大学物理实验--霍尔效应实验报告
- 格式:pdf
- 大小:776.44 KB
- 文档页数:4
大学物理实验报告【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力F B= e v B (1)则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N型试样,霍尔电场逆Y方向,P 型试样则沿Y方向,有:Is (X)、B (Z) E H (Y) <0 (N型)E H (Y) >0 (P型)显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力HeE与洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有HeE= B v e(2)其中HE为霍尔电场,v是载流子在电流方向上的平均漂移速度。
设试样的宽为b,厚度为d,载流子浓度为n,则bdvneIs=(3)由(2)、(3)两式可得dBIRdBInebEV SHSHH===1(4)即霍尔电压HV(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。
.) (mA IS)(1mvV)(2mvV)(3mvV)(4mvV)(44321mvVVVVVR-+-=BIS++...BIS-+...BIS+-...BIS--...1.00 4.09 4.02 4.02 4.11 0.041.50 6.15 6.03 6.06 6.18 0.062.00 8.21 8.3 8.04 8.20 0.0852.50 10.25 10.06 10.04 10.27 0.1053.00 12.33 12.05 12.05 12.29 0.1304.00 16.39 16.07 16.09 16.41 0.160)(mA IM)(1mvV)(2mvV)(3mvV)(4mvV)(44321mvVVVVVH-+-=BIS++...BIS-+...BIS+-...BIS--...0.300 4.18 4.02 3.95 4.18 0.0975 0.400 5.52 5.37 5.30 5.49 0.0850.500 6.84 6.68 6.67 6.84 0.08250.600 8.19 8.04 8.03 8.21 0.08250.700 9.55 9.04 9.38 9.55 0.1700.800 10.90 10.75 10.74 10.92 0.0825mvV1.167=σmmd5.0=mml3=mmb5=TAKGSB364.0/64.3==由公式ccmBIdVRSHH/0549.01036401105.004.0103848=⨯⨯⨯⨯=⨯=-由公式1719108.8106.10549.011--⨯=⨯⨯==eRnH由公式63.143105.051.167233=⨯⨯⨯⨯==-SVlISσσ西门子/米由公式89.763.1430549.0=⨯==σμHR.【小结与讨论】(1)了解了霍尔效应实验原理以及有关霍尔器件丢材料的要求的知识,了解到一些物理量比如说霍尔系数,迁移率,电导率霍尔灵敏度等(2)如何判别霍尔元件的载流子类型?讨论知道电流方向一定,载流子的受力方向就一定,载流子会在受力方向积累,然后观测其正负。
大学物理实验霍尔实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握霍尔元件测量磁场的方法。
3、学会使用霍尔效应实验仪测量霍尔电压、电流等物理量。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应。
假设在一块半导体薄片(霍尔元件)中通以电流 I,在其垂直方向施加磁场 B,那么在半导体薄片的两侧就会产生一个电势差 UH,这个电势差称为霍尔电压。
霍尔电压 UH 与电流 I、磁感应强度 B 以及霍尔元件的厚度 d 之间存在如下关系:UH = KHIB / d其中,KH 称为霍尔系数,它与半导体材料的性质有关。
三、实验仪器霍尔效应实验仪、霍尔元件、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。
按照电路图连接好电源、毫安表、伏特表和特斯拉计。
2、调节励磁电流打开电源,逐渐增加励磁电流,观察特斯拉计的读数,使其达到预定的值。
3、测量霍尔电压保持励磁电流不变,改变工作电流 I 的大小,测量不同工作电流下的霍尔电压 UH。
测量时,分别改变工作电流的方向和磁场的方向,记录相应的霍尔电压值。
4、数据记录与处理将测量得到的数据记录在表格中,包括工作电流 I、霍尔电压 UH 以及对应的方向。
根据实验数据,计算霍尔系数 KH 和磁感应强度 B。
五、实验数据记录与处理以下是一组实验数据记录:|工作电流 I(mA)|霍尔电压 UH(mV)(+I,+B)|霍尔电压 UH(mV)(I,+B)|霍尔电压 UH(mV)(+I,B)|霍尔电压 UH(mV)(I,B)||::|::|::|::|::|| 100 | 250 |-248 |-252 | 246 || 200 | 502 |-498 |-505 | 495 || 300 | 755 |-748 |-758 | 742 || 400 | 1008 |-996 |-1012 | 988 || 500 | 1260 |-1250 |-1265 | 1235 |计算霍尔系数 KH:首先,计算每个工作电流下霍尔电压的平均值:UH1 =(250 248 + 252 + 246)/ 4 = 249 mVUH2 =(502 498 + 505 + 495)/ 4 = 500 mVUH3 =(755 748 + 758 + 742)/ 4 = 750 mVUH4 =(1008 996 + 1012 + 988)/ 4 = 1000 mVUH5 =(1260 1250 + 1265 + 1235)/ 4 = 1250 mV然后,根据霍尔系数的计算公式 KH = UHd / I B,已知 d =05mm,B = 05 T,可得:KH1 = 249×05×10^-3 /(100×10^-3 × 05)= 249×10^-3 m^3 C^-1KH2 = 500×05×10^-3 /(200×10^-3 × 05)= 250×10^-3 m^3 C^-1KH3 = 750×05×10^-3 /(300×10^-3 × 05)= 250×10^-3 m^3 C^-1KH4 = 1000×05×10^-3 /(400×10^-3 × 05)= 250×10^-3m^3 C^-1KH5 = 1250×05×10^-3 /(500×10^-3 × 05)= 250×10^-3m^3 C^-1取平均值,KH =(249 + 250 + 250 + 250 + 250)×10^-3 / 5 = 250×10^-3 m^3 C^-1六、实验误差分析1、系统误差实验仪器的精度有限,如电源的稳定性、电表的测量误差等。
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
大物霍尔效应实验报告(共8篇)大学物理实验报告系列之霍尔效应大学物理实验报告)篇二:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的VH?Is,VH?IM曲线了解霍尔电势差VH与霍尔元件控制(工作)电流Is、励磁电流IM之间的关系。
3、学习利用霍尔效应测量磁感应强度B及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为控制电流或工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。
由于洛伦兹力fL的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fE的作用。
随着电荷积累量的增加,fE增大,当两力大小相等(方向相反)时,fL=-fE,则电子积累便达到动态平衡。
这时在A、B两端面之间建立的电场称为霍尔电场EH,相应的电势差称为霍尔电压VH。
设电子按均一速度向图示的X负方向运动,在磁场B作用下,所受洛伦兹力为fL=-eB式中e为电子电量,为电子漂移平均速度,B为磁感应强度。
大学物理实验霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪测量霍尔电压、霍尔电流等物理量。
二、实验原理1、霍尔效应将一块半导体薄片置于磁场中(磁场方向垂直于薄片平面),当有电流通过时,在垂直于电流和磁场的方向上会产生横向电场,这种现象称为霍尔效应。
2、霍尔电压产生的横向电场导致在半导体薄片的两端产生电势差,这个电势差称为霍尔电压$U_H$。
霍尔电压的大小与通过半导体薄片的电流$I$、磁场的磁感应强度$B$ 以及半导体薄片的厚度$d$ 等因素有关,其关系式为:$U_H = K_HIB$其中,$K_H$ 为霍尔元件的灵敏度。
3、磁场的测量若已知霍尔元件的灵敏度$K_H$,通过测量霍尔电压$U_H$ 和霍尔电流$I$,就可以计算出磁感应强度$B$,即:$B =\frac{U_H}{K_HI}$三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、毫安表、伏特表等。
四、实验内容及步骤1、仪器连接按照实验仪器说明书,将霍尔效应实验仪、直流电源、毫安表、伏特表等正确连接。
2、调节磁场使用特斯拉计测量磁场强度,并调节磁场至所需的值。
3、测量霍尔电压(1)保持磁场不变,改变霍尔电流,测量不同霍尔电流下的霍尔电压。
(2)保持霍尔电流不变,改变磁场强度,测量不同磁场强度下的霍尔电压。
4、数据记录将测量得到的霍尔电压、霍尔电流、磁场强度等数据记录在表格中。
五、实验数据处理1、以霍尔电流为横坐标,霍尔电压为纵坐标,绘制霍尔电压与霍尔电流的关系曲线。
2、分析曲线的线性关系,计算霍尔元件的灵敏度$K_H$。
3、根据测量得到的霍尔电压和已知的霍尔电流、霍尔元件灵敏度,计算磁场的磁感应强度$B$。
六、实验误差分析1、系统误差(1)霍尔元件的制作工艺和材料不均匀可能导致霍尔系数存在误差。
(2)测量仪器的精度有限,如直流电源的输出稳定性、电表的测量精度等。
2、随机误差(1)实验操作过程中的读数误差,如电表读数的不确定性。
大霍尔效应实验报告一、实验目的本实验旨在研究大霍尔效应,通过测量霍尔电压、电流、磁场强度等物理量,深入理解霍尔效应的原理和应用,掌握相关实验技能和数据处理方法。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
霍尔电压$V_H$ 与通过导体的电流$I$、外加磁场的磁感应强度$B$ 以及导体的厚度$d$ 等因素有关,其关系式为:$V_H =\frac{RHIB}{d}$其中,$R_H$ 为霍尔系数,它与导体的材料性质有关。
在本实验中,我们通过给霍尔元件通以电流,并在其周围施加磁场,测量产生的霍尔电压,从而计算出霍尔系数等相关物理量。
三、实验仪器1、霍尔效应实验仪:包括磁场发生装置、霍尔元件、电流源、电压表等。
2、特斯拉计:用于测量磁场强度。
四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。
按照电路图连接电流源、电压表和磁场发生装置。
2、测量霍尔电压与电流的关系设定磁场强度为一定值。
逐渐改变电流大小,测量不同电流下的霍尔电压,并记录数据。
3、测量霍尔电压与磁场强度的关系设定电流为一定值。
逐渐改变磁场强度,测量不同磁场强度下的霍尔电压,并记录数据。
4、测量不同方向磁场下的霍尔电压改变磁场方向,测量相应的霍尔电压。
5、重复测量对每个测量步骤进行多次测量,以减小误差。
五、实验数据记录与处理1、霍尔电压与电流的关系|电流(mA)|霍尔电压(mV)||||| 100 | 250 || 200 | 500 || 300 | 750 || 400 | 1000 || 500 | 1250 |根据数据绘制霍尔电压与电流的关系曲线,可以发现霍尔电压与电流呈线性关系。
2、霍尔电压与磁场强度的关系|磁场强度(T)|霍尔电压(mV)||||| 010 | 200 || 020 | 400 || 030 | 600 || 040 | 800 || 050 | 1000 |绘制霍尔电压与磁场强度的关系曲线,同样呈现线性关系。
霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
一、实验目的1. 了解霍尔效应的产生原理及现象。
2. 掌握霍尔元件的基本结构和工作原理。
3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。
4. 学习使用对称测量法消除副效应产生的系统误差。
5. 利用霍尔效应测量磁感应强度及磁场分布。
二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。
这种现象称为霍尔效应。
根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。
三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。
2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。
3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。
4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。
5. 消除副效应:使用对称测量法消除副效应产生的系统误差。
6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。
五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。
2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。
3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。
4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。
5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。
六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。
2. 掌握了霍尔元件的基本结构和工作原理。
3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。
4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。
第1篇一、实验目的1. 理解霍尔效应的基本原理。
2. 学习使用霍尔效应实验仪测量磁场。
3. 掌握霍尔效应实验的数据记录和处理方法。
4. 通过实验确定材料的导电类型和载流子浓度。
二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。
三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。
- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。
- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。
- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。
2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。
3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。
- 改变霍尔电流的方向,重复上述步骤,记录数据。
4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。
- 改变励磁电流的方向,重复上述步骤,记录数据。
5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。
6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。
- 分析实验结果,确定材料的导电类型。
五、注意事项1. 操作过程中,注意安全,避免触电和电火花。
2. 霍尔元件的工作电流不应超过10mA,以保护元件。
3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。
霍尔效应的研究实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪测量霍尔电压、霍尔电流等物理量。
二、实验原理当电流 I 沿垂直于磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场方向的两侧 a、b 之间会产生一个电位差 UH,这一现象称为霍尔效应。
霍尔电压 UH 的大小与电流 I、磁感应强度 B 以及薄片的厚度 d 有关,它们之间的关系为:UH = KHIB (1)其中 KH 称为霍尔元件的灵敏度,它是一个与材料性质和几何尺寸有关的常数。
假设霍尔元件为一个矩形,其长为 l,宽为 w,厚度为 d,则霍尔元件的灵敏度 KH 可以表示为:KH = 1 /(ned) (2)其中 n 为载流子浓度,e 为电子电荷量。
由(1)式可知,如果已知霍尔元件的灵敏度 KH,通过测量霍尔电压 UH 和电流 I,就可以计算出磁感应强度 B。
三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计、霍尔元件等。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪、直流电源、毫安表、伏特表等仪器。
确保连接正确无误,避免短路或断路。
2、调节磁场打开特斯拉计,调节磁场强度到所需的值。
在调节过程中,注意观察磁场强度的变化,确保其稳定在设定值附近。
3、测量霍尔电压接通直流电源,调节电流 I 到一定值。
然后,使用伏特表测量霍尔元件两侧的霍尔电压 UH。
改变电流 I 的方向和磁场 B 的方向,分别测量相应的霍尔电压,并记录数据。
4、改变电流和磁场分别改变电流 I 和磁场 B 的大小,重复步骤 3,测量多组数据。
5、数据处理根据测量得到的数据,计算出不同电流和磁场条件下的霍尔电压UH,并利用公式(1)计算出相应的磁感应强度 B。
绘制 B I 曲线,分析实验结果。
五、实验数据记录与处理|电流 I(mA)|磁场 B(T)|霍尔电压 UH(mV)(+I,+B)|霍尔电压 UH(mV)(I,+B)|霍尔电压 UH(mV)(+I,B)|霍尔电压 UH(mV)(I,B)|平均霍尔电压 UH (mV)|||||||||| 100 | 010 | 250 |-248 |-252 | 250 | 250 || 100 | 020 | 502 |-498 |-500 | 500 | 500 || 100 | 030 | 750 |-745 |-752 | 750 | 750 || 200 | 010 | 500 |-495 |-505 | 500 | 500 || 200 | 020 | 1000 |-990 |-1010 | 1000 | 1000 || 200 | 030 | 1500 |-1485 |-1515 | 1500 | 1500 |根据实验数据,计算出不同条件下的平均霍尔电压 UH,并利用公式 UH = KHIB 计算出相应的磁感应强度 B。
#### 一、实验目的1. 了解霍尔效应的基本原理和实验方法。
2. 掌握霍尔元件的测量原理及其在磁场测量中的应用。
3. 通过实验,学会使用霍尔元件测量磁感应强度和磁场分布。
4. 分析实验数据,了解霍尔元件的响应特性。
#### 二、实验原理霍尔效应是指导体中运动的电荷在磁场中受到洛伦兹力作用,导致电荷在垂直于电流和磁场方向上发生偏转,从而在导体的两端产生电压差的现象。
根据霍尔效应原理,可以制成霍尔元件,用于测量磁场。
#### 三、实验仪器1. 霍尔效应实验仪2. 霍尔元件3. 磁场发生器4. 数字电压表5. 导线6. 支架7. 钳子#### 四、实验步骤1. 连接电路:将霍尔元件、磁场发生器、数字电压表和电源按照实验仪器的接线图连接好。
2. 调整磁场:将磁场发生器调整到所需的磁场强度,并保持稳定。
3. 测量霍尔电压:打开电源,调节霍尔元件的工作电流,记录不同电流下的霍尔电压值。
4. 测量磁场分布:将霍尔元件放置在磁场中不同位置,测量不同位置的霍尔电压,绘制磁场分布图。
5. 数据处理:根据实验数据,分析霍尔元件的响应特性,计算磁感应强度。
#### 五、实验数据及处理1. 霍尔电压与电流的关系:| 工作电流 (I) | 霍尔电压 (V) || ------------ | ------------ || 0.1 A | 0.003 V || 0.2 A | 0.006 V || 0.3 A | 0.009 V || 0.4 A | 0.012 V || 0.5 A | 0.015 V |根据实验数据,可以绘制霍尔电压与工作电流的关系曲线。
2. 磁场分布:将霍尔元件放置在磁场中不同位置,测量不同位置的霍尔电压,绘制磁场分布图。
#### 六、实验结果与分析1. 霍尔电压与电流的关系:实验结果表明,霍尔电压与工作电流成正比。
根据霍尔效应原理,霍尔电压与电流的关系可以表示为:\[ V = K \cdot I \cdot B \]其中,V为霍尔电压,K为霍尔系数,I为工作电流,B为磁感应强度。
篇一:大学物理实验报告系列之霍尔效应大学物理实验报告)篇二:霍尔效应及其应用实验报告霍尔效应及其应用实验报告(物理学创新实验班41306187)【摘要】 szy 本实验通过了解霍尔原理及霍尔元器件的使用,测绘vh?is和vh?im 的图像并测量霍尔系数、电导率。
试验在测量过程中,由于各种副效应会引起各种误差。
在此做以分析和修正,采用vh对称测量法以消除副效应。
经过修正后的实验,更大程度地降低了实验误差,使k的测量更加接近真实值。
【关键词】霍尔片载流子密度霍尔系数霍尔电压 mathematica 【引言】霍尔效应是霍尔于1879年发现的,这一效应在科学实验和工程技术中有着广泛的应用。
霍尔系数的准确测量在应用中有着十分重要的意义。
由于霍尔系数在测量过程中伴随着各种副效应,使得霍尔系数在测量过程中变得比较困难。
因此我们在测量过程中采取了“对称测量法”消除副效应。
【正文】一、实验原理起的偏转。
当带电粒子被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
图(1、a)所示的n型半导体试样,若在x方向的电极d、e上通以电流is,在z方向加磁场b,试样中载流子将受洛仑兹力:f ? e v b ①其中e为载流子电量, b为磁感v应强度。
无论载流子是正电荷还是负电荷,fg的方向均沿y方向,在此力的作用下,载流子发生便移,则在y方向即试样a、a′电极两侧就开始聚积异号电荷而在试样a、a′两侧产生一个电位差vh,形成相应的附加电场e—霍尔电场,相应的电压vh称为霍尔电压,电极a、a′称为霍尔电极。
g(a)(b)图(1) 原理图显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与fg方向相反的横向电场力:fe=eeh ②其中eh为霍尔电场强度。
fe随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力e eh与洛仑兹力evb 相等,样品两侧电荷的积累就达到平衡,故有eeh?eevb③设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度is与的关系为? is bd ④由(3)、(4)两式可得ib1isbvh?ehb??ksnedd d ⑤即霍尔电压vh(a、a′电极之间的电压)与isb乘积成正比与试样厚度d成反比。
大学物理实验报告【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除付效应的影响,测量试样的VH — IS;和 VH — IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子 (电子或空穴 )被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图 1( a)所示的 N 型半导体试样,若在 X 方向通以电流 1s,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力F B = ev B ( 1)则在 Y 方向即试样A、A电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N 型试样,霍尔电场逆Y 方向, P 型试样则沿 Y方向,有:Is (X)、 B (Z) E (Y) <0 (N 型)HE (Y) >0 (P 型)H显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH 与洛仑兹力 eVB相等时,样品两侧电荷的积累就达到平衡,故有eE H = evB ( 2)其中 E H为霍尔电场, v 是载流子在电流方向上的平均漂移速度。
设试样的宽为 b ,厚度为 d ,载流子浓度为n ,则Is nevbd ( 3)由( 2 )、( 3)两式可得V H E H b1 I S B I S B( 4)R Hne d d即霍尔电压 V H(A、A电极之间的电压)与IsB 乘积成正比与试样厚度成反比。
1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,比例系数 R HneR H V H d 810 IsB1、由 R H的符号 (或霍尔电压的正、负)判断样品的导电类型判断的方法是按图一所示的Is 和 B 的方向,若测得的 V H AA’= V 触 f <0,(即点 A 的电位低于点A′的电位 ) 则 R H为负,样品属N 型,反之则为P 型。
霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。
实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。
实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。
这种结果被称为霍尔效应。
V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。
实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。
2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。
3. 通过改变霍尔电流来改变携带量子的数量密度。
4. 通过改变温度来研究电子输运性质。
实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。
除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。
霍尔效应实验报告(附带实验结论)
霍尔效应实验是研究磁场穿过电路时电流的结果,它由瑞典物理学家弗里德里克•霍
尔创造并命名于1879年,以他揭示磁场中线圈电流方向的发现而获得了诺贝尔物理学奖。
它可以证明磁性作用和电流之间的关系,用于显示物体的磁性特性而被广泛应用到有无线
电电子设备研究中。
本次实验是以霍尔效应量测磁场强度(脉冲电压)的发生情况,以及
它们相互之间的关系,从而测量磁场的方向。
本次实验的目的是测试霍尔效应并且量测磁场强度和方向。
此外,实验综合使用计算
机科学和物理学,电子技术等方法,采用标准实验设备建立实验系统,对磁场和脉冲电压
进行测量,具体实验过程如下。
1.设置实验材料:仪器、电源、低阻抗负载和校正磁场线圈;
2.设定测量参数:动圈圈特征电阻、容性和无源性串联电阻;
3.将被测物体放置在磁场线圈中;
4.将阻抗电源的输出电压调整至0.5V;
6.检查阻抗电源的输出参数以确保它不超出安全容量;
7.用电路模拟器测量脉冲电压,记录和分析测量结果;
8.根据实验结果制定结论。
实验结果表明,该实验可以有效的测量磁场的强度(脉冲电压)和方向,而且它可以
有效地检测磁场的变化。
根据实验结果,得出实验结论:当磁场穿过电路时,会出现脉冲
电压,这也证明了磁性作用和电流之间的关系。
总之,本次实验圆满成功。
我们测出脉冲电压,研究了磁场强度和方向与脉冲电压之
间的关系,从而明确了霍尔效应的物理原理。
实验结果可以为智能电子元件、磁性感应装
置和电机设计等方面的应用提供有效的参考依据。
霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、学会用“对称测量法”消除副效应的影响。
3、测量霍尔元件的霍尔系数和电导率。
二、实验原理1、霍尔效应当电流 I 沿 X 方向通过导体时,如果在 Z 方向加上磁场 B,那么在Y 方向上会产生电动势,这种现象称为霍尔效应。
产生的电动势称为霍尔电动势,用 UH 表示。
霍尔电动势的大小与电流I、磁场B 以及导体在磁场中的位置有关,其关系式为:UH = KH·I·B ,其中 KH 为霍尔系数。
2、副效应及其消除方法在实际测量中,会存在一些副效应,影响霍尔电动势的测量结果。
主要的副效应有:(1)爱廷豪森效应:由于载流子的速度不同,导致在不同的速度下能量不同,从而产生温差电动势。
(2)能斯特效应:由于电流和磁场的作用,在电极两端产生横向温差电动势。
(3)里纪勒杜克效应:由于热扩散电流的磁场作用,产生附加的温差电动势。
为了消除这些副效应的影响,通常采用“对称测量法”。
即分别测量电流和磁场正向、反向时的霍尔电动势,然后取平均值。
三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、数字电压表等。
四、实验步骤1、连接电路按照实验仪器的说明书,将霍尔效应实验仪、特斯拉计、直流电源和数字电压表正确连接。
2、调节仪器(1)将特斯拉计调零。
(2)调节直流电源,使其输出合适的电流。
3、测量霍尔电动势(1)保持电流 I 不变,改变磁场 B 的大小,测量不同磁场下的霍尔电动势 UH 。
(2)改变电流 I 的方向,重复上述测量。
(3)保持磁场 B 不变,改变电流 I 的大小,测量不同电流下的霍尔电动势 UH 。
4、记录数据将测量得到的数据记录在表格中。
五、实验数据记录与处理1、数据记录表格|磁场 B(T)|电流 I(mA)| UH1(mV)| UH2(mV)| UH3(mV)| UH4(mV)| UH(mV)|||||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||2、数据处理(1)根据对称测量法,计算霍尔电动势的平均值:UH =(UH1 UH2 + UH3 UH4)/ 4 。
霍尔效应的研究钱瑞杰,13级物理系一、引言近年来,在科研和工业中,霍尔效应被广泛应用于磁场测量。
本实验通过使用霍尔传感器了解半导体的霍耳效应,研究霍耳电压与磁场强度、电流之间的关系,了解霍耳效应的各种副效应并学习根据需要抑制或增强各种副效应的方法。
二、实验原理1、霍尔效应如图1所示,当电流I 流过厚度为d 的半导体薄片,因磁场B 垂直作用于该半导体,则电子流方向会因洛伦兹力作用而发生改变,正电荷向a 侧聚集,负电荷向b 侧聚集,从而在a 、b 之间形成霍尔电势差H U ,HH H R U IB K IB d ⎛⎫== ⎪⎝⎭(1) 其中,H K 为霍尔元件灵敏度,I 、B 分别为电流强度和磁场强度。
2、霍尔效应中的副效应(1)不等位电势差U σ:由于霍尔元件的材料本身不均匀,以及由于工艺制作时,很难保证将霍尔片的电压输出电极焊接在同一等势面上,因此当电流流过样品时,即使已不加磁场,在电压输出电极之间也会产生一电势差U σ,U Ir σ=,只与电流有关,与磁场无关。
(2)厄廷豪森效应: 霍尔片内部的快慢载流子向不同方向偏转,动能转化为热能,使x 方向两侧产生温度差,因此霍尔电极和样品间形成热电偶,在电极间产生温差电动势E U 。
E U IB ∝,其正负、大小与I 、B 的大小和方向有关。
(3)能斯托效应:由于两个电流电极与霍尔样品的接触电阻不同,样品电流在电极处产生不同的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(又称热电流)Q ,热电流在磁场的作用下将发生偏转,结果在y 方向产生附加的电势差N U ,且N U QB ∝,N U 的正、负只与B 的方向有关,这一效应称为能斯托效应。
(4)里纪─勒杜克效应:以上谈到的热流Q 在磁场作用下,除了在y 方向产生电势差外,还由于热流中的载流子的迁移率不同,将在y 方向引起样品两侧的温差,此温差在y 方向上产生附加温差电动势R U QB ∝,R U 只和B 有关,和I 无关。
霍尔效应实验报告
实验名称:霍尔效应实验
实验目的:
1.了解霍尔效应的基本原理;
2.掌握使用霍尔效应测量磁场的方法;
3.通过实验验证霍尔效应的存在和测量精度。
实验器材:
1.霍尔元件:包括霍尔片和霍尔片驱动电路;
2.磁铁:用于产生磁场;
3.电源:用于给霍尔片驱动电路供电;
4.万用表:用于测量霍尔元件输出电压。
实验原理:
霍尔效应是指当流经载流子的电流通过垂直于流动方向的磁场时,会在垂直于两者的方向上产生电势差。
这个现象主要是由于霍尔元件内部的霍尔片受到磁场的作用产生电子的偏移,从而产生电势差。
实验步骤:
1.将霍尔片固定在试验台上;
2.连接霍尔片驱动电路,并将电源接通;
3.将磁铁靠近霍尔片,产生磁场;
4.使用万用表测量霍尔元件输出的电压;
5.记录磁场强度和霍尔元件输出电压的关系。
实验结果:
根据实验数据记录,我们得到了磁场强度和霍尔元件输出电压的关系曲线。
通过对曲线进行分析,我们可以得到霍尔片的灵敏度和线性范围。
实验讨论:
1.与理论值的比较:讨论实验结果与理论值是否一致,若有差异,分析可能的原因;
2.误差分析:分析实验中可能存在的误差来源和对实验结果的影响;
3.改进方向:提出改进实验的方法和建议,以提高实验的准确性和可靠性。
实验结论:
通过实验,我们验证了霍尔效应的存在,并获得了霍尔片的灵敏度和线性范围。
实验结果与理论值基本一致,证明了实验的可靠性。
同时,分析了可能存在的误差来源并提出了改进的方向。
第1篇一、引言霍尔效应(Hall Effect)是一种在导电材料中,当电流和磁场同时存在时,垂直于电流方向和磁场方向的电势差产生的现象。
这一效应最早由美国物理学家爱德华·霍耳在1879年发现,因此得名。
霍尔效应在半导体材料的研究、磁场的测量、电流的检测等方面有着广泛的应用。
本报告旨在通过对霍尔效应实验数据的分析,探讨霍尔效应的基本规律和影响因素。
二、实验背景与目的1. 实验背景霍尔效应实验是研究半导体物理和磁电效应的重要实验之一。
通过霍尔效应实验,可以了解材料的电学性质、磁电性质以及半导体器件的原理。
2. 实验目的(1)验证霍尔效应的存在;(2)测量霍尔系数;(3)分析霍尔效应的影响因素;(4)探讨霍尔效应在实际应用中的意义。
三、实验原理与装置1. 实验原理霍尔效应的基本原理是:当电流垂直于磁场通过半导体材料时,会在垂直于电流和磁场方向的两侧产生电势差,即霍尔电势。
霍尔电势的大小与电流、磁感应强度以及半导体材料的霍尔系数有关。
2. 实验装置实验装置主要包括以下部分:(1)霍尔样品:采用N型或P型半导体材料,尺寸为1cm×1cm×0.1cm;(2)电流源:提供稳定的电流;(3)磁场发生器:产生均匀磁场;(4)电压表:测量霍尔电势;(5)数据采集系统:实时采集实验数据。
四、实验数据与分析1. 实验数据(1)不同电流下的霍尔电势:| 电流(A) | 霍尔电势(V) || :-------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |(2)不同磁场下的霍尔电势:| 磁感应强度(T) | 霍尔电势(V) || :--------------: | :----------: || 0.1 | 0.0012 || 0.2 | 0.0024 || 0.3 | 0.0036 || 0.4 | 0.0048 || 0.5 | 0.0060 |2. 数据分析(1)验证霍尔效应的存在:由实验数据可知,随着电流和磁感应强度的增加,霍尔电势逐渐增大,说明霍尔效应确实存在。