第二章平面向量全章教案
- 格式:docx
- 大小:1.52 MB
- 文档页数:68
2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理教学目的:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课教 具:多媒体、实物投影仪教学过程:一、 复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =02.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量三、讲解范例:例1 已知向量1e ,2e 求作向量-2.51e +32e .例2 如图 ABCD 的两条对角线交于点M ,且AB =a ,AD =b ,用a ,b MA ,,和例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4例4(1)如图,,不共线,=t (t ∈R)用,表示.(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.四、课堂练习:1.设e 1、e 2是同一平面内的两个向量,则有( )A.e 1、e 2一定平行B .e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.24.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:。
第二章平面向量§1从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念(教师用书独具)●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和标量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辨证思想的教育.●重点难点重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(教师用书独具)●教学建议1.本节的教学应当特别注意从向量的物理背景、几何背景入手,从学生熟悉的矢量概念引出向量概念,还可以要求学生自己举出一些“既有大小,又有方向的量”,从而使学生更好地把握向量的特点.2.本节介绍了两种向量的表示方法:几何表示和字母表示.几何表示为用向量处理几何问题打下了基础,而字母表示则利于向量运算,这两种方法需要学生熟练掌握.教科书用黑体字母表示向量,如a ,在手写时可用a →表示.用有向线段表示向量时,要提醒学生注意AB →的方向是由点A 指向点B ,点A 是向量的起点.3.相等向量是长度相等且方向相同的向量,相等向量是一类向量的集合.任何一组平行向量都可以移动到同一直线上,因此平行向量与共线向量是等价的,这一点值得特别注意.还要注意平行向量与平行线段的区别.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.教学中,可以借助信息技术,通过向量的平移来说明向量的相等与起点无关.讲解中要求学生辨析“向量就是有向线段,有向线段就是向量”的说法是否正确,目的是引导学生体会向量只与方向及模的大小有关而与起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.●教学流程创设问题情境,引出问题:位移是既有大小,又有方向的量,你还能举出一些这样的量吗?引入向量概念.⇒通过引导学生回答相关问题,引出有向线段、向量的构成要素,向量的长度(模)、零向量、单位向量等相关概念,并加深对向量的理解,熟悉其几何表示方法.⇒引导学生探究相等向量、共线向量的含义与性质,深刻领会相等向量是一类向量的集合,共线(平行)向量所在线段不一定平行等性质,避免与平面几何中直线平行相混淆.⇒通过例1及其变式训练,强化对向量相关概念的理解,深刻把握好各概念的内涵和外延.⇒通过例2及其变式训练,使学生掌握向量的表示方法及其应用策略.⇒引导学生探究相等向量、共线向量等概念,并完成例3及其互动探究,掌握解此类问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解向量的有关概念及向量的几何表示.(重点)2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)向量及其表示【问题导思】1.在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 【提示】 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 2.对既有大小又有方向的量,如何形象、直观地表示出来? 【提示】 利用有向线段来表示. 1.定义既有大小又有方向的量叫作向量. 2.有向线段具有方向和长度的线段叫作有向线段.其方向是由起点指向终点,以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度也叫作有向线段AB →的长度.记作|AB →|.3.向量的长度|AB →|(或|a |)表示向量AB →(或a )的大小,即长度(也称模). 4.向量的表示法(1)向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(2)向量也可以用黑体小写字母如a ,b ,c …来表示,书写用a →,b →,c →…来表示.向量的有关概念名称 定义 表示方法零向量 长度为零的向量 0单位向量与向量a 同方向,且长度为1a 0(向量a方向上)的向量,叫作a方向上的单位向量相等向量长度相等且方向相同的向量若a等于b,记作a=b向量平行或共线表示两个向量的有向线段所在的直线平行或重合a与b平行或共线,记作a∥b向量的有关概念下列说法正确的是( )A .若向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一直线上 B .若向量a 与b 平行,则a 与b 的方向相同或相反 C .向量AB →的长度与向量BA →的长度相等 D .单位向量都相等【思路探究】 利用共线(平行)向量、单位向量、相等向量、向量的长度等概念逐项判断正确与否.【自主解答】 对于A ,考查的是有向线段共线与向量共线的区别.事实上,有向线段共线要求线段必须在同一直线上.而向量共线时,表示向量的有向线段可以是平行的,不一定在同一直线上.对于B ,由于零向量与任一向量平行,因此若a ,b 中有一个为零向量时,其方向是不确定的.对于C ,向量AB →与BA →方向相反,但长度相等.对于D ,需要强调的是:单位向量不仅仅指的是长度,还有方向,而向量相等不仅仅需要长度相等而且还要求方向相同.【答案】 C1.对共线向量的理解是本题的关键点.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.下列说法正确的是( )A.AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫相等向量 C .零向量的长度等于0D .共线向量是在同一条直线上的向量【解析】 AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故选项A 错;相等向量不仅要求长度相等,还要求方向相同,故选项B 错;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故选项D 错.【答案】 C向量的表示一辆汽车从A 点出发向西行驶了100km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.【思路探究】 先作出表示东南西北的方位图及100 km 长度的线段,然后解答问题.【自主解答】 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又∵|AB →|=|CD →|.∴在四边形ABCD 中,AB 綊CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD →|=|BC →|=200(km).1.在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.2.用有向线段来表示向量,显示了图形的直观性,为以后学习向量提供了几何方法,这也体现了数形结合的数学思想.应注意的是有向线段是向量的表示方法,并不是说向量就是有向线段.3.要注意能够运用向量观点将实际问题抽象成数学模型.“数学建模”能力是今后能力培养的主要方向.图2-1-1在如图的方格纸中,画出下列向量.(每个小正方形的边长为1) (1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? 【解】 (1)(2)(3)的图像如图所示.(3)c 的终点轨迹是以C 为圆心半径为2的圆.相等向量与共线向量图2-1-2如图2-1-2所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模相等的向量;(3)写出与EF →相等的向量.【思路探究】 解答本题可依据相等向量及共线向量的定义求解. 【自主解答】 ∵E 、F 分别是AC 、AB 的中点, ∴EF ∥BC ,且EF =12BC .又∵D 是BC 的中点,∴EF =BD =DC .(1)与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →. (2)与EF →的模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →,CD →.1.本题以三角形中位线与底边的关系为载体,融相等向量及共线向量的知识于其中,求解时可充分借助于几何图形的相关性质,使向量与几何有机地结合起来,用共线向量反映几何图形中的位置关系,用向量模的关系,反映几何图形中的长度关系.2.判断一组向量是否相等,关键看向量是否方向相同和长度相等,与起点和终点位置无关.对于共线向量,则只要同向或反向即可.在本例条件不变的情况下,写出与AC →共线的向量和与CE →相等的向量. 【解】与AC →共线的向量有:CA →,FD →,DF →,CE →,EC →,AE →,EA →; 与CE →相等的向量有:EA →,DF →.忽视零向量方向致误给出下列六个命题:①两个向量相等,则它们的起点相同、终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则ABCD 是平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c . 其中不正确的命题的个数为( )A .2B .3C .4D .5 【错解】 选B.【错因分析】 ⑥中若b =0则结论不成立,因为0的方向不确定.【防范措施】 对于向量的概念要认真理解,尤其是零向量一定要记住其特殊性.【正解】 两个向量起点相同、终点相同,则两个向量相等;但两个向量相等,却不一定起点相同,终点相同,故①不正确.根据向量相等的定义,要保证两向量相等,不仅模相等,而且方向相同,而②中方向不一定相同,故不正确.③也不正确,因为A ,B ,C ,D 可能落在同一条直线上.零向量方向不确定,它与任一向量都平行,故⑥中若b =0,则a 与c 就不一定平行了.因此⑥也不正确.【答案】 C1.学习了向量的概念及其表示,明确了有向线段与向量之间的关系. 2.掌握了特殊向量及向量之间的关系,以及它们的性质特点. 3.能在具体图形中找出相等向量与共线向量.1.下列命题中,正确的是( ) A .|a |=|b |⇒a =b B .|a |>|b |⇒a >b C .a =b ⇒a ∥bD .|a |=0⇒a =0【解析】 如果两个向量相等,则这两个向量必定平行. 【答案】 C2.如图2-1-3,AB →=DC →,AC 与BD 相交于点O ,则相等的向量是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →图2-1-3【解析】 |DO →|=|OB →|,且DO →与OB →方向相同,则DO →=OB →,故选D. 【答案】 D 3.给出下列命题:①若|a |>|b |,则a >b ;②若a =b ,则a ∥b ;③若|a |=0,则a =0;④0=0;⑤向量AB →大于向量CD →;⑥方向不同的两个向量一定不平行.其中,正确命题的序号是________.(把你认为正确的命题序号都填上)【解析】 ①不正确.|a |>|b |知模的大小,而不能确定方向,向量不能比较大小;②正确.共线向量是指方向相同或相反的向量,相等向量一定共线;③正确;④不正确.0是一个向量,而0是一个数量,应|0|=0;⑤不正确.因为向量不能比较大小,这是向量与数量的显著区别,向量的模可以比较大小;⑥不正确.因为平行向量包括方向相同和方向相反两种情况.【答案】 ②③图2-1-44.如图,在等腰梯形ABCD 中,对角线AC 与BD 相交于点O ,EF 是过点O 且平行于AB 的线段.(1)写出图中的各组共线向量; (2)写出图中的各对同向向量; (3)写出图中的各对反向向量.【解】 (1)向量DC →,BA →,EO →,OF →为一组共线向量; 向量AO →与OC →为一组共线向量; 向量OD →与OB →为一组共线向量; 向量AE →与ED →为一组共线向量; 向量BF →与FC →为一组共线向量.(2)向量DC →与EO →,OF →为同向向量,向量AO →与OC →,AE →与ED →,BF →与FC →分别为同向向量. (3)DC →与BA →,BA →与EO →,BA →与OF →,OD →与OB →为反向向量.一、选择题1.如图2-1-5,在正方形ABCD 中,可以用同一条有向线段表示的向量是( )图2-1-5A.DA →与BC →B.AB →与DC →C.DC →与DA →D.BC →与AB →【解析】 ∵AB →=DC →,∴AB →与DC →可用同一条有向线段表示. 【答案】 B图2-1-62.如图2-1-6所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( ) A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →【解析】 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等. 【答案】 B图2-1-73.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点,则与E F →的模相等的向量共有( )A .6个B .5个C .4个D .3个【解析】 ∵E 、F 、D 分别是边AC 、AB 和BC 的中点, ∴EF =12BC ,BD =DC =12BC .又∵AB ,BC ,AC 均不相等,从而与EF →的模相等的向量是:FE →,BD →,DB →,DC →,CD →. 【答案】 B图2-1-84.如图,点O 是正六边形ABCDEF 的中心,则以图中A ,B ,C ,D ,E ,F ,O 中任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA →外,与向量OA →共线的向量共有( )A .6个B .7个C .8个D .9个【解析】 由共线向量的定义及正六边形的性质,与向量OA →共线的向量有AO →,OD →,DO →,AD →,DA →,EF →,FE →,BC →,CB →,共有9个.故选D.【答案】 D5.下列说法中,不正确的是( ) A .0与任意一个向量都平行B .任何一个非零向量都可以平行移动C .长度不相等而方向相反的两个向量一定是共线向量D .两个有共同起点且共线的向量其终点必相同【解析】 易知A 、B 、C 均正确,D 不正确,它们的终点可能相同,故选D. 【答案】 D 二、填空题6.已知边长为3的等边△ABC ,则BC 边上的中线向量AD →的模等于________. 【解析】 由于AD =32AB =332.∴|AD →|=3 32.【答案】3 32图2-1-97.如图,设O 是正方形ABCD 的中心,则:①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有正确的序号为________.【解析】 根据正方形的几何性质以及向量的相等和共线的条件知①②③正确,AO →与BO →的方向不相同,故④不正确.【答案】 ①②③图2-1-108.如图2-1-10所示,四边形ABCD 是边长为3的正方形,把各边三等分后,连接相应分点,共有16个交点,从中选取2个交点组成向量,则与AC →平行且长度为2 2的向量个数是________.【解析】 图中共有4个边长为2的正方形,每个正方形中有符合条件的向量2个(它们分别是连接左下和右上顶点的向量,方向相反),故满足条件的向量共有8个.【答案】 8 三、解答题9.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量.【解】 如图可知,(1)易知BC =AD ,所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点可知OB =OD =OA =OC ,所以与OB →长度相等的向量有BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA →共线的向量有AD →,BC →,CB →.图2-1-1110.如图2-1-11所示,四边形ABCD 中AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.【证明】 ∵AB →=DC →,∴|AB →|=|DC →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形,∴CM →=NA →. ∵|CB →|=|DA →|,|CM →|=|NA →|,∴|MB →|=|DN →|, 又∵DN →与MB →的方向相同,∴DN →=MB →.图2-1-1211.如图2-1-12,A 、B 、C 三点的坐标依次是(-1,0)、(0,1)、(x ,y ),其中x 、y ∈R .当x 、y 满足什么条件时,向量OC →与AB →共线(其中O 为坐标原点)?【解】 由已知,A 、B 的坐标是(-1,0)、(0,1),所以∠BAO =45°. 当点C (x ,y )的坐标满足x =y =0时,OC →=0, 这时OC →与AB →共线(零向量与任意向量都共线); 当xy ≠0,且x =y ,即点C 在一、三象限角平分线上时, 有AB ∥OC ,这时OC →与AB →共线.综上,当x =y 时,OC →与AB →共线.(教师用书独具)如图是中国象棋的半个棋盘,“马走日”是中国象棋的走法,“马”可以从A 跳到A 1或A 2,用向量AA 1→、AA 2→表示“马”走了一步.试在图中画出“马”在B 、C 分别走了一步的所有情况.【解】如图所示,在B处有3种走法;在C处有8种走法.如图,在4×5的方格图中,有一个向量AB →,分别以图中的格点为起点和终点作向量.(1)与向量AB →相等的向量有多少个? (2)与向量AB →长度相等的向量有多少个?【解】 (1)结合向量相等的定义及方格的特征可知与向量AB →相等的向量有3个. (2)与向量AB →长度相等的向量有39个,因为对角线长度与AB →长度相等的每个矩形中有4个与向量AB →长度相等的向量.而这样的矩形共有10个,所以共有4×10-1=39个.§2从位移的合成到向量的加法2.1 向量的加法 2.2 向量的减法(教师用书独具)●三维目标1.知识与技能(1)能熟练运用三角形法则和平行四边形法则,作出几个向量的和、差向量.(2)能结合图形进行向量计算.(3)能准确表达向量加法的交换律和结合律,并能熟练地进行向量计算.2.过程与方法由概念的形成过程和解题的思维过程,体验数形结合思想的指导作用.3.情感、态度与价值观通过阐述向量的减法运算可以转化为向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.●重点难点重点:向量的加法、减法运算.难点:向量加法、减法的几何意义.(教师用书独具)●教学建议几何中的向量加法是用几何作图来定义的,教科书给出了两个向量求和的三角形法则和平行四边形法则,多个向量求和的多边形法则.教科书采用三角形法则来定义向量的加法,这种定义对两向量共线时同样适用,而当两个向量共线时,平行四边形法则就不适用了.当两向量不共线时,向量加法的三角形法则和平行四边形法则是一致的.当求两个或多个不共线向量的和时,和向量是从第一个向量的始点指向最后一个向量的终点.类比数的运算中减法是加法的逆运算,将向量的减法定义为向量加法的逆运算.教学时,要结合三角形法则认真体会其含义.两个向量的减法是把两个向量的始点放在一起,它们的差是以减向量的终点为起点,被减向量的终点为终点的向量.●教学流程创设问题情境:对比实数的加法运算,如何求出两向量的和呢?⇒引导学生结合物理中力的合成,类比发现向量加法的定义及其运算性质.⇒引导学生探究向量减法的定义及向量减法的几何意义.⇒通过例1及变式训练,使学生熟练掌握向量的加、减运算.⇒通过例2及变式训练,使学生熟练掌握利用向量加、减法的几何意义作用.⇒通过例3及变式训练,掌握向量加、减法的综合应用.⇒归纳整理,进行课堂小结,整体认识所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.掌握向量的加法、减法运算.(重点)2.理解向量加法与减法的几何意义及加、减法的关系.(难点)向量求和法则及运算律【问题导思】一架飞机要从A地经B地运物资到C地,问从A地到B地,与从B地到C地这两次位移之和是什么?【提示】 如图所示,这两次位移之和为AB →+BC →,而实际位移为AC →. 由此可以看出AB →+BC →=AC →. 类别图示几何意义向量求和 的法则平行 四边 形法则已知向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加 法的运 算律交换律 a +b =b +a结合律(a +b )+c =a +(b +c )相反向量【问题导思】向量AB →与向量BA →是一对特殊的向量,它们的长度和方向之间有什么关系? 【提示】 向量AB →与向量BA →长度相等,但方向相反,即AB →=-BA →. 定义把与a 长度相等、方向相反的向量,叫作a 的相反向量,记作-a性质(1)零向量的相反向量仍是零向量,于是-(-a )=a ;(2)互为相反向量的两个向量的和为0,即a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a向量的减法【问题导思】1.两个相反数的和为零,那么两个相反向量的和也为零向量吗? 【提示】 是零向量.2.根据向量的加法,如何求作a -b?【提示】 先作出-b ,再按三角形或平行四边形法则作出a +(-b ).定义向量a 加上b 的相反向量叫作a 与b 的差,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法几何 意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量向量的加法、减法运算(1)在平行四边形ABCD 中,AB →+CB →-DC →=( )A.BC →B.AC →C.DA →D.BD →(2)化简AB →+DA →+BD →-BC →-CA →=________. 【思路探究】 (1)利用平行四边形法则和性质;(2)可用三角形法则,即所谓“首尾相连”;也可以引入空间一点O ,转化成以O 为起点的向量进行化简.【自主解答】 (1)在▱ABCD 中,AB →=DC →,CB →=DA →, ∴AB →+CB →-DC →=(AB →-DC →)+CB →=DA →. (2)法一 原式=AB →+BD →+DA →-(BC →+CA →) =0-BA →=AB →.法二 在平面内任取一点O ,连接OA ,OB ,OC ,OD ,则 原式=(OB →-OA →)+(OA →-OD →)+(OD →-OB →)-(OC →-OB →)-(OA →-OC →) =OB →-OA →+OA →-OD →+OD →-OB →-OC →+OB →-OA →+OC →=OB →-OA →=AB →. 【答案】 (1)C (2)AB →1.求解这类问题,一定要灵活应用向量加法、减法的三角形与平行四边形法则,并注意向量的起点和终点,当向量首尾相连且为和时,用加法;运用向量减法的三角形法则时,一定有两向量起点相同.2.运用向量减法法则时,常考虑方法:(1)通过相反向量,把向量减法转化为加法;(2)引入点O ,将向量起点统一.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →). 【解】 (1)(BA →-BC →)-(ED →-EC →) =CA →-CD →=DA →.(2)(AC →+BO →+OA →)-(DC →-DO →-OB →) =AC →+BA →-DC →+(DO →+OB →) =AC →+BA →-DC →+DB → =BC →-DC →+DB → =BC →+CD →+DB → =BC →+CB →=0.利用向量加法、减法的几何意义作图图2-2-1如图2-2-1所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c .求作b +c -a .【思路探究】 解答本题可用平行四边形法则作b +c ,再作b +c -a .【自主解答】 法一 以OB →、OC →为邻边作▱OBDC ,连接OD →、AD →,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .法二 作CD →=OB →=b ,连接AD ,则AC →=OC →-OA →=c -a ,AD →=AC →+CD →=c -a +b =b +c -a .1.运用三角形法则,作两个向量和的关键是作平移,首尾连.作两个向量差的关键是作平移,共起点,两尾连,指被减.2.当两向量不共线时,也可采用平行四边形法则,多个向量相加减时要注意灵活运用运算律.如图,已知向量a,b,c不共线,求作向量a+b-c.图2-2-2图(1)【解】 法一 如图(1)所示,在平面内任取一点O , 作OA →=a ,AB →=b , 则OB →=a +b ,再作OC →=c , 则CB →=a +b -c .图(2)法二 如图(2)所示,在平面内任取一点O ,作OA →=a ,AB →=b , 则OB →=a +b ,再作CB →=c ,则BC →=-c 连接OC ,则OC →=a +b -c .向量加减法的综合应用图2-2-3如图2-2-3所示,O 是平行四边形ABCD 的对角线AC 、BD 的交点,设AB →=a ,DA →=b ,OC →=c ,求证:b +c -a =OA →.【思路探究】 要证明b +c -a =OA →,可转化为证明b +c =OA →+a ,从而利用向量加法证明;也可以从c -a 入手,利用向量减法证明.【自主解答】 在▱ABCD 中,DA →=CB →=b ,OC →=c 法一 ∵b +c =DA →+OC →=OC →+CB →=OB →, 又∵OA →+a =OA →+AB →=OB →.∴b +c =OA →+a ,即b +c -a =OA →. 法二 ∵c -a =OC →-AB →=OC →-DC →=OD →, OD →=OA →+AD →=OA →-b ,∴c -a =OA →-b ,即b +c -a =OA →.1.法一是利用三角形加法法则证明两个向量的和相等;法二是利用向量减法法则证明两个向量的差相等,证明时可灵活选择方法.2.灵活选择方法,优化思维过程,通过恒等变形来证明等价命题是常用的证明恒等式的方法.P 、Q 是△ABC 的边BC 上的两点,且BP →=QC →,求证:AB →+AC →=AP →+AQ →. 【证明】 ∵AP →=AB →+BP →, AQ →=AC →+CQ →,∴AP →+AQ →=AB →+BP →+AC →+CQ →, 又∵BP →=QC →,∴BP →+CQ →=0, ∴AP →+AQ →=AB →+AC →.错用向量减法法则致误如图所示,已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为r 1、r 2、r 3,求OD →.图2-2-4【错解】 因为OD →=OC →+CD →, CD →=BA →=OB →-OA →,所以OD →=OC →+OB →-OA →=r 3+r 2-r 1.【错因分析】 错误使用了向量的减法法则导致解错.【防范措施】 减法口决:始点相同,连接终点,箭头指向被减向量.应把首尾相接的放在一起计算,始点相同的放在一起计算.必要时,可画出图像,结合图像观察将使问题更为直观.【正解】 OD →=OC →+CD →=OC →+BA →=OC →+OA →-OB →=r 3+r 1-r 2.1.学习了向量加法的三角形法则和平行四边形法则.2.学习了相反向量的概念,知道向量的减法是向量加法的逆运算. 3.学习了向量减法运算并且掌握了它的几何意义.4.掌握了利用向量的加、减法进行化简、作图、表示其他向量,体会了数形结合的应用.1.正方形ABCD 的边长为1,则|AB →+AD →|为( ) A .1 B. 2 C .3D .2 2【解析】 ∵AB →+AD →=AC →,∴|AB →+AD →|=|AC →|=2,故选B. 【答案】 B2.下列说法正确的是( ) A .0+0=0B .对任意向量a ,b ,都有a +b =b +aC .对任意向量a ,b ,有|a +b |>0D .等式|a +b |=|a |+|b |不可能成立【解析】 ∵0+0=0,∴A 不正确;|a +b |≥0,∴C 不正确;当a ,b 同向共线时,|a +b |=|a |+|b |成立,∴D 不正确;B 正确,故选B. 【答案】 B3.化简AB →-DC →-AD →=________. 【解析】 原式=AB →-(AD →+DC →) =AB →-AC →=CB →. 【答案】 CB →图2-2-54.如图2-2-5,已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为a 、b 、c ,试用a ,b ,c 表示向量OD →.【解】 OD →=OA →+AD →。
第二章平面向量教学设计人教A版数学必修4一、教材分析向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景和深刻的几何背景,是解决几何问题的有力工具. 在数学和物理中都有广泛的应用.在本单元中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学及物理中的一些问题.发展运算能力和解决实际问题的能力.1.本单元的教学内容的范围(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。
(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义。
②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。
③了解向量的线性运算性质及其几何意义。
(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③会用坐标表示平面向量的加、减与数乘运算。
④理解用坐标表示的平面向量共线的条件。
(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。
②体会平面向量的数量积与向量投影的关系。
③掌握数量积的坐标表达式,会进行平面向量数量积的运算。
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
本章知识结构如下:平面向量、实际背景向量及其基本概念线性运算向量的数量积基本定理坐标表示向量的应用根据数学知识的发展过程与学生的认知过程安排内容向量是高中数学课程近年来引进的新内容,为了保证其科学性,同时又易于被学生接受,根据向量知识的发展过程和学生的思维规律,根据“标准”对向量内容的定位,并考虑到学生在数及其运算中建立起来的经验,本章按照如下次序来编排:向量的实际背景及基本概念一向量的线性运算一平面向量基本定理及坐标表示一向量的数量积一向量应用举例.课标要求的具体化和深广度分析①平面向量的实际背景及基本概念《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.如:用向量a,则-a表示____.一辆汽车从A地出发向西行驶了100km,到达B地,可以用向量a表示,那么从B地出发到A达地应如何表示?向量a,b都是非零向量,下面说法不正确的是()(A)向量a与b反向,则向量a+b与向量a的方向可能相同(B)向量a与b反向,则向量a+b与向量b的方向可能相同(C)向量a与b反向,且a b>,则向量a+b与向量a的方向可能相同(D)向量a与b反向,且a b<,则向量a+b与向量a的方向可能相同理解向量的概念,掌握向量的几何表示,了解共线向量②向量的线性运算《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过实例,掌握向量加、减法的运算,并理解其几何意义.②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.③了解向量的①如:若向量a表示向东走了2km,b表示向南走了1km,则a-b表示___________.已知下列各式①AB BC CA++;②AB MB BO OM+++;③OA OB BO CO+++;④AB AC BD CD-+-;①掌握向量的加法与减法,并理解其几何意义.②掌握实数与向量的积的运算,理解两个向量共线的充要条件.③会进行向量的线性运算.线性运算性质及其几何意义.其中结果为零向量的个数为()(A)1(B)2(C)3(D)4②已知向量a,b满足AB =a+2b,BC =-5a+6b,CD =7a-2b,则一定共线的三点是()(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D③如:在ABC∆中,D,F分别是AB,AC的中点,BF与CD交于O,设AB =a,AC =b,用a,b表示向量AO.③平面向量的基本定理及坐标表示《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加、减与数乘运算.④理解用坐标表示的平面向量共线的条件.①如:某人在静水中游泳,速度为每小时3km,水流的速度为每小时4km,如果他要垂直游到对岸,则他的实际速度是多少?②如:已知平行四边形ABCD的三个顶点坐标分别为A(-2,1),B(3,4),C(-1,3),则顶点D的坐标为___________.③如:已知(0,1)A,(3,4)B-且点C在AOB∠的平分线上,若2OC=,则向量OC=_________.④已知向量(,12)OA k=,(4,5)OB=,(,10)OC k=-且A,B,C三点共线,则k=_________.①了解平面向量的基本定理②理解平面向量的坐标的概念③掌握平面向量的坐标运算④理解两个向量共线的充要条件④平面向量的数量积《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.②体会平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.①如:用两根夹角为120角的等长的绳子悬挂一个灯具,若灯具的重量为10N,则每根绳子的拉力大小是_________.②如:已知点(0,1)A-,(2,2)B,(4,6)C-,则AB在AC上的投影的值为_________.③如:a=(-3,2),b=(-4,k),若(5a-b)⋅(3a-b)=55,求实数k的值.④如:两单位向量a,b的夹角为60,则两向量p=2a+b与q=3a+2b的夹角为_________.换垂直的题①明确平面向量数量积的定义、数学表达式及其几何意义②明确向量b在向量a的方向上的投影③掌握数量积的公式,能进行数量积的运算④明确两向量夹角的意义,掌握两向量垂直的充要条件,能用两种形式表示向量垂直的充要条件.⑤向量的应用《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算如图,在平行四边形ABCD中,13DE DC=,AE与BD交于F,用向量的方法证明:14DF DB=.掌握平面两点间的距离公式、掌握线段的定比分点和中点坐标公式、平移公式,并能熟练运用,会用平面向量数量积处理长度、角度等有关问题能力和解决实际问题的能力.ABCD E F实际问题如:一条河的两岸平行,河的宽度为0.4km ,一艘船从一岸边的A 处出发驶向对岸,已知船速为15kmv h =,水速为23kmv h =,欲使航行最短,则所用时间为_________.(2)本单元变化之处①删繁就简,降低了知识的难度 ②调整章节,凸显了知识的框架 ③贴近生活,重视了知识的应用 (3)人教B 版向量一章的教材特点强调向量法的基本思想,明确向量运算及运算律的核心地位向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决.另外,向量及其运算(运算律)与几何图形 的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示.例如,平行四边形是表示向量加法和减法的几何模型,而向量的加法及其交换律(=+a b b +a )又可以表示平行四边形的性质(在平行四边形AB ∥CD 中,AD ∥BC ,AB ∥CD ,ABD ∆≌CBD ∆).这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起.几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.如果把解析几何的方法简单地表述为 [形到数]——[数的运算]——[数到形], 则向量方法可简单地表述为[形到向量]——[向量的运算]——[向量和数到形].教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”.为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语.说明:由于我们按照必修1,必修4的顺序进行教学,因此向量法这种解决问题的方法就显得尤其重要,他为今后学习解析法奠定了基础。
§2、1 平面向量得实际背景及基本概念1、数量与向量得区别:数量只有大小,就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 2、向量得表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段得起点与终点字母:;④向量得大小――长度称为向量得模,记作||、3、有向线段:具有方向得线段就叫做有向线段,三个要素:起点、方向、长度、 向量与有向线段得区别:(1)向量只有大小与方向两个要素,与起点无关,只要大小与方向相同,则这两个向量就就是相同得向量;(2)有向线段有起点、大小与方向三个要素,起点不同,尽管大小与方向相同,也就是不同得有向线段、4、零向量、单位向量概念:①长度为0得向量叫零向量,记作0、 0得方向就是任意得、 注意0与0得含义与书写区别、②长度为1个单位长度得向量,叫单位向量、说明:零向量、单位向量得定义都只就是限制了大小、 5、平行向量定义:①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、说明:(1)综合①、②才就是平行向量得完整定义;(2)向量a、b、c平行,记作a∥b∥c、6、相等向量定义:长度相等且方向相同得向量叫相等向量、说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有向线段得起.......点无关...、 7、共线向量与平行向量关系:平行向量就就是共线向量,这就是因为任一组平行向量都可移到同一直线上(与有向线....段得起点无关......).、 说明:(1)平行向量可以在同一直线上,要区别于两平行线得位置关系;(2)共线向量可以相互平行,要区别于在同一直线上得线段得位置关系、§2、2、1 向量得加法运算及其几何意义A(起点)B(终点)aO ABaaa bb b二、探索研究:1、向量得加法:求两个向量与得运算,叫做向量得加法、 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b、在平面内任取一点,作=a ,=b,则向量叫做a 与b得与,记作a +b,即 a +b,规定: a + 0-= 0 + a探究:(1)两相向量得与仍就是一个向量;(2)当向量与不共线时,+得方向不同向,且|+|<||+||;(3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+得方向与相同,且|+|=||-||;若||<||,则+得方向与相同,且|+b|=||-||、(4)“向量平移”(自由向量):使前一个向量得终点为后一个向量得起点,可以推广到n 个向量连加 3.例一、已知向量、,求作向量+ 作法:在平面内取一点,作 ,则、 4.加法得交换律与平行四边形法则问题:上题中+得结果与+就是否相同? 验证结果相同从而得到:1)向量加法得平行四边形法则(对于两个向量共线不适应)2)向量加法得交换律:+=+ 5.向量加法得结合律:(+) +=+ (+) 证:如图:使, , 则(+) +=,+ (+) = ∴(+) +=+ (+)从而,多个向量得加法运算可以按照任意得次序、任意得组合来进行、第3课时§2、2、2 向量得减法运算及其几何意义1. 用“相反向量”定义向量得减法aA BCa +ba +baab b abb aa(1) “相反向量”得定义:与a 长度相同、方向相反得向量、记作 -a (2) 规定:零向量得相反向量仍就是零向量、-(-a ) = a 、 任一向量与它得相反向量得与就是零向量、a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法得定义:向量a 加上得b 相反向量,叫做a 与b 得差、 即:a - b = a + (-b ) 求两个向量差得运算叫做向量得减法、 2. 用加法得逆运算定义向量得减法: 向量得减法就是向量加法得逆运算: 若b + x = a ,则x 叫做a 与b 得差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O , 作= a , = b则= a - b 即a - b 可以表示为从向量b 得终点指向向量a 得终点得向量、4. 探究:1)如果从向量a 得终点指向向量b 得终点作向量,那么所得向量就是b - a 、2)若a ∥b, 如何作出a - b §2、3、1平面向量基本定理复习引入:1.实数与向量得积:实数λ与向量得积就是一个向量,记作:λ(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ= 2.运算定律结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ3、 向量共线定理 向量与非零向量共线得充要条件就是:有且只有一个非零实数λ,使=λ、平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ2、 探究:OabBa ba -b a -bA ABBB’Oa -b a ab bO AOBa -ba -b BA O-b(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量得一组基底;(2) 基底不惟一,关键就是不共线;(3) 由定理可将任一向量a在给出基底e1、e2得条件下进行分解;(4) 基底给定时,分解形式惟一、λ1,λ2就是被,,唯一确定得数量§2、3、2—§2、3、3 平面向量得正交分解与坐标表示及运算一、复习引入:1.平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量得一组基底;(2)基底不惟一,关键就是不共线;(3)由定理可将任一向量a在给出基底e1、e2得条件下进行分解;(4)基底给定时,分解形式惟一、λ1,λ2就是被,,唯一确定得数量二、讲解新课:1.平面向量得坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………○1我们把叫做向量得(直角)坐标,记作…………○2其中叫做在轴上得坐标,叫做在轴上得坐标,○2式叫做向量得坐标表示、与相等得向量得坐标也为...........、特别地,,,、如图,在直角坐标平面内,以原点O为起点作,则点得位置由唯一确定、设,则向量得坐标就就是点得坐标;反过来,点得坐标也就就是向量得坐标、因此,在平面直角坐标系内,每一个平面向量都就是可以用一对实数唯一表示、2.平面向量得坐标运算(1) 若,,则,两个向量与与差得坐标分别等于这两个向量相应坐标得与与差、设基底为、,则即,同理可得(2)若,,则一个向量得坐标等于表示此向量得有向线段得终点坐标减去始点得坐标、=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)(3)若与实数,则、实数与向量得积得坐标等于用这个实数乘原来向量得相应坐标、设基底为、,则,即第6课时§2、3、4 平面向量共线得坐标表示一、复习引入:1.平面向量得坐标表示分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量得(直角)坐标,记作其中叫做在轴上得坐标,叫做在轴上得坐标, 特别地,,,、2.平面向量得坐标运算若,,则,,、若,,则二、讲解新课:∥(≠)得充要条件就是x1y2-x2y1=0设=(x1, y1) ,=(x2, y2) 其中≠、由=λ得, (x1, y1) =λ(x2, y2) 消去λ,x1y2-x2y1=0探究:(1)消去λ时不能两式相除,∵y1, y2有可能为0, ∵≠∴x2, y2中至少有一个不为0(2)充要条件不能写成∵x1, x2有可能为0(3)从而向量共线得充要条件有两种形式:∥(≠)§2、4平面向量得数量积一、平面向量得数量积得物理背景及其含义一、复习引入:1. 向量共线定理向量与非零向量共线得充要条件就是:有且只有一个非零实数λ,使=λ、2.平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ23.平面向量得坐标表示分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量得(直角)坐标,记作4.平面向量得坐标运算若,,则,,、若,,则5.∥(≠)得充要条件就是x1y2-x2y1=06.线段得定比分点及λP1, P2就是直线l上得两点,P就是l上不同于P1, P2得任一点,存在实数λ,使=λ,λ叫做点P分所成得比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7、定比分点坐标公式:若点P1(x1,y1) ,P2(x2,y2),λ为实数,且=λ,则点P得坐标为(),我们称λ为点P分所成得比、8、点P得位置与λ得范围得关系:①当λ>0时,与同向共线,这时称点P为得内分点、②当λ<0()时,与反向共线,这时称点P为得外分点、9、线段定比分点坐标公式得向量形式:在平面内任取一点O,设=a,=b,可得=、10.力做得功:W = |F|⋅|s|cosθ,θ就是F与s得夹角、二、讲解新课:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b;(4)注意在两向量得夹角定义,两向量必须就是同起点得、范围0︒≤θ≤180︒C2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、⋅探究:两个向量得数量积与向量同实数积有很大区别(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定、(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分、符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替、(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0、因为其中cosθ有可能为0、(4)已知实数a、b、c(b≠0),则ab=bc ⇒ a=c、但就是a⋅b = b⋅c a = c如右图:a⋅b = |a||b|cosβ = |b||OA|,b⋅c = |b||c|cosα = |b||OA|⇒ a⋅b = b⋅c但a≠c(5)在实数中,有(a⋅b)c = a(b⋅c),但就是(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a与c不共线、3.“投影”得概念:作图定义:|b|cosθ叫做向量b在a方向上得投影、投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|、4.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、5.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ =5︒|a⋅b| ≤|a||b|二、平面向量数量积得运算律一、复习引入:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、3.“投影”得概念:作图C 定义:|b|cosθ叫做向量b在a方向上得投影、投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|、4.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、5.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ = ;5︒|a⋅b| ≤|a||b|二、讲解新课:平面向量数量积得运算律1.交换律:a⋅b = b⋅a证:设a,b夹角为θ,则a⋅b = |a||b|cosθ,b⋅a = |b||a|cosθ∴a⋅b = b⋅a2.数乘结合律:(a)⋅b =(a⋅b) = a⋅(b)证:若> 0,(a)⋅b =|a||b|cosθ, (a⋅b) =|a||b|cosθ,a⋅(b) =|a||b|cosθ,若< 0,(a)⋅b =|a||b|cos(π-θ) = -|a||b|(-cosθ) =|a||b|cosθ,(a⋅b) =|a||b|cosθ,a⋅(b) =|a||b|cos(π-θ) = -|a||b|(-cosθ) =|a||b|cosθ、3.分配律:(a + b)⋅c = a⋅c + b⋅c在平面内取一点O,作= a, = b,= c, ∵a + b (即)在c方向上得投影等于a、b在c方向上得投影与,即|a + b| cosθ = |a| cosθ1 + |b| cosθ2∴| c | |a + b| cosθ =|c| |a| cosθ1 + |c| |b| cosθ2, ∴c⋅(a + b) = c⋅a + c⋅b即:(a + b)⋅c = a⋅c + b⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积得坐标表示、模、夹角一、复习引入:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、4.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ = ;5︒|a⋅b| ≤|a||b|5.平面向量数量积得运算律交换律:a⋅b = b⋅a数乘结合律:(a)⋅b =(a⋅b) = a⋅(b)分配律:(a + b)⋅c = a⋅c + b⋅c二、讲解新课:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示、设就是轴上得单位向量,就是轴上得单位向量,那么,所以又,,,所以这就就是说:两个向量得数量积等于它们对应坐标得乘积得与、即2、平面内两点间得距离公式一、设,则或、(2)如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式)二、向量垂直得判定设,,则三、两向量夹角得余弦()co sθ =。
§2、1 平面向量得实际背景及基本概念1、数量与向量得区别:数量只有大小,就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 2、向量得表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段得起点与终点字母:;④向量得大小――长度称为向量得模,记作||、3、有向线段:具有方向得线段就叫做有向线段,三个要素:起点、方向、长度、 向量与有向线段得区别:(1)向量只有大小与方向两个要素,与起点无关,只要大小与方向相同,则这两个向量就就是相同得向量;(2)有向线段有起点、大小与方向三个要素,起点不同,尽管大小与方向相同,也就是不同得有向线段、4、零向量、单位向量概念:①长度为0得向量叫零向量,记作0、 0得方向就是任意得、 注意0与0得含义与书写区别、②长度为1个单位长度得向量,叫单位向量、说明:零向量、单位向量得定义都只就是限制了大小、 5、平行向量定义:①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、说明:(1)综合①、②才就是平行向量得完整定义;(2)向量a、b、c平行,记作a∥b∥c、6、相等向量定义:长度相等且方向相同得向量叫相等向量、说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有向线段得起.......点无关...、 7、共线向量与平行向量关系:平行向量就就是共线向量,这就是因为任一组平行向量都可移到同一直线上(与有向线....段得起点无关......).、 说明:(1)平行向量可以在同一直线上,要区别于两平行线得位置关系;(2)共线向量可以相互平行,要区别于在同一直线上得线段得位置关系、§2、2、1 向量得加法运算及其几何意义A(起点)B(终点)aO ABaaa bb b二、探索研究:1、向量得加法:求两个向量与得运算,叫做向量得加法、 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b、在平面内任取一点,作=a ,=b,则向量叫做a 与b得与,记作a +b,即 a +b,规定: a + 0-= 0 + a探究:(1)两相向量得与仍就是一个向量;(2)当向量与不共线时,+得方向不同向,且|+|<||+||;(3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+得方向与相同,且|+|=||-||;若||<||,则+得方向与相同,且|+b|=||-||、(4)“向量平移”(自由向量):使前一个向量得终点为后一个向量得起点,可以推广到n 个向量连加 3.例一、已知向量、,求作向量+ 作法:在平面内取一点,作 ,则、 4.加法得交换律与平行四边形法则问题:上题中+得结果与+就是否相同? 验证结果相同从而得到:1)向量加法得平行四边形法则(对于两个向量共线不适应)2)向量加法得交换律:+=+ 5.向量加法得结合律:(+) +=+ (+) 证:如图:使, , 则(+) +=,+ (+) = ∴(+) +=+ (+)从而,多个向量得加法运算可以按照任意得次序、任意得组合来进行、第3课时§2、2、2 向量得减法运算及其几何意义1. 用“相反向量”定义向量得减法aA BCa +ba +baab b abb aa(1) “相反向量”得定义:与a 长度相同、方向相反得向量、记作 -a (2) 规定:零向量得相反向量仍就是零向量、-(-a ) = a 、 任一向量与它得相反向量得与就是零向量、a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法得定义:向量a 加上得b 相反向量,叫做a 与b 得差、 即:a - b = a + (-b ) 求两个向量差得运算叫做向量得减法、 2. 用加法得逆运算定义向量得减法: 向量得减法就是向量加法得逆运算: 若b + x = a ,则x 叫做a 与b 得差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O , 作= a , = b则= a - b 即a - b 可以表示为从向量b 得终点指向向量a 得终点得向量、4. 探究:1)如果从向量a 得终点指向向量b 得终点作向量,那么所得向量就是b - a 、2)若a ∥b, 如何作出a - b §2、3、1平面向量基本定理复习引入:1.实数与向量得积:实数λ与向量得积就是一个向量,记作:λ(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ= 2.运算定律结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ3、 向量共线定理 向量与非零向量共线得充要条件就是:有且只有一个非零实数λ,使=λ、平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ2、 探究:OabBa ba -b a -bA ABBB’Oa -b a ab bO AOBa -ba -b BA O-b(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量得一组基底;(2) 基底不惟一,关键就是不共线;(3) 由定理可将任一向量a在给出基底e1、e2得条件下进行分解;(4) 基底给定时,分解形式惟一、λ1,λ2就是被,,唯一确定得数量§2、3、2—§2、3、3 平面向量得正交分解与坐标表示及运算一、复习引入:1.平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量得一组基底;(2)基底不惟一,关键就是不共线;(3)由定理可将任一向量a在给出基底e1、e2得条件下进行分解;(4)基底给定时,分解形式惟一、λ1,λ2就是被,,唯一确定得数量二、讲解新课:1.平面向量得坐标表示如图,在直角坐标系内,我们分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………○1我们把叫做向量得(直角)坐标,记作…………○2其中叫做在轴上得坐标,叫做在轴上得坐标,○2式叫做向量得坐标表示、与相等得向量得坐标也为...........、特别地,,,、如图,在直角坐标平面内,以原点O为起点作,则点得位置由唯一确定、设,则向量得坐标就就是点得坐标;反过来,点得坐标也就就是向量得坐标、因此,在平面直角坐标系内,每一个平面向量都就是可以用一对实数唯一表示、2.平面向量得坐标运算(1) 若,,则,两个向量与与差得坐标分别等于这两个向量相应坐标得与与差、设基底为、,则即,同理可得(2)若,,则一个向量得坐标等于表示此向量得有向线段得终点坐标减去始点得坐标、=-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)(3)若与实数,则、实数与向量得积得坐标等于用这个实数乘原来向量得相应坐标、设基底为、,则,即第6课时§2、3、4 平面向量共线得坐标表示一、复习引入:1.平面向量得坐标表示分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量得(直角)坐标,记作其中叫做在轴上得坐标,叫做在轴上得坐标, 特别地,,,、2.平面向量得坐标运算若,,则,,、若,,则二、讲解新课:∥(≠)得充要条件就是x1y2-x2y1=0设=(x1, y1) ,=(x2, y2) 其中≠、由=λ得, (x1, y1) =λ(x2, y2) 消去λ,x1y2-x2y1=0探究:(1)消去λ时不能两式相除,∵y1, y2有可能为0, ∵≠∴x2, y2中至少有一个不为0(2)充要条件不能写成∵x1, x2有可能为0(3)从而向量共线得充要条件有两种形式:∥(≠)§2、4平面向量得数量积一、平面向量得数量积得物理背景及其含义一、复习引入:1. 向量共线定理向量与非零向量共线得充要条件就是:有且只有一个非零实数λ,使=λ、2.平面向量基本定理:如果,就是同一平面内得两个不共线向量,那么对于这一平面内得任一向量,有且只有一对实数λ1,λ2使=λ1+λ23.平面向量得坐标表示分别取与轴、轴方向相同得两个单位向量、作为基底、任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得把叫做向量得(直角)坐标,记作4.平面向量得坐标运算若,,则,,、若,,则5.∥(≠)得充要条件就是x1y2-x2y1=06.线段得定比分点及λP1, P2就是直线l上得两点,P就是l上不同于P1, P2得任一点,存在实数λ,使=λ,λ叫做点P分所成得比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7、定比分点坐标公式:若点P1(x1,y1) ,P2(x2,y2),λ为实数,且=λ,则点P得坐标为(),我们称λ为点P分所成得比、8、点P得位置与λ得范围得关系:①当λ>0时,与同向共线,这时称点P为得内分点、②当λ<0()时,与反向共线,这时称点P为得外分点、9、线段定比分点坐标公式得向量形式:在平面内任取一点O,设=a,=b,可得=、10.力做得功:W = |F|⋅|s|cosθ,θ就是F与s得夹角、二、讲解新课:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=时,a与b垂直,记a⊥b;(4)注意在两向量得夹角定义,两向量必须就是同起点得、范围0︒≤θ≤180︒C2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、⋅探究:两个向量得数量积与向量同实数积有很大区别(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定、(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分、符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替、(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0、因为其中cosθ有可能为0、(4)已知实数a、b、c(b≠0),则ab=bc ⇒ a=c、但就是a⋅b = b⋅c a = c如右图:a⋅b = |a||b|cosβ = |b||OA|,b⋅c = |b||c|cosα = |b||OA|⇒ a⋅b = b⋅c但a≠c(5)在实数中,有(a⋅b)c = a(b⋅c),但就是(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a与c不共线、3.“投影”得概念:作图定义:|b|cosθ叫做向量b在a方向上得投影、投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|、4.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、5.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ =5︒|a⋅b| ≤|a||b|二、平面向量数量积得运算律一、复习引入:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、3.“投影”得概念:作图C 定义:|b|cosθ叫做向量b在a方向上得投影、投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|、4.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、5.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ = ;5︒|a⋅b| ≤|a||b|二、讲解新课:平面向量数量积得运算律1.交换律:a⋅b = b⋅a证:设a,b夹角为θ,则a⋅b = |a||b|cosθ,b⋅a = |b||a|cosθ∴a⋅b = b⋅a2.数乘结合律:(a)⋅b =(a⋅b) = a⋅(b)证:若> 0,(a)⋅b =|a||b|cosθ, (a⋅b) =|a||b|cosθ,a⋅(b) =|a||b|cosθ,若< 0,(a)⋅b =|a||b|cos(π-θ) = -|a||b|(-cosθ) =|a||b|cosθ,(a⋅b) =|a||b|cosθ,a⋅(b) =|a||b|cos(π-θ) = -|a||b|(-cosθ) =|a||b|cosθ、3.分配律:(a + b)⋅c = a⋅c + b⋅c在平面内取一点O,作= a, = b,= c, ∵a + b (即)在c方向上得投影等于a、b在c方向上得投影与,即|a + b| cosθ = |a| cosθ1 + |b| cosθ2∴| c | |a + b| cosθ =|c| |a| cosθ1 + |c| |b| cosθ2, ∴c⋅(a + b) = c⋅a + c⋅b即:(a + b)⋅c = a⋅c + b⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积得坐标表示、模、夹角一、复习引入:1.两个非零向量夹角得概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b得夹角、2.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π)、并规定0与任何向量得数量积为0、3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积、4.两个向量得数量积得性质:设a、b为两个非零向量,e就是与b同向得单位向量、1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|、特别得a⋅a = |a|2或4︒cosθ = ;5︒|a⋅b| ≤|a||b|5.平面向量数量积得运算律交换律:a⋅b = b⋅a数乘结合律:(a)⋅b =(a⋅b) = a⋅(b)分配律:(a + b)⋅c = a⋅c + b⋅c二、讲解新课:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示、设就是轴上得单位向量,就是轴上得单位向量,那么,所以又,,,所以这就就是说:两个向量得数量积等于它们对应坐标得乘积得与、即2、平面内两点间得距离公式一、设,则或、(2)如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式)二、向量垂直得判定设,,则三、两向量夹角得余弦()co sθ =。
平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题:(1)什么是向量?向量和数量有何不同?(2)向量如何表示?(3)什么是零向量和单位向量?(4)什么是平行向量?待学生阅读完后,老师总结并展示课件: 1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量) 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量? 数量有:质量、身高、面积、体积 向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗? 2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3 注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、… 说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量?零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的. 向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量.注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量?长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________;(2)与向量DF →的模一定相等的向量有________个,分别是______________________;(3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、F A →课堂小结通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.作业习题2.1A 组2,5设计思路1.首先先对本节课教材内容进行分析2.教材内容的安排和处理根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.3.教法“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.4.学法指导以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.第二章第二节平面向量的线性运算第一课时教学分析《向量》这一章是前一轮教材中新增的内容.高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用.另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具.教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、单位向量、零向量以及平行向量等基本概念.而本节课是继向量基本概念的第一节课.向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础.它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用.正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限.学生学习情况分析学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景.设计理念教学矛盾的主要方面是学生的学.学是中心,会学是目的.因此,在教学中要不断指导学生学会学习.在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展.教学目标根据新课标的要求:培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.集本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目标确定为:1.理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律.2.理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识.3.培养类比、迁移、分类、归纳等能力.4.进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.教学重点与难点1.教学重点:两个向量的和的概念及其几何意义.(两个向量的和的概念是向量加法的基础,而向量加法是向量运算的基础.向量的线性运算的另一个特点是它有深刻的物理背景和几何意义,因此在引入一种向量运算后,总是要考查一下它的几何意义,正因为向量的几何意义,使得向量在解决几何问题时可以发挥很好的作用.)2.教学难点:向量加法的运算律.(设计让学生先猜想后验证来学习运算律,需要利用类比的思想进行猜测,还要在猜测的基础上加以验证,有一定难度.)教学过程导入新课问题引入 (约5分钟)引例:有两条拖轮牵引一艘轮船,它们的牵引力分别是F 1=3 000牛,F 2=2 000牛,牵绳之间的夹角θ=60°.如果只用一条拖轮来牵引,而产生的效果跟原来的相同,试求出这条拖轮的牵引力的大小和方向.图1在物理中,我们已知道,两个不在一条直线的共点力OA →与OB →的合力是以OA →、OB →为邻边的平行四边形OACB 的对角线OC →所表示的力.这就是说,OC →是OA →与OB →相加所得到的和.设计说明引导学生利用物理中合力的概念,来解决这个实际问题,以现有的知识为出发点培养学生的知识类比、迁移能力.学情预设把实际问题抽象为数学概念是学生的认知难点. 概念形成 (约5分钟)一般地,把以OA →、OB →为邻边的平行四边形OACB 的对角线OC →,叫做OA →与OB →两个向量的和,记作OA →+OB →.求两个不平行向量的和可按平行四边形法则进行.问题1:如何求两个平行向量的和向量?问题2:任意一个向量与一个零向量的和是什么? 求两个向量的和的运算叫做向量的加法. 设计说明补充说明两个向量和的概念,同时让学生体验分类的思想. 概念深化 (约15分钟)练习:根据图2中所给向量a ,b ,c 画出向量: (1)a +b ;(2)a +b +c .图2解法一:将两个向量起点重合,应用平行四边形法则画出两个向量的和向量.解法二:将一个向量的起点与另一向量的终点重合,也可以画出两个向量的和向量. 设计说明1.学生通过练习题(1)可加深对向量加法概念的理解.另外,可由此引出向量加法的三角形法则.图32.通过对比的方式让学生了解向量的加法既可以按照平行四边形法则进行,也可以按照三角形法则进行.在向量加法运算中,通过向量的平移使两个向量首尾相接,可使用三角形法则.引申:求n (n >3)个向量的和向量. 设计说明求n (n >3)个向量的和向量时,让学生进一步体会应用首尾相接的三角形法则的优越性. 学情预设学生对从特殊到一般的理解较抽象.结论:求n 个向量的和向量可应用多边形法则. 运算律的归纳问题:向量的加法既然是一种运算,它应该具有哪些运算律?如何进行验证呢? 设计说明引导学生类比实数加法的运算律,得出向量加法的运算律,培养学生的类比、迁移归纳能力.应用举例 (约10分钟)(1)已知平面内有三个非零向量OA →、OB →、OC →,它们的模都相等,并且两两的夹角都是120°,求证:OA →+OB →+OC →=0;(2)在平面内能否构造三个非零向量a 、b 、c ,使a +b +c =0;(3)能否说出(2)的实际模型?设计说明题(1)是基本的例题;题(2)是题(1)的拓展;题(3)能体现数学来源于实际又应用于实际的思想.研究讨论 (约5分钟)已知a 、b 是非零向量,则|a +b|与|a|+|b |有什么关系? 设计说明设置这一研讨题可以将本节课与上节课的知识联系起来,并进一步渗透分类的思想. 小结归纳 (约4分钟)让学生自主回顾和归纳本节的内容. 设计说明1.向量加法的意义;2.理解实际问题数学化的思想,增强数学的应用意识;3.理解分类讨论等数学思想,培养类比、迁移等能力.学情预设要求学生不仅对知识体系进行归纳,还要对本节课中所体现的数学思想方法及数学能力进行总结,有一定的难度.作业(约1分钟)课本本节练习1,2,3,4. 设计说明1.巩固所学的内容.2.对所学内容的检测、反馈与及时补充不足.教学反思本节课采用“探究——讨论”教学法.“探究——研讨”教学法是美国哈佛大学教育专家兰本达所倡导的.“探究——研讨”教学法把教学过程分为两个步骤:第一步骤是“探究”.我所设计的问题引入、概念形成及概念深化都是采用探究的方法,将有关材料有层次地提供给学生,让学生独立地支配它,进而探索、研究它.学生通过对这些“有结构”的材料进行探究,获得对向量加法的感性认识和形成各自对向量加法概念的了解.第二步骤是“研讨”,即在探究的基础上,组织学生研讨自己在探究中的发现,通过互相交流、启发、补充、争论,使学生对向量加法的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念.这节课主要是教给学生“动手做,动脑想;多训练,勤钻研.”的研讨式学习方法.这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径和思考问题的方法.使学生真正成为教学的主体.也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”.学生才会逐步感到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要.第二章第二节平面向量的线性运算第二课时整体设计教学分析向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.三维目标1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量.2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量.重点难点教学重点:向量的减法运算及其几何意义.教学难点:对向量减法定义的理解.课时安排1课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现.推进新课新知探究提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念?③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a )=a .我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0.所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0. (1)平行四边形法则如图1,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义,知AE →=a +(-b )=a -b .图1又b +BC →=a ,所以BC →=a -b .由此,我们得到a -b 的作图方法. (2)三角形法则如图2,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从b 的终点指向a 的终点的向量,这是向量减法的几何意义.图2讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x 的相反数是-x 类似,我们规定,与a 长度相等,方向相反的量,叫做a 的相反向量,记作-a .③向量减法的定义.我们定义a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量. 规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a 的终点到b 的终点作向量,那么所得向量是什么? ②改变上图中向量a 、b 的方向使a ∥b ,怎样作出a -b 呢?讨论结果:①AB →=b -a . ②略. 应用示例例1如图3(1),已知向量a 、b 、c 、d ,求作向量a -b ,c -d .图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图3(2),在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,OD →=d . →→变式训练在ABCD 中,下列结论错误的是( )A.AB →=DC →B.AD →+AB →=AC →C.AB →-AD →=BD →D.AD →-BC →=0分析:A 显然正确,由平行四边形法则可知B 正确,C 中,AB →-AD →=BD →错误,D 中,AD →-BC →=AD →+DA →=0正确.答案:C例2如图4,在ABCD 中,AB =a ,AD =b ,你能用a 、b 表示向量AC 、DB 吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC →=a +b ,同样,由向量的减法,知DB →=AB →-AD →=a -b .变式训练 1.已知一点O 到ABCD 的3个顶点A 、B 、C 的向量分别是a 、b 、c ,则向量OD →等于( )A .a +b +cB .a -b +cC.a +b -c D .a -b -c解析:如图5,点O 到平行四边形的三个顶点A 、B 、C 的向量分别是a 、b 、c ,结合图形有OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a -b +c .图5 答案:B2.若AC →=a +b ,DB →=a -b .①当a 、b 满足什么条件时,a +b 与a -b 垂直?②当a 、b 满足什么条件时,|a +b|=|a -b|?③当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角?④a +b 与a -b 可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量AC →、DB →恰为平行四边形的对角线且AB =a ,AD =b .图6 由平行四边形法则,得AC →=a +b ,DB →=AB →-AD →=a -b .由此问题就可转换为:①当边AB 、AD 满足什么条件时,对角线互相垂直?(|a|=|b|)②当边AB 、AD 满足什么条件时,对角线相等?(a 、b 互相垂直)③当边AB 、AD 满足什么条件时,对角线平分内角?(|a|、|b|相等)④a +b 与a -b 可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.(1)若非零向量a 与b 的方向相同或相反,则a +b 的方向必与a 、b 之一的方向相同.(2)△ABC 中,必有AB →+BC →+CA →=0.(3)若AB →+BC →+CA →=0,则A 、B 、C 三点是一个三角形的三顶点.(4)|a +b|≥|a -b |.活动:根据向量的加、减法及其几何意义.解:(1)a 与b 方向相同,则a +b 的方向与a 和b 方向都相同;若a 与b 方向相反,则有可能a 与b 互为相反向量,此时a +b =0的方向不确定,说与a 、b 之一方向相同不妥.(2)由向量加法法则AB →+BC →=AC →,AC →与CA →是互为相反向量,所以有上述结论.(3)因为当A 、B 、C 三点共线时也有AB →+BC →+AC →=0,而此时构不成三角形.(4)当a 与b 不共线时,|a +b|与|a -b|分别表示以a 和b 为邻边的平行四边形的两条对角线的长,其大小不定.当a 、b 为非零向量共线时,同向则有|a +b|>|a -b|,异向则有|a +b|<|a -b |;。
年级教学案授课人授课时间学案编号【课题】Unit 10 I ' like some noodles. 教师复备栏或学生笔记栏【学习目标】【学习重点难点】【学法指导】【教学过程】Section A 1a —1c1、学习常用食物词汇;2、学会如何预定食物。
--What would you like?--I ' d like some …./I ' m not sure yet重点:学习常用食物词汇;难点:学会如何预定食物。
--What would you like?--I ' d like some …./I ' m not sure yet预习自学导学解疑巩固一、导入(启发探究3分钟)预习交流1.2.3.根据单元标题和图片等,预测新课内容;根据音标拼读单词并牢记;自学课文,勾画出重点和疑惑。
二、自学(自主探究1.想要,喜欢4.鸡肉3.卷心菜7. 土豆(复数)9. sp ecial6分钟)2.牛肉面5.6.8.羊肉胡萝卜西红柿(复数)10.我还没想好。
三、交流(合作探究10分钟)Step1 Brain storm ing(头脑风暴)Try to sp eak out the n ames of food you know.Step2 Prese ntati on1.Lear n the new words about food in 1a.2.Finish 1a, the n check the an swers.3.Look at the picture in 1a and lear n the drills: --What would you like?--I d like someStep3 Liste ning Liste n and finish 1b. Check the an swers.Ste p4 P air work Practice the con versati ons in 1a .The n make your own con versati ons四、总结(引深探究15分钟)Group work:分析总结如何预定食物,并练习造句。
高中数学平面向量教案5篇作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么优秀的教案是什么样的呢?这里给大家分享一些关于高中数学平面向量教案,方便大家学习。
高中数学平面向量教案篇1目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。
二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为 (印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。
记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。
的方向是任意的。
注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
例:与是否同一向量?答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。
记作: =规定: =任两相等的非零向量都可用一有向线段表示,与起点无关。
第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.2.1 平面向量的实际背景及基本概念整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作.起点要写在终点的前面.|.有向线段包含三个已知,线段AB的长度也叫做有向线段的长度,记作AB要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:.这里要提醒学生注意的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用a)3°向量AB(或a)的大小,就是向量AB(或a)的长度(或称模),记作|AB|(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如、.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b,OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. ⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:AB表示A地至B地的位移,且|AB|≈232 km;(AB长度×8 000 000÷100 000)表示A地至C地的位移,且||≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.||=100 m,||=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB∥CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O 是正六边形ABCDEF 的中心,分别写出图中所示向量与OC OB OA 相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断OA 与EF ,OB 与AF 是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:OA =CB =DO ;OB =DC =EO ;OC =AB =ED =FO .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA 长度相等的向量有多少个?(11个)本例变式二:是否存在与向量OA 长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a 与b 共线,b 与c 共线,则a 与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a 与b 不共线,则a 与b 都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A 不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D 不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b 不都是非零向量,即a 与b 至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b 共线,不符合已知条件,所以有a 与b 都是非零向量,即只有C 正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.|AB|,|BA|,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.||=2,||=2.5,||=3,||=22.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.设计感想本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义整体设计教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,是向量的第二节内容.其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解,同时也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想,而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比.则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点. 三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在应用活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课思路 1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路2.(问题导入)2004年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?一位同学按以下的命令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题①数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?②猜想向量加法的法则是什么?与数的运算法则有什么不同?图1活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.某对象从A点经B点到C点,两次位移、的结果,与A点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题:图2(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图2(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.图2改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力.合力F与力F1、F2有怎样的关系呢?由图2(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:①向量加法的定义:如图3,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=.图3求两个向量和的运算,叫做向量的加法.②向量加法的法则:1°向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.0位移的合成可以看作向量加法三角形法则的物理模型.2°向量加法的平行四边形法则图4如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法的物理模型.提出问题①对于零向量与任一向量的加法,结果又是怎样的呢?②两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?③思考|a+b|,|a|,|b|存在着怎样的关系?④数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?活动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:①对于零向量与任一向量,我们规定a+0=0+a=a.②两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.③当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.④如图5,作=a,=b,以AB、AD为邻边作ABCD,则=b,=a.。
第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.2.1 平面向量的实际背景及基本概念整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作.起点要写在终点的前面.|.有向线段包含三个已知,线段AB的长度也叫做有向线段的长度,记作AB要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:.这里要提醒学生注意的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用a)3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作||(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如、.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出OA=a,OB=b,OC=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. ⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:表示A地至B地的位移,且||≈232 km;(AB长度×8 000 000÷100 000)表示A地至C地的位移,且||≈296 km.(AC长度×8000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.||=100 m,|BC|=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,AB与CD是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB∥CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断与,与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:OA=CB=DO;OB=DC=EO;OC=AB=ED=FO.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA长度相等的向量有多少个?(11个)本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.|AB|,|BA|,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.||=2,|CD|=2.5,||=3,|GH|=22.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.设计感想本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义整体设计教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,是向量的第二节内容.其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解,同时也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想,而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比.则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点. 三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在应用活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课思路 1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路2.(问题导入)2004年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?一位同学按以下的命令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题①数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?②猜想向量加法的法则是什么?与数的运算法则有什么不同?图1活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.某对象从A点经B点到C点,两次位移、BC的结果,与A点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题:图2(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图2(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.图2改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力.合力F与力F1、F2有怎样的关系呢?由图2(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:①向量加法的定义:如图3,已知非零向量a、b,在平面内任取一点A,作=a, =b,则向量叫做a与b的和,记作a+b,即a+b=+=.图3求两个向量和的运算,叫做向量的加法.②向量加法的法则:1°向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.0位移的合成可以看作向量加法三角形法则的物理模型.2°向量加法的平行四边形法则图4如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法的物理模型.提出问题①对于零向量与任一向量的加法,结果又是怎样的呢?②两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?③思考|a+b|,|a|,|b|存在着怎样的关系?④数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?活动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:①对于零向量与任一向量,我们规定a+0=0+a=a.②两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.③当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.④如图5,作AB=a,AD=b,以AB、AD为邻边作ABCD,则BC=b,DC=a.。