绝缘电阻率介电常数介质损耗角正切击穿电场强度表征参数
- 格式:ppt
- 大小:2.89 MB
- 文档页数:69
《高电压工程》习题答案第一章1. 解释绝缘电阻、吸收比、泄漏电流、tan δ的基本概念。
为什么可以用这些参数表征绝缘介质的特性?绝缘电阻:电介质的电阻率很大,只有很小的泄漏电流(一般以μA 计)流过电介质,对应的电阻很大,称为绝缘电阻。
绝缘电阻是电气设备和电气线路最基本的绝缘指标。
绝缘电阻值的大小常能灵敏的反映绝缘情况,能有效地发现设备局部或整体受潮和脏污,以及绝缘击穿和严重过热老化等缺陷。
吸收比:吸收比K 定义为加上直流电压后60s 与15s 时的绝缘电阻值之比。
即ss R R K 1560=。
若绝缘良好,比值相差较大;若绝缘裂化、受潮或有缺陷,比值接近于1,因此绝缘实验中可以根据吸收比K 的大小来判断绝缘性能的好坏。
泄漏电流:流过电介质绝缘电阻的纯阻性电流,不随时间变化,称为泄漏电流。
泄漏电流实际上就是电气线路或设备在没有故障和施加电压的作用下,流经绝缘部分的电流,因此,它是衡量电器绝缘性好坏的重要标志之一。
tan δ :介质损耗因数是在交流电压作用下,电介质中电流的有功分量与无功分量的比值。
即CR I I =δtan 。
tan δ是反映绝缘介质损耗大小的特征参数。
2. 为什么一些电容量较大的设备如电容器、电力电缆等经过直流高压实验后,要用接地棒将其两极间短路放电长达5-10min?因为容型设备的储存电荷较多,放电实质是一个RC电路,等效的公式为U(1-e T),其中时间常数T=R*C ,电容越大,放电的时间越长。
为了操作安全以及不影响下一次试验结果,因此要求电容要充分放电至安全程度,时间长达5-10min。
3. 试比较气体、液体、固体电介质的击穿场强大小及绝缘恢复特性。
固体电介质击穿场强最大,液体电介质次之,气体电介质最小;气体电介质和液体电介质属于自恢复绝缘,固体电介质属于非自恢复绝缘。
4. 何谓电介质的吸收现象?用电介质极化、电导过程的等值电路说明出现此现象的原因。
为什么可以说绝缘电阻是电介质上所加直流电压与流过电介质的稳定体积泄漏电流之比?(1)一固体电介质加上直流电压U,如图1-1a所示观察开关S1合上之后流过介质电流i的变化情况。
介质损耗正切角tanδ
介质损耗正切角tanδ是指介质在交流电场作用下的能量损耗,是介质的一项重要物理参数。
在电气工程、电子工程、通信工程等领域中,tanδ是评价材料电性能的重要指标之一。
介质损耗正切角tanδ与材料的电阻率、介电常数、介电损耗因子等密切相关。
介质的导电性和介电性都会影响tanδ的大小。
在电子元器件中,材料的tanδ值越小,元器件的性能越好,损耗也越小。
因此,控制和降低介质的tanδ值是提高电子元器件性能的关键之一。
介质损耗正切角tanδ与介质的分子结构、杂质、分子运动等因素有关。
在高频电场下,分子之间的相互作用会导致介质内部的分子运动,进而产生能量损耗。
此外,杂质和缺陷也会影响介质的tanδ值。
因此,通过改变材料的分子结构、纯度和形态等因素,可以调控介质的tanδ值。
在通信工程中,介质损耗正切角tanδ也是一项重要的参考指标。
在信号传输过程中,介质会吸收部分能量,导致信号衰减。
通过对不同材料的tanδ值进行比较,可以选择合适的介质材料,提高信号传输的质量和效率。
介质损耗正切角tanδ是一项重要的物理参数,在电气工程、电子工程、通信工程等领域都有广泛的应用。
通过控制和调控介质的
tanδ值,可以提高电子元器件的性能和信号传输的质量,具有重要的实际应用价值。
介质损耗正切tanδ 介电常数一、介质损耗正切tanδ的概念和意义1. 介质损耗正切tanδ的定义介质损耗正切tanδ是介质在交变电场作用下出现的能量损耗的一种量度,它可以描述介质在交变电场中的损耗情况。
介质在交变电场中会发生振荡,在振荡的过程中会有能量的损耗,这种损耗的程度可以用介质损耗正切tanδ来表示。
介质损耗正切tanδ越大,介质的能量损耗就越严重。
2. 介质损耗正切tanδ的意义介质损耗正切tanδ的大小直接影响着介质的电学性能。
在电学应用中,介质损耗正切tanδ大的介质不仅会导致能量的损耗,还会引起介质发热和信号衰减,影响着电路的稳定性和性能。
了解介质损耗正切tanδ的大小对于选用合适的介质材料、优化电路设计和提高电器设备的性能具有重要意义。
二、介质损耗正切tanδ的影响因素1. 材料特性介质损耗正切tanδ的大小与介质材料的特性有关。
不同的介质材料具有不同的分子结构和晶格排列,这会直接影响介质的极化强度和分子的运动情况,从而影响介质损耗正切tanδ的大小。
2. 温度和频率介质损耗正切tanδ还受温度和频率的影响。
随着温度的升高,介质内分子的热运动加剧,介质的极化现象增加,从而引起介质损耗正切tanδ的增加。
而频率的增加也会导致介质损耗正切tanδ的增加,这是因为在高频下介质分子无法及时跟随电场变化而导致的损耗。
3. 结构和制备工艺介质的结构和制备工艺也会影响介质损耗正切tanδ的大小。
采用不同的制备工艺和改变介质的结构和形式可以改变介质的极化机制,从而影响介质损耗正切tanδ的大小。
三、介电常数的概念和意义1. 介电常数的定义介电常数是介质在交变电场中的极化能力的度量量,它描述了介质在外加电场作用下的极化程度。
介电常数越大,介质的极化能力就越强。
2. 介电常数的意义介电常数是介质电学性能的重要参数之一,它直接影响着介质在交变电场中的响应和极化特性。
了解介质的介电常数有助于选取合适的介质材料,优化电器设备的设计和性能。
介质损耗因数与介电损耗角正切一、引言在电介质物理学和电气工程领域,介质损耗因数和介电损耗角正切是两个关键的参数,用于描述电介质在交流电场下的电气性能。
介质损耗因数用于衡量电介质在交流电场作用下的能量损耗程度,而介电损耗角正切则反映了能量的损耗与存储之间的平衡关系。
这两个参数在评估电介质材料性能、优化电气设备和改善电力传输效率等方面具有重要意义。
本文将详细介绍介质损耗因数和介电损耗角正切的基本概念、测量方法及其在实践中的应用。
二、介质损耗因数介质损耗因数,也称为介质损失角正切,是用于描述电介质在交流电场下能量损耗程度的参数。
该参数是通过比较电介质中能量损耗与无损理想介质的能量损耗得到的。
在交流电场作用下,电介质内部的束缚电荷将被迫移动,并在电场反复变化时与自由电荷相互碰撞,导致能量的损失。
这种能量损耗表现为介质中的热能生成。
介质损耗因数越小,说明电介质在交流电场下的能量损耗越低,其电气性能越好。
三、介电损耗角正切介电损耗角正切是用来描述电介质在交流电场下能量损耗与存储之间平衡关系的参数。
它定义为介质电导率与介质电容率之比的反正切,即:tanδ= δ′/δ″。
其中,δ′和δ″分别为电介质的实部和虚部。
介电损耗角正切反映了电介质在交流电场下能量转换为热能、光能等其他形式的能量的程度。
在实际应用中,介电损耗角正切的测量对于评估绝缘材料性能、预防电气设备过热等方面具有重要意义。
四、介质损耗因数和介电损耗角正切的关系介质损耗因数和介电损耗角正切之间存在密切的关系。
在理想情况下,当电介质没有能量损失时,其介电常数为实数,不存在虚部,因此tanδ= 0。
然而,在实际的电介质材料中,由于能量的损失,介电常数存在虚部,因此tanδ≠0。
介质损耗因数和介电损耗角正切之间的这种关系反映了电介质在交流电场下能量转换的平衡状态。
五、实验测量与应用实验测量是获取介质损耗因数和介电损耗角正切的关键手段。
常用的测量方法包括西林电桥法、变频变压器法和Q表法等。
绝缘的四大参数绝缘是指材料或结构可以阻止电流流动的特性。
在电力系统中,绝缘是非常重要的,它保证电流只在预定的导线中流动,而不会发生漏电或短路等问题。
绝缘的四大参数包括介电常数、介质损耗、体积电阻率和表面电阻率。
介电常数是衡量材料绝缘性能的重要指标之一。
介电常数是指材料相对于真空或空气时的电容量,也可以理解为材料对电场的响应能力。
介电常数越大,材料对电场的响应越强,绝缘性能越好。
常见的绝缘材料如塑料和橡胶等具有较高的介电常数,可以有效地隔离电流。
介质损耗是描述绝缘材料中能量损耗的参数。
当电场作用于绝缘材料时,部分能量会被材料吸收并转化为热能。
介质损耗越小,材料的绝缘性能越好。
因此,在选择绝缘材料时,需要考虑其介质损耗,以确保系统的能量损失最小。
第三,体积电阻率是衡量材料导电性能的指标。
体积电阻率越大,材料对电流的阻抗越大,绝缘性能越好。
常见的绝缘材料如玻璃、陶瓷等具有较高的体积电阻率,可以有效地阻止电流的流动。
表面电阻率是描述材料表面导电性能的参数。
表面电阻率越大,材料表面对电流的阻抗越大,绝缘性能越好。
表面电阻率的大小直接影响到电流在材料表面的分布情况。
常见的绝缘材料如涂层和绝缘胶带等具有较高的表面电阻率,可以有效地保护电力设备和线路。
绝缘的四大参数对于电力系统的运行至关重要。
通过选择合适的绝缘材料和结构,可以有效地保护电力设备和线路,提高系统的安全性和可靠性。
在实际应用中,需要根据具体的工程要求和环境条件选择合适的绝缘材料和结构,并进行必要的绝缘测试和监测,以确保系统的正常运行。
绝缘材料的选择和设计是电力系统设计中的重要环节。
在选择绝缘材料时,需要综合考虑介电常数、介质损耗、体积电阻率和表面电阻率等参数,以及材料的机械强度、耐热性、耐候性等性能。
此外,还需要考虑材料的可加工性、成本和环境友好性等因素。
通过合理选择和设计绝缘材料和结构,可以最大限度地提高系统的绝缘性能,确保电力系统的安全运行。
绝缘的四大参数包括介电常数、介质损耗、体积电阻率和表面电阻率。
介质损耗怎样计算_介质损耗计算公式介质损耗是指电磁波在介质中传播时产生的能量损耗。
介质损耗的计算方法主要有两种:基于电导率的计算方法和基于介电常数和磁导率的计算方法。
1.基于电导率的计算方法:介质的电导率表示了介质中导电性能的好坏程度。
通常情况下,电导率与介质的材料成分和温度有关。
计算介质的电导率可以通过测量介质的电阻率来获得,然后通过以下公式计算介质的电导率G:G=1/ρ其中,G为电导率,ρ为电阻率。
介质的损耗角正切(tanδ)是电导率的另一种表示形式,可以通过以下公式计算:tanδ = G / (ωε)其中,tanδ为损耗角正切,ω为角频率,ε为介质的介电常数。
2.基于介电常数和磁导率的计算方法:介电常数(ε)和磁导率(μ)是电磁波在介质中传播的重要参数。
它们决定了电磁波的相对传播速度和传播路径中的能量损耗。
计算介质的介电常数和磁导率可以通过实验测量得到,然后通过以下公式计算介质损耗:损耗密度(P)=ωε''E^2+ωμ''H^2其中,损耗密度表示单位体积内的能量损耗,ω为角频率,ε''和μ''为介质的虚部介电常数和虚部磁导率,E为电场强度,H为磁场强度。
衰减常数(α)表示单位长度内的能量损耗,可通过以下公式计算:α=2π/λ*√(ε''/2+μ''/2)其中,λ为波长。
总体上说,介质损耗的计算公式与介质的材料性质和测量方法密切相关。
在进行介质损耗的计算时,需要根据具体情况选择合适的计算方法和公式。
同时,需要注意实际测量过程中的误差和实验条件对计算结果的影响。
电介质材料的介电常数及损耗角正切测试介电常数和损耗角正切是描述电介质材料特性的重要参数,在电子工程和材料科学领域具有重要的应用价值。
本文将介绍电介质材料的介电常数和损耗角正切的测试方法和意义。
一、什么是电介质材料的介电常数?电介质材料的介电常数是描述材料对电场的响应能力的物理量,它反映了电介质材料内部存在的电偶极矩的强弱程度。
电偶极矩是电介质材料中正负电荷之间的分离产生的电荷生成的电场,介电常数越大,表示电介质材料对电场的响应能力越强。
二、电介质材料的介电常数测试方法1. 平板电容法平板电容法是一种常用的测量电介质材料介电常数的方法。
这种方法主要通过在电介质材料上施加电压,然后测量材料上产生的电容值,从而计算出介电常数。
2. 微波共振法微波共振法是用于测量电介质材料的介电常数的另一种常用方法。
该方法利用微波的特性,在不同频率下测量材料的反射和透射系数,从而得到材料的介电常数。
三、电介质材料的损耗角正切损耗角正切是描述电介质材料中电能转化为热损耗的能力的物理量。
损耗角正切越大,表示材料对电能的损耗越大。
电介质材料的损耗角正切与介电常数密切相关,通常情况下,介电常数与损耗角正切成反比。
四、电介质材料的损耗角正切测试方法1. 谐振法谐振法是一种测量电介质材料损耗角正切的方法。
该方法通过在材料上施加一定频率和振幅的交流电压,然后测量电压和电流的相位差,通过计算相位差的正切值得到损耗角正切。
2. 微波漏耗法微波漏耗法是另一种测试电介质材料损耗角正切的方法。
该方法通过在微波频率下测量材料的功率损耗,在已知电场强度下计算损耗角正切。
五、电介质材料的介电常数和损耗角正切的意义电介质材料的介电常数和损耗角正切是评价材料电性能的重要指标,对电子器件和电力设备的设计和性能分析具有重要的意义。
介电常数的大小直接影响电容器的容量和电压的分配。
在电子器件中,合适的介电常数可以减小电容器体积,提高装置的性能和可靠性。
损耗角正切是评估材料对电能损耗的能力,它与电介质材料的内部结构和分子极性密切相关。
固体绝缘材料四大核心参数及物理意义固体绝缘材料是电力系统中常用的一种绝缘材料,主要用于隔离和保护电气设备。
在选择固体绝缘材料时,需要考虑四个核心参数,分别是介电常数、介质损耗因数、体积电阻率和介电强度。
介电常数是固体绝缘材料的一个重要参数,它反映了材料在电场中的响应能力。
介电常数越大,材料对电场的响应能力越强,也就是说材料在电场中的极化能力越强。
介电常数可以影响材料的电容性质,因此在电容器等电子元件中,需要选择具有适当介电常数的固体绝缘材料,以满足电容器的设计要求。
介质损耗因数是固体绝缘材料的另一个重要参数,它反映了材料在电场中的能量损耗情况。
介质损耗因数越小,材料在电场中的能量损耗越小,也就是说材料的绝缘性能越好。
在电力系统中,为了保证电气设备的安全和稳定运行,需要选择具有低介质损耗因数的固体绝缘材料,以减少能量损耗和热量产生。
第三个参数是体积电阻率,它是固体绝缘材料的导电性能指标。
体积电阻率越大,材料的绝缘性能越好,也就是说材料的导电性越弱。
在电力系统中,固体绝缘材料需要具有较高的体积电阻率,以保证电气设备的绝缘性能。
如果体积电阻率较低,材料容易发生漏电现象,会导致电气设备的故障甚至损坏。
最后一个参数是介电强度,它是固体绝缘材料的一个重要指标,用来衡量材料在电场中能够承受的最大电压。
介电强度越高,材料的耐电压能力越强,也就是说材料的绝缘性能越好。
在电力系统中,需要选择具有足够高介电强度的固体绝缘材料,以保证电气设备能够承受正常工作电压和瞬态过电压,避免绝缘击穿而引发的事故。
固体绝缘材料的四大核心参数分别是介电常数、介质损耗因数、体积电阻率和介电强度。
这些参数在选择固体绝缘材料时起着重要的作用,直接影响材料的绝缘性能和使用效果。
在实际应用中,需要根据具体的电气设备要求和工作环境条件,综合考虑这些参数,选择合适的固体绝缘材料,以确保电气设备的安全运行和长寿命。
常用绝缘材料的电性能1.介电常数介电常数是绝缘材料表征其存储能力的重要参数。
它是绝缘材料中电场与介质中本身极化所产生的电场之比。
介质的介电常数一般大于真空介电常数1,在绝缘应用中,常用绝缘材料的介电常数通常在2到15之间。
较高的介电常数意味着绝缘材料可以存储更多的电荷,具有较高的电容性能。
在常用绝缘材料中,空气的介电常数接近于真空的介电常数,约为1、聚乙烯的介电常数约为2.2,聚氯乙烯的介电常数约为3,聚酰亚胺的介电常数约为3.4,云母的介电常数约为6-7,而玻璃的介电常数较高,通常达到9-112.介质损耗角正切介质损耗角正切是绝缘材料中电能转换为热能损耗的参数。
它与介质的损耗性能密切相关。
较低的损耗角正切表示绝缘材料更能有效地存储电能而不产生大量的热能损耗。
在常用绝缘材料中,空气和聚乙烯的损耗角正切非常低,常常小于0.0001、而聚氯乙烯的损耗角正切较高,一般在0.01左右。
聚酰亚胺的损耗角正切约为0.006,云母的损耗角正切为0.002-0.007,玻璃的损耗角正切在0.001-0.01范围内。
3.绝缘电阻绝缘电阻是衡量绝缘材料导电性能的参数。
它表示绝缘材料对电流的阻碍能力,越高则表示绝缘材料的导电性能越差。
常见绝缘材料的绝缘电阻在不同条件下可能有所不同。
例如,在标准温度和湿度条件下,聚氯乙烯的绝缘电阻通常在10^12 Ω·cm以上,聚酰亚胺的绝缘电阻可达10^14 Ω·cm,而云母的绝缘电阻通常在10^12-10^15 Ω·cm范围内。
4.耐电压耐电压是指绝缘材料能够承受的最大电压,它衡量了绝缘材料对电压的耐受能力。
高耐电压意味着绝缘材料能在高电场强度下仍能保持绝缘状态。
综上所述,介电常数、介质损耗角正切、绝缘电阻和耐电压是常用绝缘材料的主要电性能指标。
不同绝缘材料在这些指标上存在差异,需根据具体应用需求选择合适的材料。
绝缘材料的电气性能绝缘材料的电气性能主要表现在电场作用下材料的导电性能、介电性能及绝缘强度。
它们分别以绝缘电阻率ρ(或电导γ)、相对介电常数εr、介质损耗角tanδ及击穿强度EB四个参数来表示。
(1)绝缘电阻率和绝缘电阻任何电介质都不行能是肯定的绝缘体,总存在一些带电质点,主要为本征离子和杂质离子。
在电场的作用下,它们可作有方向的运动,形成漏导电流,通常又称为泄漏电流。
电阻支路的电流Ii即为漏导电流;流经电容和电阻串联支路的电流Ia称为汲取电流,是由缓慢极化和离子体积电荷形成的电流;电容支路的电流IC称为充电电流,是由几何电容等效应构成的电流。
①在正常工作时(稳态),漏导电流打算了绝缘材料的导电性,因此,漏导支路的电阻越大,说明材料的绝缘性能越好。
②温度、湿度、杂质含量、电磁场强度的增加都会降低电介质材料的电阻率。
(2)介电常数介电常数是表明电介质极化特征的性能参数。
介电常数愈大,电介质极化力量愈强,产生的束缚电荷就愈多。
束缚电荷也产生电场,且该电场总是减弱外电场的。
现用电容器来说明介电常数的物理意义。
设电容器极板间为真空时,其电容量为Co,而当极板间布满某种电介质时,其电容量变为C,则C与Co的比值即该电介质的相对介电常数,即:在填充电介质以后,由于电介质的极化,使靠近电介质表面处消失了束缚电荷,与其对应,在极板上的自由电荷也相应增加,即填充电介质之后,极板上容纳了更多的自由电荷,说明电容被增大。
因此,可以看出,相对介电常数总是大于1的。
绝缘材料的介电常数受电源频率、温度、湿度等因素而产生变化。
频率增加,介电常数减小。
温度增加,介电常数增大;但当温度超过某一限度后,由于热运动加剧,极化反而困难一些,介电常数减小。
湿度增加,电介质的介电常数明显增加,因此,通过测量介电常数,能够推断电介质受潮程度。
大气压力对气体材料的介电常数有明显影响,压力增大,密度就增大,相对介电增大。
(3)介质损耗在沟通电压作用下,电介质中的部分电能不行逆地转变成热能,这部分能量叫做介质损耗。
氧化铝陶瓷技术参数电性能体积电阻率、直流击穿强度、介质损耗角正切值和介电常数。
1、体积电阻率绝缘材料的体积电阻率ρν是指试样体积电流方向的直流电场强度与该处电流密度之比值。
ρν=EV/jv(Ωcm),式中,EV为直流电场强度,jv为电流密度。
95%氧化铝陶瓷是一种优良的电子绝缘材料,体积电阻率很高,国家标准GB/T5593-1999中规定,100℃时,ρν≥1×1013Ωcm;300℃时,ρν≥1×1010Ωcm;500℃时,ρν≥1×108Ωcm。
实际上,目前我国生产的95瓷的体积电阻率比上述规定要高1-2个数量级。
测试体积电阻的仪器通常采用高阻计。
2、直流击穿强度电气绝缘材料直流击穿强度是指在外加直流电场作用下发生的变化,主要由于内部结构变化所引起的。
当电场强度高达一定值后,就促进其内部结构进一步变化,发生绝缘击穿。
国家标准GB/T5593-1999规定,95%氧化铝陶瓷是在直流情况下进行耐压试验,当在试样上施加直流电压,使试样发生击穿,击穿电压值与试样的平均厚度之比称为直流击穿强度,单位:KV/mm。
国家标准GB/T5593-1999规定要大于18KV/mm。
实际上我们一般可达到30-40KV/mm。
3、介电常数绝缘材料在交流电场下介质极化程度的一个参数,它是充满某种绝缘材料的电容器与以真空为介质时,同样电极尺寸的电容器的电容量的比值。
它代表了材料的一种固有特性。
国标规定测试频率为1MHz时,95%氧化铝陶瓷的介电常数9-10之间。
4、介质损耗角正切值介质损耗表示材料在交流电场作用下,发生极化或吸收现象,产生电能损失,通常在介质材料上有发热的现象。
介质损耗的大小用介质损耗角的正切值来表示。
国家标准GB/T5593-1999规定,频率为1MHz时,95%氧化铝陶瓷要求达到4×10-4。
二、热性能1、平均线膨胀系数陶瓷在升高单位温度时的相对伸长即平均线膨胀系数是95%氧化铝陶瓷主要性能指标之一。
电介质四大基本参数
电介质四大基本参数是指电介质的电阻率、电导率、介电常数和介电损耗因数。
1. 电阻率:电阻率是指电介质中电流通过时所需要的电势差,单位是欧姆/米,符号为ρ,其计算公式为:ρ=U/I,其中U为
电介质中电流通过时所需要的电势差,单位是伏特,I为电流,单位是安培。
2. 电导率:电导率是指电介质中电流通过时所需要的电势差,单位是西门子/米,符号为σ,其计算公式为:σ=I/U,其中U
为电介质中电流通过时所需要的电势差,单位是伏特,I为电流,单位是安培。
3. 介电常数:介电常数是指电介质中电场强度和电介质中电位的比值,单位是介电常数,符号为ε,其计算公式为:ε=E/U,其中E为电场强度,单位是伏/米,U为电介质中电位,单位
是伏特。
4. 介电损耗因数:介电损耗因数是指电介质中电流通过时所需要的电势差,单位是无量纲,符号为tanδ,其计算公式为:
tanδ=Im/Re,其中Im为电介质中电流的虚部,Re为电介质中
电流的实部。
电介质四大基本参数是电介质特性的重要指标,它们的测量和分析对于研究电介质的特性和性能具有重要意义。
安地亚斯氧化铝陶瓷及焊接产品技术参数电性能体积电阻率、直流击穿强度、介质损耗角正切值和介电常数。
1、体积电阻率绝缘材料的体积电阻率ρν是指试样体积电流方向的直流电场强度与该处电流密度之比值。
ρν=EV/jv(Ωcm),式中,EV为直流电场强度,jv为电流密度。
95%氧化铝陶瓷是一种优良的电子绝缘材料,体积电阻率很高,国家标准GB/T5593-1999中规定,100℃时,ρν≥1×1013Ωcm;300℃时,ρν≥1×1010Ωcm;500℃时,ρν≥1×108Ωcm。
实际上,目前我国生产的95瓷的体积电阻率比上述规定要高1-2个数量级。
测试体积电阻的仪器通常采用高阻计。
2、直流击穿强度电气绝缘材料直流击穿强度是指在外加直流电场作用下发生的变化,主要由于内部结构变化所引起的。
当电场强度高达一定值后,就促进其内部结构进一步变化,发生绝缘击穿。
国家标准GB/T5593-1999规定,95%氧化铝陶瓷是在直流情况下进行耐压试验,当在试样上施加直流电压,使试样发生击穿,击穿电压值与试样的平均厚度之比称为直流击穿强度,单位:KV/mm。
国家标准GB/T5593-1999规定要大于18KV/mm。
实际上我们一般可达到30-40KV/mm。
3、介电常数绝缘材料在交流电场下介质极化程度的一个参数,它是充满某种绝缘材料的电容器与以真空为介质时,同样电极尺寸的电容器的电容量的比值。
它代表了材料的一种固有特性。
国标规定测试频率为1MHz时,95%氧化铝陶瓷的介电常数9-10之间。
4、介质损耗角正切值介质损耗表示材料在交流电场作用下,发生极化或吸收现象,产生电能损失,通常在介质材料上有发热的现象。
介质损耗的大小用介质损耗角的正切值来表示。
国家标准GB/T5593-1999规定,频率为1MHz时,95%氧化铝陶瓷要求达到4×10-4。
二、热性能1、平均线膨胀系数陶瓷在升高单位温度时的相对伸长即平均线膨胀系数是95%氧化铝陶瓷主要性能指标之一。
第一章 电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2) 复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段:气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
绝缘材料性能
1、绝缘电阻、电阻率:电阻是电导的倒数,电阻率是单位体积内的电阻。
材料导电越小,其电阻越大,两者成倒数关系,对绝缘材料来说,总是希望电阻率尽可能高。
2、相对介电常数和介质损耗角正切:绝缘材料用途有二:电网络各部件的相互绝缘和电容器的介质(储能)。
前者要求相对介电常数小,后者要求相对介电常数大,而两者都要求介质损耗角正切小,尤其是在高频与高压下应用的绝缘材料,为使介质损耗小,都要求采用介质损耗角正切小的绝缘材料。
3、击穿电压、电气强度:在某一个强电场下绝缘材料发生破坏,失去绝缘性能变为导电状态,称为击穿。
击穿时的电压称为击穿电压(介电强度)。
电气强度是在规定条件下发生击穿时电压与承受外施电压的两电极间距离之商,也就是单位厚度所承受的击穿电压。
对于绝缘材料而言,一般其击穿电压、电气强度的值越高越好。
4、拉伸强度:是在拉伸试验中,试样承受的最大拉伸应力。
它是绝缘材料力学性能试验应用最广、最有代表性的试验。
5、耐燃烧性:指绝缘材料接触火焰时抵制燃烧或离开火焰时阻止继续燃烧的能力。
随着绝缘材料应用日益扩大,对其耐燃烧性要求更显重要,人们通过各种手段,改善和提高绝缘材料的耐燃烧性。
耐燃烧性越高,其安全性越好。
6、耐电弧:在规定的试验条件下,绝缘材料耐受沿其表面的电弧作用的能力。
试验时采用交流高压小电流,借高压在两电极间产生的电弧作用,使绝缘材料表面形成导电层所需的时间来判断绝缘材料的耐电弧性。
时间值越大,其耐电弧性越好。
7、密封度:对油质、水质的密封隔离比较好。
橡胶电性能的四大技术参数
1、绝缘电阻和绝缘电阻率
绝缘物在规定条件下的直流电阻。
及固体和膏体形状的各种绝缘材料体积和表面电阻值的测定。
介电损耗角正切又称介质损耗角正切,是指电介质在单位时间内每单位体积中,将电能转化为热能(以发热形式)而消耗的能量。
表征电介质材料在施加电场后介质损耗大小的物理量,以tanδ来表示,δ是介电损耗角。
介质损耗角是在交变电场下,电介质内流过电流向量和电压向量之间的夹角
在强电场作用下,固体电介质丧失电绝缘能力而由绝缘状态突变为良导电状态。
导致击穿的最低临界电压称为击穿电压。
均匀电场中,击穿电压与固体电介质厚度之比称为击穿电场强度(简称击穿场强,又称介电强度),它反映固体电介质自身的耐电强度。
不均匀电场中,击穿电压与击穿处固体电介
质厚度之比称为平均击穿场强,它低于均匀电场中固体电介质的介电强度。
不同电介质在相同温度下,其击穿场强不同。