾼,寿命长,维修⽅便]1[。
因此船舶的动⼒和电⼒系统绝⼤部分情况依赖柴油机,所以研究船舶柴油机有很⼤的必要性。
在⼤多数情况下,⼤型低速长⾏程⼗字头⼆冲程柴油机作为主机,带动轴系,最终推动螺旋桨产⽣动⼒推进船舶前进;中速四冲程筒形柴油机作为发电机组的原动机,带动发电机发电供全船照明和动⼒⽤电。
⽆论四冲程还是⼆冲程柴油机的核⼼都是曲柄连杆机构。
曲柄连杆机构是柴油机主要运动部件,能将活塞的往复运动转换成回转运动,并产⽣动⼒,驱动外部设备。
曲柄连杆机构运动和受⼒都⽐较复杂,因此⽆论是设计⼈员在设计过程中,还是轮机员在⽇常维修保养中都⾮常关⼼它的性能。
本⽂以船⽤柴油机曲柄连杆为例,对曲柄连杆机构进⾏运动和动⼒分析,⽤机械系统动⼒学⾃动分析软件ADAMS(Auto Dynamic Analysis of Mechanical Systems)为⼯具,对⼆冲程柴油机进⾏运动仿真及分析,使对柴油机⼯作原理有更为深刻的理解,⽅便轮机⼈员在⽇常⼯作中管理主机和发电柴油机。
1.2国内外研究状况1.2. 1 机构动⼒学分析⽅法研究现状当前,国内外对柴油机⼯作机构动⼒分析⽅法较多,且都⽐较完善和成熟。
曲柄连杆机构运动学分析就是研究曲柄和连杆,连杆和活塞的相对运动即位移、速度和加速度随着时间的变化规律。
动⼒学则是研究受⼒情况。
柴油机曲柄连杆机构的动⼒学分析包括⽓体⼒,惯性⼒,轴承⼒,曲轴扭矩等的分析。
传统柴油机主要⼯作机构的运动及动⼒分析的⽅法主要包括图解法、解析法以及复数向量法]2[。
(1)图解法形象直观,机构各组成部件的速度、位移、加速度、所受⼒的⼤⼩以及改变趋势通过图解形式⼀⽬了然。
基于PRO/E的连杆机构设计及远动仿真分析摘要连杆机构是机械中常见的一种机构,是往复式内燃机的主要工作机构。
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要远动零件。
虚拟装配与远动仿真是根据产品的形状特征.精度特性,利用计算计图形学和仿真技术,在计算机上模仿产品的实际装配过程.仿真模拟机器的远动过程。
通过对曲柄连杆机构进行有关运动学和理论分析与计算机仿真分析,利用PRO/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件.连杆组件和曲柄组件,从而完成内燃机曲柄连杆机构的虚拟装配与运动仿真。
在内燃机的开发设计阶段应用这种方法可以大大缩短产品的开发周期,减少样机实验次数,快速的对市场做出反应,降低产品的成本,提高企业的竞争力。
关键词:曲柄连杆机构:虚拟装配:运动仿真;装配功能Based on Pro/E internal combustion engine connecting rod assembly and motion simulation of the virtualAbstractThe crank is a common machinery, reciprocating internal engine is the main working body. Crank the engine duty to achieve of the main moving parts of energy. Virtual and motion simulation based on tee shape of product precision features the use of computer graphics and simulation technology, the product on the computer to imitate the actual assembly process the movement of the machine Crank through the relevant kinematics and dynamics of the theoretical analysis and computer simulation analysis, the use of Pro/E, assembly features, the crank assembly of the constituent parts into a piston, connecting rod assemblies and crankshaft components, to complete the internet combustion engine connecting rod assembly and motion simulation of the virtual. The development of internal combustion engine design using this method can greatly shorten the product development cycle and reduce prototype test times, respond quickly to market, lower product costs and improve the competitiveness of enterprises.Keywords: crank Vrtual assembly; Motion simulation;assembly features目录1绪论 (5)1.1本课题研究的目的和意义 (6)1.2国内外的研究现状及发展趋势 (7)2设计的方案 (9)2.1研究的基本内容 (9)2.1.1连杆机构的结构设计 (9)1手压抽水机的结构特点 (9)2手压抽水机的设计 (9)3连杆机构的装配 (13)3.1手压抽水机的装配 (13)3.2伺服电动机定义 (22)3.3运动分析定义 (23)4本文总结 (24)5参考文献 (25)6致谢 (26)1绪论1.1本课题研究的目的和意义基于虚拟现实的产品虚拟拆装技术在新产品开发、产品的维护以及操作培训方面具有独特的作用。
发动机曲柄连杆机构建模与仿真共3篇发动机曲柄连杆机构建模与仿真1发动机是现代汽车的核心部件,而发动机的曲柄连杆机构是其重要组成部分。
曲柄连杆机构是将活塞的往复直线运动转化为曲柄的旋转运动,并将曲柄的旋转运动传递到汽车的传动系统,驱动汽车前进。
因此,对曲柄连杆机构的建模与仿真研究具有非常重要的意义。
建模是对一个系统或过程的抽象和简化,建立数学模型并用计算机仿真求解。
而曲柄连杆机构建模与仿真,是指在计算机软件的帮助下将传统的手工绘图、计算曲柄连杆运动轨迹的工作转化为计算机模型建立、仿真分析的过程。
这种方法的好处是可以大大提高计算效率,同时可以方便的进行参数化分析,探究系统的适用性以及其内部机制。
曲柄连杆机构建模的第一步是建立坐标系。
我们需要确定一个参考点,通常是发动机曲轴中心线。
接着,我们需要定义每个零件的位置,通过坐标系来描述。
例如,对于一个柄头与曲轴的配合,我们需要确定其位置和姿态。
曲柄连杆机构的建模需要包括曲轴、连杆和活塞。
在建模时,我们需要确定曲轴的几何尺寸和转动轴线的位置,这样才能计算出曲轴相对坐标系的位置和姿态。
对于连杆,我们需要定义其长度、部位的尺寸和材料以及其他参数,同时也需要考虑连杆的固定方式。
活塞建模需要考虑它的直径、长度以及密封件等参数。
建模完成后,我们需要用计算机软件来进行仿真分析。
在仿真分析时,需要输入相关的工作参数(如发动机的工况、所加载的载荷等),以获取系统在不同参数下的性能表现。
仿真分析主要包括如下几方面:(1) 运动学分析:通过对曲柄连杆机构中每个零件的几何形状和位置关系的分析,得出其运动轨迹,进而分析每个零件的运动状态。
(2) 动力学分析:通过对曲柄连杆机构在不同载荷下的工作性能的分析,得出曲轴、连杆及柄头的最大受力情况,从而进一步分析系统劳动寿命等相关参数。
(3) 模态分析:通过对曲柄连杆机构在工作条件下的振动模态进行分析,探究系统在不同频率下的振动特性以及如何减少或消除系统中的振动问题。