2018-2019学年人教A版必修一1.1.2集合间的基本关系学案
- 格式:doc
- 大小:210.50 KB
- 文档页数:6
B {0}
例题:写出集合{a,b,c}的所有子集并指出,真子集、非空
1.教师评课:
1)优点:i 教态自然、语言表达较清楚;
ii 讲练结合、课堂、课件思路比较连贯,有条不紊; iii 运用了类比的数学思想。
2)不足:i 老师讲的过多,学生自己思考的少,练习不够;
ii 进度有些慢,对子集真子集强调的不够;
A = B
B A
A B
iii 口头语较多、课件速度有些快,师生互动,让学生多写。
举例应更具体; iv 子集、真子集、非空真子集,让学生说更好,例子引入更好一些; v 有老师一言堂的感觉,多让学生回答问题。
该让学生答的教案中应该有体现,例题不应该让学生答;
vi 学生老师需要磨合,初中学生对课程深度广度理解不够,课堂容量大。
对学生的了解不够,课堂容量大。
⎧⎨⎩A ⊆BA =B ⇔B ⊆A针对练习:A={平面内四边相等的四边形}, B={菱形},集合A 与B 的关系是探究三 真子集思考:观察以下几组集合,并指出它们元素间的关系:A={1,5}, B={1,3,5}; (2)A={四边形}, B={平行四边形}定义:如果集合A ⊆B,但存在元素x ∈B,且x ∉A ,并且A≠B,称集合A 是集合B 的真子集. 记作: A B (或B A )读作:“A 真含于B ”(或B 真包含A )。
韦恩图表示:针对练习:1.已知集合,,则下列关系中正确的是( ) A. B . C . 2.若集合M ={x |x ≤6},a =2,则下面结论中正确的是( )A .B .C .D . 探究四 空 集 1.我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集。
空集是任何非空集合的真子集。
即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ。
问题:你还能举几个空集的例子吗? 2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有练习巩固集合相等的定义,由具体例子让学生概括出真子集的含义.学生学以致用通过具体的例子巩固空集的含义辨析⊆、∈、 之间的区别,提高学生解决问题的能力。
提高学生分析、 解决问题的能力提高学生分析、 解决问题的能力提高学生抽象思维的能力B A什么区别?答案:前者为集合之间关系,后者为元素与集合之间的关系. (2)集合 A B 与集合B A ⊆有什么区别 ?答案: A = B 或A B.(3)0,{0}与 Φ三者之间有什么关系? 答案:{0}与Φ :{0}是含有一个元素0的集合, Φ是不含任何元素的集合。
如 Φ{0}不能写成Φ ={0},Φ ∈{0}3.结论: 由上述集合之间的基本关系,可以得到下列结论: (1)任何一个集合是它本身的子集,即A A ⊆。
(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则C A ⊆(类比b a ≤,c b ≤则c a ≤)。
1.1.2集合间的基本关系(1课时)一. 教学目标:1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用.2. 过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感.态度与价值观(1)树立数形结合的思想 .(2)体会类比对发现新结论的作用.二.教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三.学法学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.四.学习流程(一) 知识连线:1、观察下面几个例子,你能发现两个集合间有什么关系吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为海口二中高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==2、两个集合之间的关系:①一般地,对于两个集合A ,B ,如果集合A 中______________________________ ,我们就说这两个集合有包含关系,称集合A 为B 的_______.记作:_______,(或_______),读作:___________,(或___________)用venn 图表示为:②如果两个集合A ,B 所含的元素完全相同,那么我们称集合A 与B_______. 记作:_______。
即: 若A ⊆B ,B ⊆A ,则_______.用venn 图表示为:3、如果A ⊆B ,但存在_____________________________,我们称集合A 是集合B 的真子集 记作:_______,(或_______) 读作:___________。
§1.1.2 集合间的基本关系一、教学目标(1)理解集合间的包含与相等的含义。
(2)会用适当的方法表示集合间的基本关系。
(3)学习类比方法,渗透分类思想,提高数学思维能力。
二、教学重点与难点重点:理解子集、真子集、空集等概念;理解集合间的包含、真包含、相等关系及传递关系。
难点:集合间包含关系的正确表示三、基础知识梳理(1)Venn图的概念用平面___________________的内部代表集合,这种图称为Venn图。
(2)空集的概念_____________________ 的集合叫做空集,记作______________________ 、四、例题分析例1 写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集。
例2 已知集合M满足{1,2}⊆MØ{1,2,3,4,5},写出集合M例3 已知集合A={2,x,y},B={2x,2,2y},且A=B,求x,y 的值五自我测评1.若A⊆B,A⊆C,且B={0,1,2,3},C={0,2,4,5},则满足上述条件的集合可以是( )(A){0,1} (B) {0,3}(C){2,4} (D) {0,2}2.若集合M={x|x ≤ )(A){a}ØM (B) a ØM(C){a}∈M (D) a ∉M3.设A={x|-1<x<0},B={x|x <2 或 x >3}, 则( )(A )A ∈B (B) B ∈ A(C) A ØB (D) B ØA4.集合{a,b }的子集有( )(A)1个 (B)2个(C)3个 (D)4个5.已知A={菱形 },B={ 正方形 },C={平行四边形},则A、B、C 之间的关系是________________。
6.下列六种关系中正确的是__________________.①{}a a ⊆②{}a ∅Ø}{}.{},,{}{a a b a a ⊂∈④③}.,{},,{b a a b a ∈∈∅⑥⑤7.满足条件{}{}11,2,3,4B ⊆Ø的集合B 有___________个8.已知,且p=Q ,},,{},1,,{2x xy x Q y x P ==求x,y 的值.六、能力提升9.数集}ln 12{z n X ∈+=与数集k k Y |14{±=}z ∈之间的关系是( ).=)()()()(XC∉Y∈ØYA X YB X YDX10.已知非空集合P满足:}5,4,3,2,1{①②若,PP⊆-∈,a∈则(6)a P符合上述条件的P的个数是( ).(A)4 (B)5 (C)7 (D)3111已知集合},xxx(|)(1x{2RB∈+=+-3=xx{2Rx|3,04)4x=},0x-+A∈=又A P BØ求:满足条件的集合P.⊆。
集合间的基本关系一、教学目标:知识与技能目标:(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.过程与方法目标:让学生通过观察身边的实例,发现集合间的基本关系,体验现实意义.情感态度与价值观:(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二、教学重点.难点教学重点:集合间的包含与相等关系,子集与其子集的概念.教学难点:难点是属于关系与包含关系的区别.三.教学方法让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系.四、教学过程:一、复习准备:1.提问:集合的两种表示方法?如何用适当的方法表示下列集合?(1)10以内3的倍数;(2)1000以内3的倍数2.用适当的符号填空: 0______N; -1.5 _____R。
二、情境导入:我们知道,两个实体之间有相等关系、大小关系,如:5=5, 5<7 , 5>3,等等。
两个集合之间是否也有类似的关系呢?三、讲授新课:观察下面几个例子,类比实数之间的相等关系、大小关系,你能发现下面两个集合之间的关系吗?(1)A={1,2,3},B={1,2,3,4,5};(2)C为某中学高一(2)班全体女生组成的集合,D为这个班全体学生组成的集合;(3)E={x|x是两条边相等的三角形},F={x|x是等腰三角形}。
1. 子集、空集等概念的教学:可以发现,在(1)中,集合A的任何一个元素都是集合B的元素.这时我们说集合A包含于集合B,或集合B包含集合A.(2)中的集合C与集合D也有这种关系.一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A ⊆ B(或B ⊇ A),读作“A包含于B”(或“B包含A”).在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.这样,上述集合A与集合B的包含关系,可以用图1.2-1表示.图1.2-1在(3)中,由于“两条边相等的三角形”是等腰三角形,因此,集合E,F都是由所有等腰三形组成的集合.即集合E中任何一个元素都是集合F中的元素,同时,集合F中任何一个元素也都是集合E中的元素.这样,集合E的元素与集合F的元素是一样的.一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B. 也就是说,若A⊆ B,且B⊆A,则A=B.如果集合A ⊆ B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集。
1.2集合间的基本关系【学习目标】素养目标学科素养1. 理解子集、真子集、空集的概念;(重点)2. 能用符号和Venn图表示集合间的关系;(难点)3. 掌握列举有限集的所有子集的方法。
1、逻辑推理2、直观想象3、数形结合【自主学习】一. 子集的相关概念1.Venn图表示:在数学中,经常用平面上___ ___ 的_____代表集合,这种图称为Venn图,这种表示集合的方法叫做图示法.优点:形象直观。
2.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的元素都是集合B中的元素,就称集合A是集合B的子集A B(或B A)真子集如果集合A⊆B,但存在元素_________,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的元素都是集合B的元素,同时集合B的元素都是集合A的元素,那么集合A与集合B相等A B3.子集的性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么.二. 空集定义的集合叫做空集符号用符号表示为___规定空集是任何集合的,是任何非空集合的________A【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}⊆A C.⊆⊆A D.{0}⊆A【经典例题】题型一集合间关系的判断点拨:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用Venn图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴.例1 下列各式中,正确的个数是()⊆{0}⊆{0,1,2};⊆{0,1,2}⊆{2,1,0};⊆⊆⊆{0,1,2};⊆⊆={0};⊆{0,1}={(0,1)};⊆0={0}.A.1B.2C.3D.4【跟踪训练】1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是()A.M T B.M⊆T C.M=T D.M ⊆T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.题型二子集、真子集的个数问题点拨:公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.例2 写出集合{a,b}的所有子集,并指出哪些是它的真子集.例2-变式写出集合{a,b,c}的所有子集? 写出集合{a,b,c,d}的所有子集?【跟踪训练】2 满足{a,b}⊆A{a,b,c,d,e}的集合A的个数是()A.2B.6 C.7D.8题型三根据集合的包含关系求参数点拨:1.分析集合间的关系时,首先要分析、简化每个集合.2.借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.3.此类问题要注意对空集的讨论.例3 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.【跟踪训练】3 设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=15,试判定集合A与B的关系;(2)若B⊆A,求实数a的取值集合.【当堂达标】1.下列说法:⊆空集没有子集;⊆任何集合至少有两个子集;⊆空集是任何集合的真子集;⊆若⊆A,则A≠⊆.其中正确的有()A.0个B.1个C.2个D.3个2.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4 C.6 D.83.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3 C.m<3 D.m≤34.已知集合A={x|x-3>0},B={x|2x-5≥0},则这两个集合的关系是________.5.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求由实数a的值组成的集合C.6.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.【课堂小结】1.知识点:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.【参考答案】【自主学习】一.1.封闭曲线内部2.任意一个 ⊆⊇ x ∈B ,且x ∉A 任何一个 任何一个 =3.子集 A ⊆C二.不含任何元素 ∅ 子集 真子集 【小试牛刀】1.(1)× (2)√ (3)√ (4)×2. D 解析:集合A ={x |-1-x <0}={x |x >-1},所以0∈A ,{0}⊆A ,D 正确. 【经典例题】例1 B 解析:(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.【跟踪训练】1 (1)A 解析:因为M ={x |x 2-1=0}={-1,1},又T ={-1,0,1},所以M T . (2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn 图.如图例2 解:集合{a,b}的所有子集为∅,{a},{b},{a,b}. 真子集为∅,{a},{b}.例2-变式:集合{a,b,c}的所有子集为∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}. 集合{a,b,c,d}的所有子集为∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c}, {b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.【跟踪训练】2 C 解析:由题意知,集合A 可以为{a ,b },{a ,b ,c },{a ,b ,d },{a ,b ,e },{a ,b ,c ,d },{a ,b ,c ,e },{a ,b ,d ,e }.例3 解:(1)因为B ⊆A ,当B =⊆时,m +1≤2m -1,解得m ≥2.(2)当B ≠⊆时,有⎩⎨⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.【跟踪训练】3 解:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时, 由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15 【当堂达标】1.B 解析:⊆空集是它本身的子集;⊆空集只有一个子集;⊆空集不是它本身的真子集;⊆空集是任何非空集合的真子集.因此,⊆⊆⊆错误,⊆正确.2.B 解析:根据题意,含有元素0的A 的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.3.B 解析:因为A ={x |2<x <3},B ={x |x <m },A ⊆B ,将集合A ,B 表示在数轴上,如图所示,所以m ≥3.4.A B解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥52. 结合数轴知A B .5.解:由x 2-3x +2=0,得x =1或x =2. 所以A ={1,2}.因为B ⊆A ,所以对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0; ②若B ≠∅,则B ={1}或B ={2}. 当B ={1}时,有a -2=0,即a =2; 当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}. 6.解:(1)因为B ⊆A ,所以m 2=2m -1,即(m -1)2=0,所以m =1.当m =1时,A ={-1,3,1},B ={3,1},满足B ⊆A ,故m =1. (2)当B =⊆时,只需2a >a +3,即a >3; 当B ≠⊆时,根据题意作出如图所示的数轴,可得⎩⎨⎧ a +3≥2a a +3<-1或⎩⎨⎧a +3≥2a 2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.。
1.1.2 集合间的基本关系——题型探究类型一 子集、真子集的概念问题【例1】 已知集合M ={x|x <2且x ∈N },N ={x|-2<x <2且x ∈Z }.(1)试判断集合M 、N 间的关系.(2)写出集合M 的子集、集合N 的真子集.[思路探索] 把用描述法表示的集合用列举法表示出来,以便于观察集合的关系和写子集与真子集.解 M ={x|x <2且x ∈N }={0,1},N ={x|-2<x <2,且x ∈Z }={-1,0,1}.(1)M N.(2)M 的子集为: ,{0},{1},{0,1},N 的真子集为: ,{-1},{0},{1},{-1,0},{-1,1},{0,1}.[规律方法] 1.写有限集合的所有子集,首先要注意两个特殊的子集: 和自身;其次按含一个元素的子集,含两个元素的子集…依次写出,以免重复或遗漏.2.若集合A 含n 个元素,那么它子集个数为2n ;真子集个数为2n -1,非空真子集个数为2n -2.【活学活用1】 已知集合A ={x|x 2-3x +2=0,x ∈R }.B ={x|0<x <5,x ∈N },则满足条件A C B 的集合C 的个数为( ).A .1B .2C .3D .4解析 易知A ={1,2},B ={1,2,3,4},又A C B.∴集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案 D类型二 集合的相等问题【例2】 集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b},则a 2 013+b 2 014的值为( ). A .0 B .1 C .-1 D .±1[思路探索] 集合相等 集合的元素相同 a ≠0 b =0,a 2=1 a 2013+b 2014=-1.解析 ∵⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b}, 又a ≠0,∴b a=0,∴b =0. ∴a 2=1,∴a =±1.又a ≠1,∴a =-1,∴a 2 013+b 2 014=(-1)2 013+02 014=-1.答案 C[规律方法] 1.本题以“0”为着眼点,b a中a 不为0为突破口. 2.两个集合相等,则所含元素完全相同,与顺序无关,但要注意检验,排除与集合元素互异性或与已知矛盾的情形.例如本题中a =1不满足互异性,否则会错选D.【活学活用2】 设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A =B ,求实数a 的值.解 由A =B 及两集合元素特征,∴⎩⎪⎨⎪⎧ a 2-1=0,a 2-3a =-2, ∴⎩⎪⎨⎪⎧a =±1,a =1或a =2. 因此a =1,代入检验满足互异性.∴a =1.类型三 由集合间的关系求参数范围问题【例3】 已知集合A ={x|-3≤x ≤4},B ={x|2m -1<x <m +1},且B A.求实数m 的取值范围.[思路探索] 借助数轴分析,注意B 是否为空集.解 ∵B A ,(1)当B = 时,m +1≤2m -1,解得m ≥2.(2)当B ≠ 时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.[规律方法] 1.(1)分析集合间的关系时,首先要分析、简化每个集合.(2)借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.2.此类问题要注意对空集的讨论.【活学活用3】 已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B A ,求a 的取值范围.解 (1)若A B ,由图可知a >2.(2)若B A ,由图可知1≤a ≤2.方法技巧 分类讨论思想在集合关系中的应用所谓分类讨论,就是当问题所涉及的对象不能统一解决时,就需要对研究对象按某个标准进行分类,然后对每一类分别研究得出每一类结论,最后综合各类结果得到整个问题的答案.在集合包含关系或涉及集合的元素含有参数时,常借助分类讨论思想转化求解.【示例】 (2013·济南高一检测)已知集合A ={x|x 2-4x +3=0},B ={x|mx -3=0},且B A ,求实数m 的集合.[思路分析]解 由x 2-4x +3=0,得x =1或x =3.∴集合A ={1,3}.(1)当B = 时,此时m =0,满足B A.(2)当B ≠ 时,则m ≠0,B ={x|mx -3=0}=⎩⎨⎧⎭⎬⎫3m . ∵B A ,∴3m =1或3m=3,解之得m =3或m =1. 综上可知,所求实数m 的集合为{0,1,3}.[题后反思] 1.解答诸如含有集合包含关系的题目时,一定要警惕“ ”这一陷阱,考虑不周而漏掉对空集的讨论,往往造成不应有的失分,初学者要切记.2.在方程或不等式中,当一次项或二次项系数含参数时,在参数取值范围不确定的情况 下要注意分类讨论.作业1.集合{0}与∅的关系是( ).A .{0}B .{0}∈C .{0}=D .{0}解析 空集是任何非空集合的真子集,故A 正确.集合与集合之间无属于关系,故B 错;空集不含任何元素,{0}含有一个元素0,故C 、D 均错.答案 A2.已知集合A ={x|-1<x <4},B ={x|x <a},若A B ,则实数a 满足( ).A .a <4B .a ≤4C .a >4D .a ≥4解析 由A B ,结合数轴,得a ≥4.答案 D3.已知集合A ={2,9},集合B ={1-m,9},且A =B ,则实数m =________. 解析 ∵A =B ,∴1-m =2,∴m =-1.答案 -14.已知集合A ={-1,3,2m -1},集合B ={3,m 2},若B A ,则实数m =________. 解析 ∵B ={3,m 2},A ={-1,3,2m -1},且B A ,∴m 2∈{-1,3,2m -1},又m 2≠3,∴m 2=2m -1,解得m =1,经检验合题意.答案 15.已知集合A ={(x ,y)|x +y =2,x ,y ∈N },试写出A 的所有子集.解 ∵A ={(x ,y)|x +y =2,x ,y ∈N },∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有: ,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.课堂小结1.子集和真子集(1)A B 包含两种情况:A =B 和A B.当A 是B 的子集时,不要漏掉A =B 的情况.(2)在真子集的定义中,A B 首先要满足A B ,其次至少有一个x ∈B ,但x A.(3)集合与集合之间的关系有包含关系、相等关系,其中包含关系有:包含于( )、包含( ),真包含于( )、真包含( )等,用这些符号时要注意方向.2.空集(1)空集是任何集合的子集,是任何非空集合的真子集.(2)若利用“A B”或“A B”解题,要讨论A= 和A≠ 两种情况.3.涉及字母参数的集合关系时,注意数形结合思想与分类讨论思想的应用.。
1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集、真子集、集合相等1.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B2.Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.3.子集的性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相等吗?答案不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.空集中不含任何元素,所以∅不是集合.(×)2.任何一个集合都有子集.(√)3.若A=B,则A⊆B且B⊆A.(√)4.空集是任何集合的真子集.(×)一、集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅{0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4答案 C解析对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序实数对(0,1)为元素的单点集,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③④是正确的.(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.反思感悟判断集合间关系的方法(1)用定义判断①任意x∈A时,x∈B,则A⊆B.②当A⊆B时,存在x∈B,且x∉A,则A B.③若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合,直观地进行判断,但要注意端点值的取舍.跟踪训练1能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N M,其对应的V enn图如选项B所示.二、子集、真子集的个数问题例2已知集合M满足{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.解由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.反思感悟公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.跟踪训练2已知集合A={x|0≤x<5,且x∈N},则集合A的子集的个数为()A.15B.16C.31D.32答案 D解析A={0,1,2,3,4},含有5个元素的集合的子集的个数为25=32.三、集合间关系的应用例3已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B A,求实数m的取值范围.解(1)当B≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎪⎨⎪⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. (2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}. 延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎪⎨⎪⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎪⎨⎪⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m >2,m ≤-3,m ≥3,∴m不存在.即不存在实数m使A⊆B.反思感悟(1)利用数轴处理不等式表示的集合间的关系问题时,可化抽象为直观,要注意端点值的取舍,“含”用实心点表示,“不含”用空心点表示.(2)涉及到“A⊆B”或“A B且B≠∅”的问题,一定要分A=∅和A≠∅两种情况讨论,不要忽视空集的情况.跟踪训练3若集合A={x|1<x<2},B={x|x>a},满足A B,则实数a的取值范围是() A.{a|a≥2} B.{a|a≤1}C.{a|a≥1} D.{a|a≤2}答案 B解析如图所示,A B,所以a≤1.1.下列四个集合中,是空集的是()A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}答案 B解析选项A,C,D都含有元素,而选项B中无元素,故选B.2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A答案 D解析集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,∅⊆A,D正确.3.已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆CC.A B⊆C D.A=B⊆C答案 B解析集合A,B,C关系如图.4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.答案 4解析∵B⊆A,∴元素3,4必为A中元素,∴m=4.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
§1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和V enn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集、真子集、集合相等1.子集、真子集、集合相等的相关概念定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B2.Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.3.子集的性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.思考1任何两个集合之间是否有包含关系?答案不一定.如集合A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.思考2符号“∈”与“⊆”有何不同?答案符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相同吗?答案不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.已知集合M={x|x是菱形},N={x|x是正方形},则集合M与集合N的关系为________.答案N M解析因为正方形是菱形,所以N M.2.用“⊆”或“∈”填空:{0,2}________{2,1,0},2________{2,1,0}.答案⊆∈3.设a∈R,若集合{2,9}={1-a,9},则a=________.答案-1解析1-a=2,解得a=-1.4.集合{0,1}的子集有________个.答案 4解析集合{0,1}的子集有∅,{0},{1},{0,1},共4个.一、集合间关系的判断例1指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|-1<x<4},B={x|x-5<0};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(3)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.反思感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练1(1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M答案 C解析解方程x2-3x+2=0得x=2或x=1,则M={1,2},因为1∈M且1∈N,2∈M且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.B A答案 D解析因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.二、确定集合的子集、真子集例2设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集.解由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1或x=4.故集合A={-4,-1,4}.由0个元素构成的子集为∅;由1个元素构成的子集为{-4},{-1},{4};由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为{-4,-1,4}.因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}.真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.(学生)反思感悟求集合子集、真子集的3个步骤跟踪训练2 满足{1,2}M ⊆{1,2,3,4,5}的集合M 有________个. 答案 7解析 由题意可得{1,2}M ⊆{1,2,3,4,5},可以确定集合M 必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M 的元素个数分类如下: 含有三个元素:{1,2,3},{1,2,4},{1,2,5}; 含有四个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合M 共有7个.三、由集合间的关系求参数例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.解 (1)当B ≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎪⎨⎪⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. (2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}. (教师) 延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎪⎨⎪⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎪⎨⎪⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B . (学生)反思感悟 利用集合关系求参数的关注点(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.一般含“=”用实心点表示,不含“=”用空心点表示. (3)此类问题还要注意“空集”的情况,因为空集是任何集合的子集.跟踪训练3 已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 (1)当B =∅时,2a >a +3,即a >3.显然满足题意.(2)当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为{a |a <-4或a >2}.1.下列六个关系式:①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.其中正确的个数是( ) A .1B .3C .4D .6 答案 C解析 ①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{∅}表示的是含∅这个元素的集合,是元素与集合的关系,应改为∅∈{∅};④错误,∅表示空集,而{0}表示含有一个元素0的集合,并非空集,应改为∅{0};⑤正确,空集是任何非空集合的真子集;⑥正确,是元素与集合的关系. 2.集合{1,2}的子集有( ) A .4个B .3个C .2个D .1个 答案 A解析 集合{1,2}的子集有∅,{1},{2},{1,2},共4个.3.能正确表示集合M ={x ∈R |0≤x ≤2}和集合N ={x ∈R |x 2-x =0}关系的Venn 图是( )答案 B解析 x 2-x =0得x =1或x =0,故N ={0,1}, 易得NM ,其对应的V enn 图如选项B 所示.4.已知集合A ={-1,3,m },B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,B ={3,4},A ={-1,3,m },∴4∈A,∴m=4.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
1.1.2集合间的基本关系
学习目标 1.理解子集、真子集、空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.
知识点一子集
对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A),读作“A含于B”(或“B 包含A”).
子集的有关性质:
(1)任何一个集合是它本身的子集,即A⊆A.
(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.
(3)若A⊆B,B⊆A,则A=B.
知识点二真子集
如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是集合B的真子集,记作A?B(或B?A),读作A真含于B(或B真包含A).
知识点三空集
思考集合{x∈R|x2<0}中有几个元素?
答案0个.
梳理
知识点四Venn图
思考图中集合A,B,C的关系用符号可表示为__________.
答案A⊆B⊆C
梳理一般地,用平面上封闭曲线的内部代表集合,这种图称为Venn图.Venn图可以直观
地表达集合间的关系.
1.若用“≤”类比“⊆”,则“?”相当于“<”.(√)
2.空集可以用{}∅表示.(×)
3.若a ∈A ,则{}a ⊆A .(√)
4.若a ∈A ,则{}a ?A .(×)
类型一 求集合的子集
例1 (1)写出集合{a ,b ,c ,d }的所有子集;
(2)若一个集合有n (n ∈N )个元素,则它有多少个子集?多少个真子集?验证你的结论. 考点 子集及其运算
题点 求集合的子集
解 (1)∅,{a },{b },{c },{d },{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d },{a ,b ,c ,d }.
(2)若一个集合有n (n ∈N )个元素,则它有2n 个子集,2n -1个真子集.如∅,有20即一个子集,20-1即0个真子集.
反思与感悟 为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的等等.
跟踪训练1 适合条件{1}⊆A ?{1,2,3,4,5}的集合A 的个数是( )
A .15
B .16
C .31
D .32
考点 子集及其运算
题点 求集合的子集
答案 A
解析 集合A 中必有元素1,其余元素从{}2,3,4,5中取,但A ≠{}1,2,3,4,5.这样的集合A 有{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},共15个,等于{}
2,3,4,5真子集的个数24-1.
类型二判断集合间的关系
命题角度1概念间的包含关系
例2设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为()
A.P⊆N⊆M⊆Q B.Q⊆M⊆N⊆P
C.P⊆M⊆N⊆Q D.Q⊆N⊆M⊆P
考点集合的包含关系
题点集合包含关系的判定
答案 B
解析正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形,故选B.
反思与感悟一个概念通常就是一个集合,要判断概念间的关系首先得准确理解概念的定义.跟踪训练2我们已经知道自然数集、整数集、有理数集、实数集可以分别用N,Z,Q,R 表示,用符号表示N,Z,Q,R的关系为________.
考点集合的包含关系
题点集合包含关系的判定
答案N?Z?Q?R
命题角度2数集间的包含关系
例3设集合A={0,1},集合B={x|x<2或x>3},则A与B的关系为()
A.A∈B B.B∈A C.A⊆B D.B⊆A
考点集合的包含关系
题点集合包含关系的判定
答案 C
解析∵0<2,∴0∈B.
又∵1<2,∴1∈B.
∴A⊆B.
反思与感悟判断集合关系的方法
(1)观察法:一一列举观察.
(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.
(3)数形结合法:利用数轴、坐标系、Venn图表示集合,再直观判断两集合的关系.
跟踪训练3已知集合A={x|-1<x<4},B={x|x<5},则()
A .A ∈
B B .A ?B
C .B ?A
D .B ⊆A
考点 集合的包含关系
题点 集合包含关系的判定
答案 B
解析 由数轴易知A 中元素都属于B ,B 中至少有一个元素如-2∉A ,故有A ?B
.
类型三 由集合间的关系求参数(或参数范围)
例4 已知集合A ={x |x 2-x =0},B ={x |ax =1},且A ⊇B ,求实数a 的值.
考点 子集及其运算
题点 根据子集关系求参数的值
解 A ={x |x 2-x =0}={0,1}.
(1)当a =0时,B =∅⊆A ,符合题意.
(2)当a ≠0时,B ={x |ax =1}=⎩⎨⎧⎭
⎬⎫1a , ∵1a ≠0,要使A ⊇B ,只有1a
=1,即a =1. 综上,a =0或a =1.
反思与感悟 集合A 的子集可分三类:∅、A 本身,A 的非空真子集,解题中易忽略∅.
跟踪训练4 已知集合A ={x |1<x <2},B ={x |2a -3<x <a -2},且A ⊇B ,求实数a 的取值范围.
考点 子集及其运算
题点 根据子集关系求参数的取值范围
解 (1)当2a -3≥a -2,即a ≥1时,B =∅⊆A ,符合题意.
(2)当a <1时,要使A ⊇B ,需满足⎩⎪⎨⎪⎧ a <1,2a -3≥1,
a -2≤2,
这样的实数a 不存在.
综上,实数a 的取值范围是{a |a ≥1}.
1.下列集合中,等于空集的是( )
A .{x ∈R |x 2-1=0}
B .{x |x >6或x <1}
C .{(x ,y )|x 2+y 2=0}
D .{x |x >6且x <1}
考点 空集的定义、性质及运算
题点 空集的定义
答案 D
2.下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )
考点 集合的包含关系
题点 集合包含关系的判定
答案 B
3.若A ={}1,下列关系错误的是( )
A .∅⊆∅
B .A ⊆A
C .∅⊆A
D .∅∈A 考点 空集的定义、性质及运算
题点 空集的性质
答案 D
4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =19(2k +1),k ∈Z ,B =⎩⎨⎧⎭⎬⎫x ⎪⎪
x =49k ±19,k ∈Z ,则集合A ,B 之间的关系为________.
考点 集合的关系
题点 集合关系的判定
答案 A =B
解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪
x =2k +19,k ∈Z
=⎩⎨⎧⎭
⎬⎫…,-59,-39,-19,19,39,59,…, B =⎩⎨⎧⎭⎬⎫x ⎪⎪
x =4k ±19,k ∈Z =⎩⎨⎧⎭
⎬⎫…,-59,-39,-19,19,39,59,…,故A =B . 5.若A ={x |x >a },B ={x |x >6},且A ⊆B ,则实数a 的取值范围是________.
考点 子集及其运算
题点 根据子集关系求参数的取值范围
答案 [6,+∞)
1.对子集、真子集有关概念的理解
(1)集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A ,能推出x ∈B ,这是判断A ⊆B 的常用方法.
(2)不能简单地把“A ⊆B ”理解成“A 是B 中部分元素组成的集合”,因为若A =∅时,则A 中不含任何元素;若A =B ,则A 中含有B 中的所有元素.
(3)在真子集的定义中,A ?B 首先要满足A ⊆B ,其次至少有一个元素x 满足x ∈B ,但x ∉A .
2.集合子集的个数
求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集. 集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集,有2n -2个非空真子集.写集合的子集时,空集和集合本身不要漏掉.
3.由集合间的关系求参数问题的注意点及常用方法
(1)注意点:①不能忽视集合为∅的情形;
②当集合中含有字母参数时,一般需要分类讨论.
(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.。