高二期末考试试题(文科数学)
- 格式:doc
- 大小:238.50 KB
- 文档页数:4
陕西省西安市鄠邑区2022-2023学年高二上学期期末文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知实数a 、b ,那么||||||a b a b +=-是0ab <的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要2.若实数x ,y 满足约束条件020x y x y -≥⎧⎨+-≤⎩,则2z x y =-的最小值为()A .1-B .1C .2-D .23.已知数列{}n a 与{}n b 均为等差数列,且354a b +=,598a b +=,则47a b +=()A .5B .6C .7D .84.已知()110m a a a=++>,()31xn x =<,则m ,n 之间的大小关系是()A .m n >B .m n <C .m n=D .m n≤5.在ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若4,30a b A ===︒,则B =()A .30︒B .30︒或150︒C .60︒D .60︒或120︒6.若曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,则a b +=()A .2B .0C .1-D .2-7.抛物线()220x py p =>上一点M 的坐标为()2,1-,则点M 到焦点的距离为()A .3B .2C .1D .17168.函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,令(2)a f =',(4)b f =',(4)(2)2f f c -=,则下列数值排序正确的是()A .b a c <<B .a b c <<C .a c b <<D .c b a<<9.已知椭圆221(0)y x m m+=>的焦点在y 轴上,长轴长是短轴长的2倍,则m =()A .2B .1C .14D .410.已知函数()f x 的导函数()f x '的图像如图所示,以下结论:①()f x 在区间(2,3)-上有2个极值点②()f x '在=1x -处取得极小值③()f x 在区间(2,3)-上单调递减④()f x 的图像在0x =处的切线斜率小于0正确的序号是()A .①④B .②③④C .②③D .①②④11.函数()sin e xxf x =在[],ππ-上大致的图象为()A .B .C .D .12.已知定义在R 上的函数()f x 的导函数为()f x ',若()e xf x '<,且()22e 2f =+,则不等式()ln 2f x x >+的解集是()A .()20,eB .()0,2C .()2,e-∞D .(),2-∞二、填空题13.若命题“x ∃∈R ,22x m ->”是真命题,则实数m 的取值范围是______.14.已知直线1l :()2100mx y m ++=>,与双曲线C :2214x y -=的一条渐近线垂直,则m =__________.15.设{}n a 是公差不为0的等差数列,11a =且248,,a a a 成等比数列,则1291011a a a a ++= ___16.已知钝角三角形的三边a =k ,b =k +2,c =k +4,则k 的取值范围是___________.三、解答题17.设2:3,:11180p a x a q x x <<-+≤.(1)若1a =,“p 且q ”为真,求实数x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.已知函数()29f x x x =+-.(1)解不等式()15f x <;(2)若关于x 的不等式()f x a <有解,求实数a 的取值范围.19.如图,已知平面四边形ABCD ,45A ∠=︒,75ABC ∠=︒,30BDC ∠=︒,2BD =,CD =(1)求CBD ∠;(2)求AB 的值.20.已知函数()2()4(),R f x x x a a =--∈且(1)0f '-=.(1)求a 的值;(2)讨论函数()f x 的单调性;(3)求函数()f x 在[2,2]-上的最大值和最小值.21.已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -,椭圆上任一点到两个焦点的距离之和(1)求椭圆C 的方程;(2)是否存在实数m ,使直线:l y x m =+与椭圆有两个不同的交点M 、N ,并使||||AM AN =,若存在,求出m 的值;若不存在,请说明理由.22.已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程;(2)当0a ≤时,对于任意0x >,证明:()cos f x x >.参考答案:1.D【分析】等式两边平方结合反例即可判断.【详解】因为2222||||||2|2|||0a b a b a ab b a ab b ab ab ab +=-⇒++=-+⇒=-⇒≤,所以必要性不成立;当1,2a b ==-时,满足0ab <,但||||||a b a b +≠-,所以必要性不成立;所以||||||a b a b +=-是0ab <的既不充分也不必要条件.故选:D .2.A【分析】画出可行域,平移基准直线20x y -=到可行域边界位置,由此来求得z 的最小值.【详解】020x y x y -=⎧⎨+-=⎩,解得1x y ==,设()1,1A ,平移基准直线20x y -=到可行域边界()1,1A 处时,2z x y =-取得最小值1211-⨯=-.故选:A3.B【分析】根据等差数列的性质即可求解.【详解】因为354a b +=,598a b +=,所以355912a b a b ++=+,即355912a a b b ++=+,根据等差数列的性质可知3559472212a a b b a b ++=+=+,所以476a b +=.故选:B.4.A【分析】利用基本不等式及其指数函数的单调性即可求解.【详解】∵0a >,∴1113m a a=++≥=,当且仅当1a =时,等号成立,即3m ≥,又∵1x <,∴1333x n =<=,即3n <,则m n >,故选:A .5.D【分析】根据4,30a b A ===︒,利用正弦定理求解.【详解】解:在ABC 中,4,30a b A ===︒,由正弦定理得sin sin a bA B=,所以sin sin 30sin 42b A B a ⋅===,所以B =60︒或120︒,故选:D 6.A【分析】求出导数,将0x =代入后,可得1a =,将()0,b 代入10x y -+=后可得1b =,进而得到a b +.【详解】由2y x ax b =++得2y x a '=+,又曲线2y x ax b =++在点()0,b 处的切线方程为10x y -+=,故当0x =时,1y a '==又点()0,b 在10x y -+=上,则1b =,故2a+b =.故选:A .7.B【分析】将点M 坐标代入抛物线可得p ,则所求距离为12p+.【详解】()2,1M - 在抛物线上,42p ∴=,解得:2p =,∴点M 到焦点的距离为122p+=.故选:B.8.C【分析】利用导数的几何意义判断.【详解】由函数图象知:()()()42(2)442f f f f -''<<-,所以a c b <<,故选:C 9.D【分析】根据椭圆的方程,结合椭圆的几何性质,列式求解.【详解】由条件可知,2a m =,21b =,且22=⨯,解得:4m =.故选:D 10.B【分析】根据导函数()f x '的图像,求出函数的单调区间,求出函数的极值点,分析判断①②③,对于④:由于()f x 的图像在0x =处的切线斜率为()0f ',从而可由导函数的图像判断.【详解】根据()f x '的图像可得,在()2,3-上,()0f x '≤,所以()f x 在()2,3-上单调递减,所以()f x 在区间()2,3-上没有极值点,故①错误,③正确;由()f x '的图像可知,()f x '在()2,1--单调递减,在()1,1-单调递增,故②正确;根据()f x '的图像可得()00f '<,即()f x 的图像在0x =处的切线斜率小于0,故④正确.故选:B.11.B【分析】分析函数()f x 的奇偶性及其在[]0,π上的单调性,结合排除法可得出合适的选项.【详解】对任意的[]π,πx ∈-,()()()sin sin eexxx x f x f x ---==-=-,所以,函数()sin ex xf x =在[],ππ-上的图象关于原点对称,排除AC 选项,当0πx ≤≤时,()sin ex xf x =,则()πcos sin 4e e xxx x xf x ⎛⎫- ⎪-⎝⎭'==-,因为ππ3π444x -≤-≤,由()0f x '<可得π3π044x <-≤,则ππ4x <≤,由()0f x ¢>可得ππ044x -≤-<,则π04x ≤<,所以,函数()f x 在π0,4⎡⎫⎪⎢⎣⎭上单调递增,在π,π4⎛⎤ ⎥⎝⎦上单调递减,排除D 选项.故选:B.12.A【分析】设()()e 2xg x f x =-+,求导可得()g x 在R 上单调递减,再根据()ln 2f x x >+转化为()ln 4g x >,再结合()g x 的单调性求解即可.【详解】设()()e 2x g x f x =-+,则()()e xg x f x '-'=.因为()e xf x '<,所以()e 0x f x '-<,即()0g x '<,所以()g x 在R 上单调递减.不等式()ln 2f x x >+等价于不等式()ln 24f x x -+>,即()ln 4g x >.因为()22e 2f =+,所以()()222e 24g f =-+=,所以()()ln 2g x g >.因为()g x 在R 上单调递减,所以ln 2x <,解得20e x <<故选:A 13.(),2-∞【分析】求得22y x =-的最大值,结合题意,即可求得结果.【详解】22y x =-的最大值为2,根据题意,2m >,即m 的取值范围是(),2-∞.故答案为:(),2-∞.14.4【分析】求得双曲线C 的渐近线方程,根据直线垂直列出等量关系,即可求得结果.【详解】对双曲线C :2214x y -=,其渐近线方程为12y x =±,对直线1l :()2100mx y m ++=>,且斜率为02m-<,根据题意可得1122m -⨯=-,解得4m =.故答案为:4.15.910【详解】分析:由题意先求出{}n a 的通项公式,再利用裂项相消法求和即可.详解:∵数列{a n }是公差不为0的等差数列,a 1=1,且a 2,a 4,a 8成等比数列,∴(1+3d )2=(1+d )(1+7d ),解得d=1,或d=0(舍),∴a n =1+(n ﹣1)×1=n .∴129101111111111191112239102239101010a a a a ++=+++=-+-++-=-=⨯⨯⨯故答案为910点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.16.26k <<【分析】先解不等式cos 0C <,再结合两边之和大于第三边求解.【详解】解:∵c b a >>,且ABC 为钝角三角形,∴C ∠为钝角,∴()()()()222222224412cos 022222k k k a b c k k C ab k k k k ++-++---===<++,∴24120k k --<,解得26k -<<,由两边之和大于第三边得24k k k ++>+,∴2k >.∴26k <<.故答案为:26k <<17.(1){23}x x ≤<(2){0a a ≤或23}a ≤≤【分析】(1)先分别求得P 为真命题和q 为真命题的实数x 的取值范围,再根据p 且q 为真命题,利用集合的交集运算求解;(2)记{3}C x a x a =<<,根据p 是q 的充分不必要条件,由C B Ü求解.【详解】(1)解:当1a =时,P 为真命题,实数x 的取值范围为{13}A x x =<<,211180(2)(9)029x x x x x -+≤⇒--≤⇒≤≤,q 为真命题,实数x 的取值范围为{}29B x x =≤≤,∵p 且q 为真命题所以实数x 的取值范围为{23}A B x x ⋂=≤<;(2)记{3}C x a x a =<<∵p 是q 的充分不必要条件所以C BÜ当0a ≤时,C =∅,满足题意;当0a >时,239a a ≥⎧⎨≤⎩解得23a ≤≤;综上所述:实数a 的取值范围为{0a a ≤或23}a ≤≤18.(1){}311x x <<;(2)9a >.【分析】(1)根据零点分段法可得()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,然后分段解不等式,即得;(2)由题可得()min a f x >,然后求函数的最小值即得.【详解】(1)因为函数()29f x x x =+-,所以()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,∵()15f x <,所以931815x x ≥⎧⎨-<⎩或091815x x ≤<⎧⎨-<⎩或018315x x <⎧⎨-<⎩,解得311x <<,所以原不等式的解集为{}311x x <<;(2)由()318,918,09183,0x x f x x x x x -≥⎧⎪=-≤<⎨⎪-<⎩,可得函数()f x 在(),9-∞上单调递减,在()9,+∞上单调递增,当9x =时,函数()f x 有最小值为9,∴9a >.19.(1)60︒;(2.【分析】(1)由余弦定理求2BC ,根据勾股逆定理知90DCB ∠=︒,即可求CBD ∠.(2)由(1)得120ADB ∠=︒,应用正弦定理即可求AB 的值.【详解】(1)在△BCD 中,由余弦定理,有2222cos301BC BD CD BD CD =+-⋅︒=,222BC CD BD ∴+=,即90DCB ∠=︒,60CBD ∴∠=︒.(1)在四边形ABCD 中,756015ABD ∠=︒-︒=︒,∴120ADB ∠=︒,在△ABD 中,由正弦定理sin120sin 45AB BD =︒︒,则sin120sin 45BD AB ⋅︒=︒20.(1)12a =(2)调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎛⎫- ⎪⎝⎭(3)最大值为92,最小值为5027-【分析】(1)求导得2()324f x x ax '=--,代入(1)0f '-=,得可得答案;(2)由题意可得()(34)(1)f x x x '=-+,分别解()0f x '>,()0f x '<,即可得函数的单调递增、减区间;(3)根据导数的正负,判断函数在[2,2]-上的单调性,即可得答案.【详解】(1)解:因为函数()2()4(),R f x x x a a =--∈,∴()22()2()4324f x x x a x x ax =-+-=--',由(1)0f '-=,得3240a +-=,解得12a =;(2)解:由(1)可知2()34(34)(1)f x x x x x ==-'--+,解不等式()0f x '>,得43x >或1x <-,所以函数()f x 的单调递增区间为4(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭,解不等式()0f x '<,得413x -<<,所以函数()f x 的单调递减区间为41,3⎛⎫- ⎪⎝⎭;(3)解:当22x -≤≤时,函数()f x 与()f x '的变化如下表所示:令()0f x '=,解得43x =或=1x -,x[)2,1--=1x -41,3⎛⎫- ⎪⎝⎭43x =4,23⎛⎤ ⎥⎝⎦()f x '+0-0+()f x 单调递增极大值单调递减极小值单调递增因为9(1)2f -=,(2)0f =;所以当=1x -时,函数()f x 取得极大值9(1)2f -=;又因为(2)0f -=,450327f ⎛⎫=- ⎪⎝⎭,所以当43x =时,函数()f x 取得极小值450327f ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最大值为92,最小值为5027-.21.(1)2213x y +=(2)不存在,理由见解析【分析】(1)结合椭圆的定义,结合顶点坐标,即可求椭圆方程;(2)首先求线段MN 的中垂线方程,根据点A 在中垂线上,求m ,并判断是否满足0∆>.【详解】(1)椭圆2222:1(0)x y C a b a b+=>>的一个顶点为(0,1)A -得1b =椭圆上任一点到两个焦点的距离之和2a =a =所以椭圆的方程为2213x y +=(2)设直线l 与椭圆C 两个不同的交点()()1122,,,M x y N x y ∵||||AM AN =所以,点A 在线段MN 的中垂线l ',下面求l '的方程联立方程2233y x m x y =+⎧⎨+=⎩去y ,可得2246330x mx m ++-=由()222(6)443312480m m m ∆=-⨯⨯-=-+>,解得22m -<<1232mx x +=-设MN 的中点为()00,P x y ,有120003244x x m m x y x m +==-=+=则l '的方程为344m m y x ⎛⎫-=-+ ⎪⎝⎭即2m y x =--由于点A 在直线MN 的中垂线l '上,解得2m =又∵22m -<<所以不存在实数m 满足题意.22.(1)1y x =-+或()2314y x =-(2)证明见解析【分析】(1)易知()1,0不在()f x 上,设切点()3000,1x x x -+,由导数的几何意义求出切线方程,将()1,0代入求出对应0x ,即可求解对应切线方程;(2)构造()()31cos 0g x x ax x x =-+->,求得()23sin g x x a x '=-+,再令()()u x g x '=,通过研究()u x '正负确定()g x '单调性,再由()g x '正负研究()g x 最值,进而得证.【详解】(1)由题,1a =时,()31f x x x =-+,()231f x x '=-,设切点()3000,1x x x -+,则切线方程为()()()320000131y x x x x x --+=--,该切线过点()1,0,则()()3200001311x x x x -+-=--,即3200230x x -=,所以00x =或032x =.又()01f =;()01f '=-;32328f ⎛⎫= ⎪⎝⎭,32324f ⎛⎫'= ⎪⎝⎭.所以,切线方程为1y x =-+或()2314y x =-;(2)设()()31cos 0g x x ax x x =-+->,则()23sin g x x a x '=-+,令()()()23sin 0u x g x x a x x '==-+>,则()6cos u x x x '=+,可知π02x <<,时,()0u x '>;π2x ≥时,()0u x '>,故0x >时均有()0u x '>,则()u x 即()g x '在()0,∞+上单调递增,()0g a '=-,因为0a ≤时,则()00g a '=-≥,()()00g x g ''>≥,故()g x 在()0,∞+上单调递增,此时,()()00g x g >=.所以,当0a ≤时,对于任意0x >,均有()cos f x x >.。
2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
学年第一学期阶段性考试 高二数学(文科)试卷第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每小题给出的四个选项中,只有一项符合题目要求. 1.已知命题2015log ,:2=∈∀x R x p ,则p ⌝为( )A .2015log ,2=∉∀x R xB .2015log ,2≠∈∀x R xC .2015log ,020=∈∃x R xD .2015log ,020≠∈∃x R x2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .5,6,7,8,9D .6,16,26,36,46 3.如果一个家庭有两个小孩,则两个孩子是一男一女的概率为( ) A .14 B .13 C .12 D .234.双曲线1222=-y x 的渐近线方程为( ) A. 02=±y x B. 02=±y x C .02=±y x D .02=±y x5.甲、乙两名学生五次数学测验成绩(百分制)如图所示. ①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分与乙同学的平均分相等; ③甲同学成绩的方差大于乙同学成绩的方差. 以上说法正确的是( ) A .①②B .②③C .①③D .①②③6.用秦九韶算法求多项式7234)(234++++=x x x x x f 的值,则)2(f 的值为( ) A .98 B .105 C .112 D .119 7.运行如右图的程序后,输出的结果为( ) A .6053 B .54 C .65 D .76 8.已知椭圆221164x y +=过点)1,2(-P 作弦且弦被P 平分,则此弦 所在的直线方程为( )7 90 1 38 90 1 289甲乙ENDS PRINT WEND i i i i S S i WHILE S i 1))1(/(1601+=+*+=<==A .032=--y xB .012=--y xC .042=--y xD .042=+-y x9.已知)(x g 为函数)0(1232)(23≠--=a ax ax ax x f 的导函数,则它们的图象可能是( )A .B .C .D .10.已知倾斜角为︒45的直线l 过抛物线x y 42=的焦点,且与抛物线交于B A ,两点,则OAB ∆(其中O 为坐标原点)的面积为( ) A .2B .22C .23D .811.已知(),()f x g x 都是定义在R 上的函数,且满足以下条件:①()()xf x ag x =⋅(0,a >1)a ≠且;②()0g x ≠;③)(')()()('x g x f x g x f ⋅<⋅. 若(1)(1)5(1)(1)2f fg g -+=-,则实数a 的值为 ( )A .21 B .2 C .45 D .2或21 12.如图,直线m x =与抛物线y x 42=交于点A ,与圆4)1(22=+-x y 的实线部分(即在抛物线开口内 的圆弧)交于点B ,F 为抛物线的焦点,则ABF ∆的 周长的取值范围是( ) A .()4,2 B .()6,4 C .[]4,2 D . []6,4第Ⅱ卷二、填空题:本大题共四小题,每小题5分.13.将十进制数)10(2016化为八进制数为 . 14.已知变量x 与y 的取值如下表:x 23 5 6y 7a -8 a +9 12从散点图可以看出y 对x 呈现线性相关关系,则y 与x 的线性回归直线方程a bx y+=ˆ必经过的定点为 .15.已知P 为圆4)2(:22=++y x M 上的动点,)0,2(N ,线段PN 的垂直平分线与直线PM 的交点为Q ,点Q 的轨迹方程为 .16.已知函数xxe x f =)(,现有下列五种说法:①函数)(x f 为奇函数;②函数)(x f 的减区间为()-1∞,,增区间为()1+∞,;频率组距50 55 60 65 70 75 80体重(kg)O0.070.060.050.040.030.020.01③函数)(x f 的图象在0x =处的切线的斜率为1; ④函数)(x f 的最小值为1e-. 其中说法正确的序号是_______________(请写出所有正确说法的序号).三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设命题p :12>-x ;命题q :0)1()12(2≥+++-a a x a x .若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题满分12分)某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.19. (本小题满分12分)(1)执行如图所示的程序框图,如果输入的[]3,1-∈t ,若输出的s 的取值范围记为集合A ,求集合A ;(2)命题p :A a ∈,其中集合A 为第(1)题中的s 的取值范围;命题q :函数a x ax x x f +++=2331)(有极值; 若q p ∧为真命题,求实数a 的取值范围.20.(本小题满分12分)已知双曲线C :)00(12222>>=-,b a by a x .(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为b a ,,求双曲线C 的离心率小于5的概率;(2)在区间[]61,内取两个数依次记为b a ,,求双曲线C 的离心率小于5的概率.21.(本小题满分12分)已知椭圆C:)0(12222>>=+b a by a x 的中心在坐标原点O ,对称轴在坐标轴上,椭圆的上顶点与两个焦点构成边长为2的正三角形. (1)求椭圆C 的标准方程;(2)若斜率为k 的直线l 经过点)0,4(M ,与椭圆C 相交于A ,B 两点,且21>⋅OB OA ,求k 的取值范围.22. (本小题满分12分)已知函数)(2ln )(2R a x xa x a x f ∈++-=. (1)当1=a 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(2)当0>a 时,若函数()f x 在[1,]e 上的最小值记为)(a g ,请写出)(a g 的函数表达式.高二数学(文科)试卷参考答案一、DDCD BBCD ABAB二、13.)8(3740 14.()9,4 15.)0(1322<=-x y x 16.③④ 三、17.解:由p :12>-x 解得1<x 或3>x .……………………………… 3分由q :0)1()12(2≥+++-a a x a x 得[]0)1()(≥+--a x a x ,解得a x ≤或1+≥a x .……………………………… 6分∵p ⌝是q ⌝的必要不充分条件,∴p 是q 的充分不必要条件. …………………… 8分 ∴⎩⎨⎧≤+≥311a a ,则21≤≤a .∴实数a 的取值范围是[]21,.……………………………… 10分 18.解:(1)体重在[)65,60内的频率2.05)01.002.003.007.003.0(1=⨯++++-=04.052.0==组距频率 补全的频率分布直方图如图所示. ……………4分 (2)设男生总人数为n ,由2.0200=n,可得1000=n 体重超过kg 65的总人数为30010005)01.002.003.0(=⨯⨯++在[)70,65的人数为1501000503.0=⨯⨯,应抽取的人数为33001506=⨯, 在[)70,65的人数为1001000502.0=⨯⨯,应抽取的人数为23001006=⨯, 在[)80,75的人数为501000501.0=⨯⨯,应抽取的人数为1300506=⨯. 所以在[)70,65 ,[)75,70,[]80,75三段人数分别为3,2,1.…………………… 8分 (3)中位数为60kg 平均数为(52.50.0357.50.0762.50.0467.50.0372.50.0277.50.01)561.75⨯+⨯+⨯+⨯+⨯+⨯⨯=(kg)…12分19.解:(1)由程序框图可知,当11<≤-t 时,t s 2=,则[)2,2-∈s . 当31≤≤t 时,()322+--=t s组距kg)O0.0.0.0.0.0.0.∵该函数的对称轴为2=t ,∴该函数在[]21,上单调递增,在[]3,2上单调递减. ∴2,3min max ==s s ∴[]3,2∈s综上知,[]3,2-∈s ,集合[]3,2-=A ……………………………… 4分 (1)函数a x ax x x f +++=2331)(有极值,且12)(2'++=ax x x f , 0)('=x f 有两个不相等的实数根,即04)2(2>-=∆a 解得1-<a 或1>a即命题p :1-<a 或1>a .……………………………… 8分q p ∧为真命题,则⎩⎨⎧≤≤->-<3211a a 或a ,解得3112≤<-<≤-a 或a ;∴实数a 的取值范围是[)(]2,113--⋃,.……………………………… 12分20.解:双曲线的离心率22221ab ac a c e +===. 因为5e <a b ab 20422<<∴<∴.……………………………… 2分 (1) 因玩具枚质地是均匀的,各面朝下的可能性相等,所以基本事件),(b a 共有16个:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).设“双曲线C 的离心率小于5”为事件A ,则事件A 所包含的基本事件为(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共有12个. 故双曲线C 的离心率小于5的概率为431612)(==A P .…………………………… 7分(2) ∵[][]6,1,6,1∈∈b a∴⎪⎩⎪⎨⎧<<≤≤≤≤a b b a 206161 所以以a 为横轴,以b 为纵轴建立直角坐标系,如图所示,21422155=⨯⨯-⨯=阴影S ,由几何概型可知,双曲线C 的离心率小于5的概率为2521=P .……………………………… 12分21.解:(1)∵椭圆的上顶点与两个焦点构成边长为2的正三角形,32,22222=-=∴==∴c a b a c∴椭圆C 的标准方程为13422=+y x .……………………………… 4分 (2) 设直线l 的方程为)4(-=x k y ,设A (x 1,y 1),B (x 2,y 2)联立⎩⎨⎧=+-=1243)4(22y x x k y ,消去y 可得(0126432)43(2222=-+-+k x k x k∵直线l 与椭圆C 相交于A ,B 两点,∴0>∆由0)1264)(43(4)32(2222>-+-=∆k k k 解得412<k 设),(11y x A ,),(22y x B则34322221+=+k k x x ,3412642221+-=k k x x ……………………………… 7分211643324431264)1(16)(4)1()4()4(2222222221221221212121>++-+-+=++-+=--+=+=⋅k k k k k k k k x x k x x k x k x k x x y y x x OB OA解得196272>k ∴41196272<<k所以k 的取值范围是211433143321<<-<<-k 或k .……………………………… 12分22.解:(1)∵)(2ln )(2R a x x a x a x f ∈++-=,∴12)(22'+--=xa x a x f 当1=a 时,121)(,2ln )(2'+--=++-=xx x f x x x x f 2)1(,3)1('-===f k f曲线)(x f y =在点))1(,1(f 处的切线方程为)1(23--=-x y 即052=-+y x .……………………………… 3分(2)222222'))(2(212)(x a x a x x a ax x x a x a x f +-=--=+--=0,0>>x a ,由0)('>x f 得a x 2>,由0)('<x f 得a x 20<<)(x f ∴在(]a 2,0上为减函数,在()+∞,2a 上为增函数.……………………………… 5分①当210120≤<≤<a 即a 时,)(x f 在[]e ,1上为增函数. 12)1()(2+==∴a f a g 在(]a 2,0上为减函数,在()+∞,2a 上为增函数.…………… 7分②当22121ea e 即a <<<<时,)(x f 在[]a 2,1上为减函数,在(]e a ,2上为增函数. a a a a f a g 3)2ln()2()(+-==∴……………………………… 9分③当22ea e 即a ≥≥时,)(x f 在[]e ,1上为减函数. e ea a e f a g ++-==∴22)()(……………………………… 11分综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧≥++-<<+-≤<+=)2(2)221(3)2ln()210(12)(22e a e e a a e a a a a a a a g ……………………………… 12分。
高二第一学期期末考试数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分)1.不等式250x x -≥的解集是 ( ) A .[0,5] B .[5,)+∞ C .(,0]-∞ D .(,0][5,)-∞+∞2.椭圆2212516x y +=的离心率为( ) A .35 B .45C .34D .16253.等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为 ( )A .32B .20C .16D .104.抛物线y = -2x 2的准线方程是 ( ) A .x=-21 B.x=21 C .y=81 D .y=-815. 数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( )A .1B .56C .16D .1306.椭圆2211625x y +=的焦点为F 1,F 2,P 为椭圆上一点,若12PF =,则=2PF ( )A.2B.4C.6D.8 7.“1x >”是“2x x >”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.双曲线192522=-y x 的渐近线为( )A. .x y 53±= B. 3x -5y = 0 C. 3x +5y = 0 D. 3y -5x = 09. 在ABC ∆中,60B =,2b ac =,则ABC ∆一定是 ( ) A.直角三角形 B.等边三角形 C.锐角三角形 D.钝角三角形10.已知12=+y x ,则y x 42+的最小值为 ( ) A .8 B .6 C .22 D .2311.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是( )A .27海里B .214海里C .7海里D .14海里12.若不等式()()222240a x a x -+--<对任意实数x 均成立,则实数a 的取值范围 是 ( )A .[]2,2- B .(]2,2- C .()2,+∞ D .](,2-∞二、填空题(本大题共4小题,每小题5分,共20分)13、在条件y x z y x y x +=⎪⎩⎪⎨⎧≤+-≤>2,01221目标函数下则函数z 的最大值为 . 14、命题:“存在一个实数x ,使得23+x =0”的否定形式为: 。
黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。
3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。
第一学期期末考试高二数学试题一选择题1.椭圆13610022=+y x 的焦距等于( ). A .20B .16C .12D .82.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( ).A .抽签法B .随机数表法C .系统抽样法D .分层抽样法3.已知函数()2xf x =,则'()f x =( ).A .2xB .2ln 2x⋅ C .2ln 2x+ D .2ln 2x4.已知点F 是抛物线24y x =的焦点,点P 在该抛物线上,且点P 的横坐标是2, 则||PF =( ).A .2B .3C .4D .5 5.已知事件A 与事件B 发生的概率分别为()P A 、()P B ,有下列命题:①若A 为必然事件,则()1P A =. ②若A 与B 互斥,则()()1P A P B +=. ③若A 与B 互斥,则()()()P A B P A P B ⋃=+.其中真命题有( )个.A .0 B .1 C .2 D .36.“0a >”是“方程2y ax =表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 7.命题“2,210x R x ∀∈+>”的否定是( ).A .2,210x R x ∀∈+≤ B .200,210x R x ∃∈+>C .200,210x R x ∃∈+≤D .200,210x R x ∃∈+< 8.函数32y x x x =--的单调递增区间为( ) .A .[)1,1+3⎛⎤-∞-∞ ⎥⎝⎦和, B .113⎡⎤-⎢⎥⎣⎦C .[)1,1+3⎛⎤-∞-⋃∞ ⎥⎝⎦, D .113⎡⎤-⎢⎥⎣⎦,9.执行右边的程序框图,如果输入5a =, 那么输出=n ().A .2B .3 C .4D .510.已知椭圆22219x y b +=(03)b <<,左右焦点分别为1F ,2F ,过1F 的直线交椭圆于,A B 两点,若22||||AF BF +的最大值为8,则b 的值是( ). A . B C D二、填空题:(本大题共4题,每小题5分,共20分.请将答案填写在答卷相应位置上.)11的渐近线方程为 .12.样本2-,1-,0,1,2的方差为 .13.某城市近10年居民的年收入x 与支出y 之间的关系大致符合0.90.2y x =+(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元. 14.函数32()31f x x x =+-在1x =-处的切线方程是 . 三、解答题:(本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.16.(本小题满分12分)已知22x -≤≤,22y -≤≤,点P 的坐标为(,)x y .(1)求当,x y R ∈时,点P 满足22(2)(2)4x y -+-≤的概率; (2)求当,x y Z ∈时,点P 满足22(2)(2)4x y -+-≤的概率. 17.(本小题满分14分)设命题p :实数x 满足22430x ax a -+<,其中0a >;命题q :实数x 满足2560x x -+≤;(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p 是q 成立的必要不充分条件,求实数a 的取值范围.18.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为,直线:2l y x =+与圆222x y b +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 的交点为,A B ,求弦长||AB .19.(本小题满分14分)已知3()f x ax bx c =++图象过点1(0,)3-,且在1x =处的切线方程是31y x =--.(1)求)(x f y =的解析式;(2)求)(x f y =在区间[]3,3-上的最大值和最小值. 20.(本小题满分14分)已知动直线l 与椭圆C :22132x y +=交于P ()11,x y 、Q ()22,x y 两个不同的点,且△OPQ 的面积OPQ S ∆O 为坐标原点.(1)证明2212x x +和2212y y +均为定值;(2)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(3)椭圆C 上是否存在点,,D E G ,使得2ODE ODG OEG S S S ∆∆∆===? 若存在,判断△DEG 的形状;若不存在,请说明理由.高二数学试题答案一、选择题(本大题共10小题,每小题5分,共50分)三、解答题:(本大题共6题,满分80.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分12分)解:(1)若在志愿者中随机抽取5名,则抽取比例为51204=………………………2分 ∴年龄大于40岁的应该抽取1824⨯=人. ……………………………4分 (2)上述抽取的5名志愿者中,年龄在20至40岁的有3人,记为1,2,3年龄大于40岁的有2人,记为4,5,……………………………………………6分 从中任取2名,所有可能的基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)(3,4),(3,5),(4,5),共10种,…8分其中恰有1人年龄大于40岁的事件有(1,4),(1,5),(2,4),(2,5)(3,4),(3,5),共6种,………………………………10分∴恰有1人年龄大于40岁的概率63105P ==.…………………………………12分 16.(本小题满分12分)解:(1)点P 所在的区域为正方形ABCD 的内部(含边界),……………(1分)满足22(2)(2)4x y -+-≤的点的区域为以(2,2)为圆心,2为半径的圆面(含边界). ……………………(3分)∴所求的概率211244416P ππ⨯==⨯. …………………………(5分) (2)满足,x y ∈Z ,且22x -≤≤,22y -≤≤的整点有25个 …………(8分)满足,x y ∈Z ,且22(2)(2)4x y -+-≤的整点有6个,……………(11分)∴所求的概率2625P =. ………………………………(12分) 17.(本小题满分14分)解(1)由22430x ax a -+<得(3)()0x a x a -⋅-<..................................1分又0a >,所以3a x a <<, (2)分当1a =时,13x <<,即p 为真命题时,实数x 的取值范围是13x <<……4分由2560xx -+≤得23x ≤≤.所以q 为真时实数x 的取值范围是23x ≤≤.…………………………………6分若p q ∧为真,则23x ≤<,所以实数x 的取值范围是[)2,3.……………8分(2) 设{}|3A x a x a =<<,{}|23B x x =≤≤q 是p 的充分不必要条件,则B A ⊂所以021233a a a <<⎧⇒<<⎨>⎩,所以实数a 的取值范围是()1,2.………14分18.(本小题满分12分)解:(1)又由直线:2l y x =+与圆222x y b +=相切得b ==, (2)分由3e =3a == (2)2222123(2)60322x y x x y x ⎧+=⎪⇒++-=⎨⎪=+⎩251260x x ⇒++=…………8分 21245624∆=-⋅⋅=,设交点,A B 坐标分别为()()1122,,,x y x y ………9分则1212126,,55x x x x +=-⋅=从而||5AB ==所以弦长||AB =14分 19.(本小题满分14分)解:(1)11(0)33f c =-⇒=-, (2)'()3f x ax b =+,∴()2'(1)31f a b=+,∴33a b +=-…………3分又∵切点为(1,4)-,∴1(1)43f a b =+-=-………………………5分联立可得1,43ab ==- (2)311()433f x x x =--2'()4f x x ⇒=-,令2'()0402f x x x =⇒-=⇒=±,令2'()0402f x x x >⇒->⇒<-或2x >,令2'()04022f x x x <⇒-<⇒-<<,………………………………10分………12分由上表知,在区间[]3,3-上,当2x =-时,m a x (2)5y f =-=当2x =时,m i n 17(2)3y f ==-………………14分20.(本小题满分14解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y += ①又因为OPQS ∆=所以11||||x y ⋅= ②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+=…………… 2分 当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知0m ≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=, 其中22223612(23)(2)0,km k m ∆=-+->即2232k m +>…(*)又212122263(2),,2323km m x x x x k k -+=-=++所以||PQ ==因为点O 到直线l 的距离为d =所以1||2OPQS PQ d ∆=⋅==又OPQS ∆=整理得22322,k m +=且符合(*)式, 此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+= 综上所述,222212123;2,x x y y +=+=结论成立。
2021-2022学年河南省郑州市高二(下)期末数学试卷(文科)试题数:26,总分:1501.(单选题,5分)复数z满足(√3 +i)z=|1- √3 i|,其中i为虚数单位,则z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(单选题,5分)下面几种推理过程中属于类比推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.科学家对比了火星和地球之间的某些相似特征,已知地球上有生命存在,所以猜测火星上也可能有生命存在C.由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个质数的和D.在数列{a n}中,a1=1,a n= 12(a n-1+ 1a n−1)(n≥2),由此归纳出{a n}的通项公式3.(单选题,5分)如图所示的是一个结构图,在框① ② ③ 中应分别填入()A.虚数,整数,分数B.复数,虚数,整数C.虚数,复数,纯虚数D.复数,虚数,纯虚数4.(单选题,5分)已知x,y,z∈R,且a=x2+2y,b=y2+2z,c=z2+2x,则a,b,c三个数()A.都小于-1B.至少有一个不小于-1C.都大于-1D.至少有一个不大于-15.(单选题,5分)在同一平面直角坐标系中,由曲线x 2+y 2=1得到曲线4x 2+y 2=16,则对应的伸缩变换为( ) A. {x′=12xy′=4yB. {x′=2xy′=14y C. {x′=2x y′=4y D. {x′=12x y′=14y6.(单选题,0分)已知x ,y ,z∈R +,且x+y+z=30,则lgx+lgy+lgz 的最大值为( ) A.1 B.2 C.3 D.47.(单选题,5分)下列四个命题:① 在回归模型中,预报变量y 的值不能由解释变量x 唯一确定;② 若变量x ,y 满足关系y=-2x+1,且变量y 与z 正相关,则x 与z 也正相关; ③ 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; ④ 样本点可能全部不在回归直线 y ̂ = b ̂ x+ a ̂ 上. 其中真命题的个数为( ) A.1个 B.2个 C.3个 D.4个8.(单选题,5分)已知i-1是关于x 的方程2x 2+px+q=0的一个根,其中p ,q∈R ,则p+q=( ) A.6 B.8 C.10D.129.(单选题,5分)用模型y=me nx+2(m >0)拟合一组数据时,设z=lny ,将其变换后得到回归方程为 ẑ =3x+2,则n-m=( ) A.-1 B.1 C.-2 D.210.(单选题,5分)我们知道;在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=|Ax 0+By 0+C|√A 2+B 2,通过类比的方法,则在空间中,点(1,2,4)到平面2x+2y+z+2=0的距离为( ) A.4 B.5 C.6 D.711.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图1所示的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到如图2所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为S n ,如S 1=1,S 2=2,S 4=4,⋯,则S 32等于( )A.16B.32C.64D.12812.(单选题,5分)已知曲线 {x =cosαy =−1+√3sinα ,(α为参数)上任一点P (x 0,y 0),使得不等式a≤x 0+y 0成立,则实数a 的取值范围是( ) A.(-∞,-3]B.[-3,+∞)C.[1,+∞)D.(-∞,1]13.(单选题,0分)若不等式|x-1|+| 4x+1|≤a有解,则实数a的取值范围是()A.a≥4B.a<4C.a≥2D.a<214.(单选题,5分)计算器是如何计算sinx,cosx,πx,lnx,√x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sinx=x- x 33!+x55!−x77!+…,cosx=1- x22!+x44!−x66!+…,其中n!=1×2×3×…×n,英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的sinx和cosx的值也就越精确.运用上述思想,可得到sin(π2 +1)的近似值为()A.0.50B.0.52C.0.54D.0.5615.(填空题,5分)复数1−i20221+i的共轭复数为 ___ .16.(填空题,5分)用最小二乘法得到一组数据(x i,y i)(其中i=1、2、3、4、5)的线性回归方程为ŷ = b̂ x+3,若∑5i=1 x i=25、∑5i=1 y i=65,则当x=10时,y的预报值为 ___ .17.(填空题,5分)将正奇数数列1,3,5,7,9,…依次按两项,三项分组.得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),….称(1,3)为第1组,(5,7,9)为第2组,以此类推,则原数列中的2021位于分组序列中第 ___ 组.18.(填空题,5分)已知a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,则a,b,c的大小关系是 ___ .19.(问答题,10分)已知复数z=a+i(a>0,a∈R),且z+ 2z∈R,其中i为虚数单位.(Ⅰ)求复数z;(Ⅱ)已知复平面上的四个点A,B,C,D构成平行四边形ABCD,复数z+z2,z+1,z2在复平面内对应的点分别为A,B,C,求点D对应的复数.20.(问答题,12分)某从事智能教育技术研发的科技公司开发了一个智慧课堂项目,并且在甲、乙两个学校的高一学生中做用户测试,经过一个阶段的试用,为了解智慧课堂对学生学习的促进情况该公司随机抽取了200名学生,对他们“任意角和弧度制”知识点掌握情况进行调查,样本调查结果如表:(Ⅰ)从两校高一学生中随机抽取1人,估计该学生对“任意角和弧度制”知识点基本掌握的概率;(Ⅱ)完成下面2×2列联表,并分析是否有99%的把握认为基本掌握“任意角和弧度制”知识点与使用智慧课堂有关?21.(问答题,12分)在直角坐标系xOy 中,曲线C 1的参数方程为 {x =2+2cosθy =2sinθ (θ为参数),曲线C 2的方程为x+y-6=0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)若射线α= π4 分别交C 1,C 2于A ,B 两点(点A 异于极点),求|AB|.22.(问答题,0分)已知函数f (x )=|x+1|-m ,m∈R ,且f (x )≤0的解集为[-2,0]. (Ⅰ)求m 的值;(Ⅱ)设a ,b ,c 为正数,且a+2b+3c=m ,求a 2+b 2+c 2的最小值.23.(问答题,12分)用分析法证明:对于任意a 、b∈[-2,2],都有|ab+4|≥2|a+b|.24.(问答题,12分)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2(1+3sin 2θ)=4.在直角坐标系xOy 中,直线l 的方程为x+2y-4=0. (Ⅰ)若点M 为曲线C 1上的动点,求点M 到直线l 的距离的最小值;(Ⅱ)倾斜角为 π3 的曲线C 2过点P (-1,0),交曲线C 1于A ,B 两点,求 1|PA| + 1|PB| .25.(问答题,0分)已知函数f (x )=|x+a|+|x+1|. (Ⅰ)当a=-1时,求f (x )<3x 的解集;(Ⅱ)g (x )=x 2-2x+2+a 2,若对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,求实数a 的取值范围.26.(问答题,12分)目前,新冠病毒引起的疫情仍在全球肆虐在党中央的正确领导下,全国人民团结一心,使我国疫情得到了有效的控制.其中,各大药物企业积极投身到新药的研发中.汕头某药企为评估一款新药的药效和安全性,组织一批志愿者进行临床用药实验,结果显示临床疗效评价指标A 的数量y 与连续用药天数x 具有相关关系.刚开始用药时,指标A 的数量y 变化明显,随着天数增加,y 的变化趋缓.根据志愿者的临床试验情况,得到了一组数据(x i ,y i ),i=1,2,3,4,5,…,10,x i 表示连续用药i 天,y i 表示相应的临床疗效评价指标A 的数值.该药企为了进一步研究药物的临床效果,建立了y 关于x 的两个回归模型: 模型 ① :由最小二乘公式可求得y 与x 的线性回归方程: y ̂=2.50x −2.50 ;模型 ② :由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a 的附近,令t=lnx ,则有 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 , ∑t i 10i=1y i =569.00 , ∑t i 210i=1=50.92 .(1)根据所给的统计量,求模型 ② 中y 关于x 的回归方程;(2)根据下列表格中的数据,说明哪个模型的预测值精度更高、更可靠.(3)根据(2)中精确度更高的模型,预测用药一个月后,疗效评价指标相对于用药半个月的变化情况(一个月以30天计,结果保留两位小数).附:样本(t i i i i=1i ∑(t i −t)2ni=1 y t 相关指数 R 2=1−i2n i=1∑(y −y )2n ,参考数据:ln2≈0.6931.2021-2022学年河南省郑州市高二(下)期末数学试卷(文科)参考答案与试题解析试题数:26,总分:1501.(单选题,5分)复数z满足(√3 +i)z=|1- √3 i|,其中i为虚数单位,则z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:D【解析】:结合复数模公式,先求出z,再结合复数的几何意义,即可求解.【解答】:解:∵(√3 +i)z=|1- √3 i|= √12+(−√3)2=2,∴ z=√3−i)(√3+i)(√3−i)=√32−12i,∴z在复平面内所对应的点(√32,−12)在第四象限.故选:D.【点评】:本题主要考查复数模公式,以及复数的几何意义,属于基础题.2.(单选题,5分)下面几种推理过程中属于类比推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.科学家对比了火星和地球之间的某些相似特征,已知地球上有生命存在,所以猜测火星上也可能有生命存在C.由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个质数的和D.在数列{a n}中,a1=1,a n= 12(a n-1+ 1a n−1)(n≥2),由此归纳出{a n}的通项公式【正确答案】:B【解析】:根据演绎推理、类比推理、归纳推理的定义即可求解.【解答】:解:A选项是演绎推理,B选项是类比推理,C选项是归纳推理,D选项是归纳推理,故选:B.【点评】:本题考查演绎推理、类比推理、归纳推理的定义,属基础题.3.(单选题,5分)如图所示的是一个结构图,在框① ② ③ 中应分别填入()A.虚数,整数,分数B.复数,虚数,整数C.虚数,复数,纯虚数D.复数,虚数,纯虚数【正确答案】:D【解析】:根据复数包含实数和虚数,虚数包含纯虚数和非纯虚数,即可求解.【解答】:解:复数包含实数和虚数,虚数包含纯虚数和非纯虚数,故① 为复数,② 为虚数,③ 为纯虚数.故选:D.【点评】:本题主要考查结构图的应用,属于基础题.4.(单选题,5分)已知x,y,z∈R,且a=x2+2y,b=y2+2z,c=z2+2x,则a,b,c三个数()A.都小于-1B.至少有一个不小于-1C.都大于-1D.至少有一个不大于-1 【正确答案】:B【解析】:求出a+b+c 的范围,再结合选项判断即可.【解答】:解:a+b+c=x 2+y 2+z 2+2x+2y+2z =(x+1)2+(y+1)2+(z+1)2-3≥-3, ∴a ,b ,c 三个数中至少有一个不小于-1. 故选:B .【点评】:本题考查不等式的性质,考查逻辑推理能力及运算求解能力,属于基础题. 5.(单选题,5分)在同一平面直角坐标系中,由曲线x 2+y 2=1得到曲线4x 2+y 2=16,则对应的伸缩变换为( ) A. {x′=12xy′=4yB. {x′=2xy′=14yC. {x′=2x y′=4yD. {x′=12x y′=14y【正确答案】:C【解析】:直接利用关系式的变换的应用求出结果.【解答】:解:设伸缩变换为 {x′=λxy′=μy (λ>0,μ>0),由曲线x 2+y 2=1得到曲线4x 2+y 2=16,即有 {4λ2=16μ2=16,故λ=2,μ=4. 故选:C .【点评】:本题考查了圆变换为椭圆的伸缩变换,考查了变形能力与计算能力,属于中档题. 6.(单选题,0分)已知x ,y ,z∈R +,且x+y+z=30,则lgx+lgy+lgz 的最大值为( ) A.1 B.2 C.3D.4【正确答案】:C【解析】:由已知结合基本不等式及对数的运算性质即可求解.【解答】:解:因为x,y,z∈R+,且x+y+z=30,所以xyz ≤(x+y+z3)3=1000,当且仅当x=y=z=10时取等号,则lgx+lgy+lgz=lg(xyz)≤lg1000=3.故选:C.【点评】:本题主要考查了基本不等式及对数的运算性质在求解最值中的应用,属于基础题.7.(单选题,5分)下列四个命题:① 在回归模型中,预报变量y的值不能由解释变量x唯一确定;② 若变量x,y满足关系y=-2x+1,且变量y与z正相关,则x与z也正相关;③ 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;④ 样本点可能全部不在回归直线ŷ = b̂ x+ â上.其中真命题的个数为()A.1个B.2个C.3个D.4个【正确答案】:C【解析】:根据已知条件,结合线性回归方程的性质,以及残差的定义,即可依次求解.【解答】:解:对于① ,在回归模型中,预报变量y的值不能由解释变量x确定,还受随机误差的影响,故① 正确,对于② ,变量x,y满足关系y=-2x+1,则y与x负相关,由变量y与z正相关,则x与z负相关,故② 错误,对于③ ,在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合效果较好,模型拟合的精度越高,故③ 正确,对于④ ,样本中心恒在回归直线方程上,样本点可能全部不在回归直线ŷ = b̂ x+ â上,故④ 正确.故选:C.【点评】:本题主要考查线性回归方程的性质,以及残差的定义,属于基础题.8.(单选题,5分)已知i-1是关于x的方程2x2+px+q=0的一个根,其中p,q∈R,则p+q=()A.6B.8C.10D.12【正确答案】:B【解析】:结合实系数方程虚根成对独立,结合韦达定理,求解即可.【解答】:解:i-1是关于x的方程2x2+px+q=0的一个根,所以-i-1也是方程的根,可得- p2 =i-1-i-1=-2,所以p=4,q=(i-1)(-i-1)=2,可得q=4,2所以.p+q=8.故选:B.【点评】:本题考查实系数方程虚根成对独立的应用,是基础题.9.(单选题,5分)用模型y=me nx+2(m>0)拟合一组数据时,设z=lny,将其变换后得到回归方程为ẑ=3x+2,则n-m=()A.-1B.1C.-2D.2【正确答案】:D【解析】:对y=me nx+2两边取对数,再结合回归方程为ẑ=3x+2,即可求解【解答】:解:∵y=me nx+2,∴lny=nx+2+lnm,∵z=lny,ẑ=3x+2,∴n=3,2+lnm=2,解得m=1,∴n-m=3-1=2.故选:D.【点评】:本题主要考查线性回归方程的应用,属于基础题.10.(单选题,5分)我们知道;在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为,通过类比的方法,则在空间中,点(1,2,4)到平面2x+2y+z+2=0的距d= |Ax0+By0+C|√A2+B2离为()A.4B.5C.6D.7【正确答案】:A【解析】:类比平面内点到直线的距离求解.【解答】:解:点(1,2,4)到平面2x+2y+z+2=0的距离为:=4,d=|2×1+2×2+4+2|√22+22+12故选:A.【点评】:本题考查了点到直线的距离计算,属于基础题.11.(单选题,5分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图1所示的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到如图2所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为S n,如S1=1,S2=2,S4=4,⋯,则S32等于()A.16B.32C.64D.128【正确答案】:B【解析】:由图分析得第2n-1-1行且n∈N *所有项均为奇数,判断S 32对应第31行是还存在n∈N *,使2n-1-1=31,由此能求出S 32.【解答】:解:由杨辉三角几何排列分析得: 第2n-1-1行且n∈N *所有项均为奇数,S 32对应第31行,令2n-1-1=31,可得n=6∈N *, 所有第31行数字均为奇数,∴S 32=32. 故选:B .【点评】:本题考查简单的归纳推理、杨辉三角几何排列等基础知识,考查运算求解能力,是基础题.12.(单选题,5分)已知曲线 {x =cosαy =−1+√3sinα ,(α为参数)上任一点P (x 0,y 0),使得不等式a≤x 0+y 0成立,则实数a 的取值范围是( ) A.(-∞,-3] B.[-3,+∞) C.[1,+∞) D.(-∞,1] 【正确答案】:A【解析】:设 {x 0=cosαy 0=−1+√3sinα ,利用三角恒等变换及正弦型函数的性质求x 0+y 0范围,根据恒成立求参数范围.【解答】:解:由题设,令 {x 0=cosαy 0=−1+√3sinα,则 x 0+y 0=cosα+√3sinα−1=2sin (α+π6)−1 ,所以x 0+y 0∈[-3,1],又a≤x 0+y 0对任一点p (x 0,y 0)都成立,故a≤-3. 故选:A .【点评】:本题考查了三角恒等变换及正弦型函数的性质,属于中档题.13.(单选题,0分)若不等式|x-1|+| 4x+1|≤a有解,则实数a的取值范围是()A.a≥4B.a<4C.a≥2D.a<2【正确答案】:A【解析】:令f(x)=|x-1|+| 4x+1|,问题转化为a≥f(x)能成立,通过讨论x的范围,求出f(x)的最小值,即可得到a的范围.【解答】:解:不等式|x-1|+| 4x +1|≤a有解,即a≥|x-1|+| 4x+1|能成立,令f(x)=|x-1|+| 4x+1|,则a≥f(x)能成立,显然,x≠0,下面求f(x)的最小值.当x<-4时,f(x)=1-x+ 4x +1=2-x+ 4x单调递减,此时,f(x)>5.当-4≤x<0,f(x)=1-x- 4x -1=-x- 4x≥2 √(−x)•(−4x) =4,当且仅当x=-2时,取等号,此时,f(x)最小值为4.当0<x<1时,f(x)=1-x+ 4x +1=2-x+ 4x单调递减,f(x)>5.当x≥1时,f(x)=x-1+ 4x +1=x+ 4x≥2 √x•4x=4,当且仅x=2时,取等号,f(x)最小值为4.综上可得,f(x)最小值为4,∴a≥4,故选:A.【点评】:本题考查了函数的单调性、最值问题,考查转化思想,分类讨论思想,是一道中档题.14.(单选题,5分)计算器是如何计算sinx,cosx,πx,lnx,√x等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如sinx=x- x 33!+x55!−x77!+…,cosx=1- x22!+x44!−x66!+…,其中n!=1×2×3×…×n,英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的sinx和cosx的值也就越精确.运用上述思想,可得到sin(π2 +1)的近似值为()A.0.50B.0.52C.0.54D.0.56【正确答案】:C【解析】:根据新定义,取x=1代入公式sin(π2 +1)= cosx=1−x22!+x44!−x66!+⋅⋅⋅中,直接计算取近似值即可.【解答】:解:由题意可得,sin(π2 +1)= cos1=1−122!+144!−166!+⋯=1−12+124−1720+⋯=1-0.5+0.041-0.001+…≈0.54,故选:C.【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可.15.(填空题,5分)复数1−i20221+i的共轭复数为 ___ .【正确答案】:[1]1+i【解析】:根据已知条件,结合共轭复数的概念,以及复数代数形式的乘除法运算,即可求解.【解答】:解:∵i2022=(i4)505•i2=-1,∴ 1−i20221+i = 21+i=2(1−i)(1+i)(1−i)=1−i,∴复数1−i20221+i的共轭复数为1+i.故答案为:1+i.【点评】:本题考查了共轭复数的概念,以及复数代数形式的乘除法运算,需要学生熟练掌握公式,属于基础题.16.(填空题,5分)用最小二乘法得到一组数据(x i,y i)(其中i=1、2、3、4、5)的线性回归方程为ŷ = b̂ x+3,若∑5i=1 x i=25、∑5i=1 y i=65,则当x=10时,y的预报值为 ___ .【正确答案】:[1]23【解析】:根据已知条件,求出x,y的平均值,再结合线性回归方程过样本中心,即可求解线性回归方程,再将x=10代入,即可求解.【解答】:解:x=15∑x i5i=1=15×25=5,y=15∑y i5i=1=15×65=13,∵线性回归方程为ŷ = b̂ x+3,∴13= 5b̂+3,解得b̂=2,∴线性回归方程为y=2x+3,∵当x=10时,y=2×10+3=23.故答案为:23.【点评】:本题主要考查了线性回归方程的性质,以及平均值的求解,属于基础题.17.(填空题,5分)将正奇数数列1,3,5,7,9,…依次按两项,三项分组.得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),….称(1,3)为第1组,(5,7,9)为第2组,以此类推,则原数列中的2021位于分组序列中第 ___ 组.【正确答案】:[1]405【解析】:将2个括号作为一组,则每组中有5个数,先找出2019所在的位置,然后确定2021所在的位置.【解答】:解:由题意可知,将2个括号作为一组,则每组中有5个数,由于2019是第1010个奇数,在第1010÷5=202组中,是第2个括号内最后一个数,又每组2个括号,所以,2019是第202×2=404个括号内的数,而2021是第1011个奇数,所以在第405个括号内,即第405组.故答案为:405.【点评】:本题考查归纳推理,考查学生的逻辑推理能力和运算能力,属于基础题.18.(填空题,5分)已知a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,则a,b,c的大小关系是 ___ .【正确答案】:[1]c>b>a【解析】:在同一坐标系中,作出函数y=lna,y=x+2ln2-4,y=1+x-e,y=x+ln2-2的图象求解.【解答】:解:a,b,c∈(0,1),且4+lna=a+2ln2,e+lnb=1+b,2+lnc=c+ln2,在同一坐标系中作出y=lna,y=x+2lnx-4,y=1+x-e,y=x+ln2-2的图象,如图,由图象知a,b,c的大小关系是c>b>a.故答案为:c>b>a.【点评】:本题考查三个数的大小的判断,考查函数的图象与性质等基础知识,考查运算求解能力,是基础题.19.(问答题,10分)已知复数z=a+i(a>0,a∈R),且z+ 2z∈R,其中i为虚数单位.(Ⅰ)求复数z;(Ⅱ)已知复平面上的四个点A,B,C,D构成平行四边形ABCD,复数z+z2,z+1,z2在复平面内对应的点分别为A,B,C,求点D对应的复数.【正确答案】:【解析】:(I)根据已知条件,结合复数的四则运算,以及实数的定义,即可求解.(II)根据已知条件,结合复数的四则运算,以及平行四边形的性质,即可求解【解答】:解:(I)∵z=a+i,∴ z+2z =a+i+2a+i= a+i+2(a−i)(a+i)(a−i)= a+2aa2+1+(1−2a2+1)i∈R,∴ 1−2a2+1=0,解得a=±1,∵a>0,∴a=1,∴z=1+i.(2)∵z 2=(1+i )2=2i ,z+z 2=1+3i ,z+1=2+i , ∴A (1,3),B (2,1),C (0,2), 设D (x ,y ), ∵ABCD 为平行四边形, ∴ AD⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ , 设D (x ,y ),则 AD ⃗⃗⃗⃗⃗ =(x −1,y −3) , BC ⃗⃗⃗⃗⃗ =(−2,1) , ∴ {x −1=−2y −3=1 ,解得x=-1,y=4,即D (-1,4), 故点D 对应的复数为-1+4i .【点评】:本题主要考查复数的运算法则,以及平行四边形的性质,属于中档题.20.(问答题,12分)某从事智能教育技术研发的科技公司开发了一个智慧课堂项目,并且在甲、乙两个学校的高一学生中做用户测试,经过一个阶段的试用,为了解智慧课堂对学生学习的促进情况该公司随机抽取了200名学生,对他们“任意角和弧度制”知识点掌握情况进行调查,样本调查结果如表:(Ⅰ)从两校高一学生中随机抽取1人,估计该学生对“任意角和弧度制”知识点基本掌握的概率;(Ⅱ)完成下面2×2列联表,并分析是否有99%的把握认为基本掌握“任意角和弧度制”知识点与使用智慧课堂有关?【正确答案】:【解析】:(I )根据已知条件,结合古典概型的概率公式,即可求解. (II )结合独立性检验公式,即可求解.【解答】:解:(I )在两所学校被调查的200名学生中,对“任意角和弧度制”知识点基本掌握的学生有140人,所以估计从两校高一学生中随机抽取1人,该学生对“任意角和弧度制”知识点基本掌握的概率为 140200=0.7 . (II )2×2列联表如下:∵ K 2=100×100×140×60≈ 9.524>6.635,∴有99%的把握认为基本掌握“任意角和弧度制“知识点与使用智慧课堂有关.【点评】:本题主要考查独立性检验公式,考查计算能力,属于基础题.21.(问答题,12分)在直角坐标系xOy 中,曲线C 1的参数方程为 {x =2+2cosθy =2sinθ (θ为参数),曲线C 2的方程为x+y-6=0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)若射线α= π4分别交C 1,C 2于A ,B 两点(点A 异于极点),求|AB|.【正确答案】:【解析】:(Ⅰ)根据参数方程,直角坐标方程及极坐标方程的转化关系,直接求解即可; (Ⅱ)利用参数的几何意义直接求解即可.【解答】:解:(Ⅰ)曲线C 1的直角坐标方程为(x-2)2+y 2=4,……………………………(2分) 曲线C 1的极坐标方程为:ρ=4cosθ,……………………………(4分)曲线C 2的极坐标方程为:ρsinθ+ρcosθ=6,即 ρsin (θ+π4)=3√2 ;………(6分) (Ⅱ)由题意可知, |OA |=ρA =2√2,|OB |=3√2 ,……………………………(9分)∴ |AB|=|OB|−|OA|=ρB−ρA=√2.……………………………(12分)【点评】:本题考查参数方程,直角坐标方程及极坐标方程的互化,以及参数的几何意义,考查运算求解能力,属于中档题.22.(问答题,0分)已知函数f(x)=|x+1|-m,m∈R,且f(x)≤0的解集为[-2,0].(Ⅰ)求m的值;(Ⅱ)设a,b,c为正数,且a+2b+3c=m,求a2+b2+c2的最小值.【正确答案】:【解析】:(Ⅰ)求解不等式f(x)≤0,结合f(x)≤0的解集为[-2,0],可得关于m的方程组,则m值可求;(Ⅱ)由(Ⅰ)可得a+2b+3c=1,再由柯西不等式求a2+b2+c2的最小值.【解答】:解:(Ⅰ)由f(x)=|x+1|-m≤0,得|x+1|≤m,∴ {m>0−m−1≤x≤m−1,∵f(x)≤0的解集为[-2,0],∴ {−m−1=−2m−1=0,解得m=1;(Ⅱ)由(Ⅰ)知a+2b+3c=1,由柯西不等式得(a2+b2+c2)(12+22+32)≥(a+2b+3c)2,∴ a2+b2+c2≥1212+22+32=114.当且仅当a=114,b= 214=17,c= 314时等号成立,∴a2+b2+c2的最小值为114.【点评】:本题考查函数的最值及其几何意义,考查柯西不等式的应用,是中档题.23.(问答题,12分)用分析法证明:对于任意a、b∈[-2,2],都有|ab+4|≥2|a+b|.【正确答案】:【解析】:要证|ab+4|≥2|a+b|,即证(ab+4)2≥4(a+b )2,再结合作差法和不等式的基本性质,即可求证.【解答】:证明:要证|ab+4|≥2|a+b|,即证(ab+4)2≥4(a+b )2, ∵a ,b∈[-2,2],∴0≤a+2≤4,-4≤a -2≤0,0≤b+2≤4,-4≤b -2≤0, ∵(ab+4)2-4(a+b )2=(a 2b 2+8ab+16)-4(a 2+2ab+b 2) =a 2b 2+16-4a 2-4b 2=(a 2-4)(b 2-4)=(a-2)(a+2)(b-2)(b+2)≥0, 故|ab+4|≥2|a+b|,即得证【点评】:本题主要考查不等式的证明,掌握分析法和综合法是解本题的关键,属于中档题. 24.(问答题,12分)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2(1+3sin 2θ)=4.在直角坐标系xOy 中,直线l 的方程为x+2y-4=0. (Ⅰ)若点M 为曲线C 1上的动点,求点M 到直线l 的距离的最小值;(Ⅱ)倾斜角为 π3 的曲线C 2过点P (-1,0),交曲线C 1于A ,B 两点,求 1|PA| + 1|PB| .【正确答案】:【解析】:(Ⅰ)求出C 1的参数方程,设出点M 的坐标,利用点到直线的距离公式以及三角函数的性质求解即可;(Ⅱ)利用参数的几何意义直接求解即可.【解答】:解:(Ⅰ)由 {x =ρcosθy =ρsinθ 得,曲线C 1的普通方程为x 2+4y 2=4,………………………(2分)可知曲线C 1的参数方程为 {x =2cosαy =sinα ,(α为参数)……………………………(3分)设点M 的坐标为(2cosα,sinα),…………………………(4分)所以点M 到直线l 的距离为 d =√5=|2√2sin(α+π4)−4|√5,……………………………(5分)当 sin (α+π4)=1 时, d min =√2√5=4√5−2√105, ∴点M 到直线l 的距离的最小值为 4√5−2√105;……………………………(6分)(Ⅱ)曲线C 2的参数方程为 {x =−1+12t y =√32t (t 为参数),……………………………(7分)代入曲线C 1得:13t 2-4t-12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则 t 1+t 2=413,t 1t 2=−1213,t 1,t 2异号,……………………………(9分)∴ 1|PA|+1|PB|=1|t 1|+1|t 2|=|t 1|+|t 2||t 1t 2|=|t 1−t 2||t 1t 2| = √(t 1+t 2)2−4t 1t 2|t 1t 2|=2√103.………………(12分)【点评】:本题考查参数方程,普通方程以及极坐标方程的互化,考查点到直线的距离以及参数的几何意义,考查运算求解能力,属于中档题. 25.(问答题,0分)已知函数f (x )=|x+a|+|x+1|. (Ⅰ)当a=-1时,求f (x )<3x 的解集;(Ⅱ)g (x )=x 2-2x+2+a 2,若对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,求实数a 的取值范围.【正确答案】:【解析】:(Ⅰ)代入a 的值,将函数f (x )化为分段函数的形式,然后再分类讨论解不等式即可;(Ⅱ)依题意,f (x )min ≤g (x )min ,求出函数f (x )和g (x )在定义域上的最小值,解不等式即可.【解答】:解:(Ⅰ)当a=-1时, f (x )={−2x ,x <−12,−1≤x ≤12x ,x >1,当x <-1时,-2x <3x ,解得x∈∅,……………………………(3分) 当-1≤x≤1时,2<3x ,解得 23<x ≤1,……………………………(4分) 当x >1时,2x <3x ,解得x >1,……………………………(5分)综上,原不等式的解集为 {x|x >23} ;.……………………………(5分) (Ⅱ)因为x∈R 时,f (x )=|x+a|+|x+1|≥|x+a -x-1|=|a-1|,当且仅当(x+a )(x+1)≤0时等号成立,即f (x )min =|a-1|,……………………………(7分) 因为g (x )=x 2-2x+2+a 2,所以 g (x )min =g (1)=a 2+1 ,……………………………(8分) 因为对∃x 1∈R ,∀x 2∈[0,+∞)使得f (x 1)≤g (x 2)成立,等价于f (x )min ≤g (x )min ,所以|a-1|≤a 2+1,……………………………(10分) 因为a 2+1>0,所以-a 2-1≤a -1≤a 2+1,解得a≤-1或a≥0,所以实数a 的取值范围为(-∞,-1]∪[0,+∞).……………………………(12分)【点评】:本题考查绝对值不等式的解法及其性质,考查分类讨论思想及运算求解能力,属于中档题.26.(问答题,12分)目前,新冠病毒引起的疫情仍在全球肆虐在党中央的正确领导下,全国人民团结一心,使我国疫情得到了有效的控制.其中,各大药物企业积极投身到新药的研发中.汕头某药企为评估一款新药的药效和安全性,组织一批志愿者进行临床用药实验,结果显示临床疗效评价指标A 的数量y 与连续用药天数x 具有相关关系.刚开始用药时,指标A 的数量y 变化明显,随着天数增加,y 的变化趋缓.根据志愿者的临床试验情况,得到了一组数据(x i ,y i ),i=1,2,3,4,5,…,10,x i 表示连续用药i 天,y i 表示相应的临床疗效评价指标A 的数值.该药企为了进一步研究药物的临床效果,建立了y 关于x 的两个回归模型: 模型 ① :由最小二乘公式可求得y 与x 的线性回归方程: y ̂=2.50x −2.50 ;模型 ② :由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a 的附近,令t=lnx ,则有 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 , ∑t i 10i=1y i =569.00 , ∑t i 210i=1=50.92 .(1)根据所给的统计量,求模型 ② 中y 关于x 的回归方程;(2)根据下列表格中的数据,说明哪个模型的预测值精度更高、更可靠.(3)根据(2)中精确度更高的模型,预测用药一个月后,疗效评价指标相对于用药半个月的变化情况(一个月以30天计,结果保留两位小数). 附:样本(t i i i i=1i ∑(t i −t)2ni=1 y t 相关指数 R 2=1−i 2n i=1∑(y −y )2n ,参考数据:ln2≈0.6931.【正确答案】:【解析】:(1)根据已知条件,结合最小二乘法公式,即可求解. (2)通过比较二者的相关系数,即可求解.(3)分别求出连续用药30天后,连续用药15天后的y 值,再对二者作差,即可求解.【解答】:解:(1)由题意可知 ∑t i 10i=1=22.00 , ∑y i 10i=1=230 ,可得 t =2.20 , y =23 , b ̂=∑(t i −t)ni=1(y i −y )∑(t i −t)2n i=1 = ∑t i ni=1y i −10t•y ∑t i 2n i=1−10t2 = 569−10×2.2×2350.92−10×2.2×2.2=25 , 则 a ̂=y −b̂t =23−25×2.20=−32 , 所以模型 ② 中y 关于x 的回归方程 y ̂=25lnx −32 . (2)由表格中的数据,可得102.28>36.19,即102.28∑(y i −y )10i=1236.19∑(y −y )210所以模型 ① 的R 2小于模型 ② ,说明回归模型 ② 刻画的拟合效果更好, (3)根据模型 ② ,当连续用药30天后, y ̂30=25ln30−32 , 连续用药15天后, y ̂15=25ln15−32 , ∵ y ̂30−y ̂15=25ln2=17.3275≈17.33 ,∴用药一个月后,疗效评价指标相对于用药半个月提高17.33.【点评】:本题主要考查线性回归方程的求解,考查转化能力,属于中档题.。
高二上学期期末考试文科数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1、函数()122+-=x x x f 在点()0,1T 处的切线方程是( )A 、x y =B 、1=yC 、0=xD 、0=y2、设抛物线的顶点在原点,焦点与椭圆12622=+yx右焦点重合,则此抛物线的方程是( )A 、y 2=-8xB 、y 2=-4xC 、y 2=8xD 、y 2=4x3、口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是( ) A 、0.42B 、0.28C 、0.7D 、0.34、若a ,b ∈R ,则a >b >0是a 2>b 2的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件5、给出如下程序:INPUT xIF x<0 THEN y=-1 ELSEIF x=0 THEN y=0ELSE y=1 END IF END IF PRINT y END输入x=3时,输出的结果是( ) A..1 B .-1 C .0 D .36、命题“对01,23≤+-∈∀x x R x ”的否定是( )A 、不存在x ∈R ,x 3-x 2+1≤0 B 、01,23≤+-∈∃x x R x C 、01,23>+-∈∃x x R xD 、01,23>+-∈∀x x R x7、某产品的广告费用x 与销售额y 的统计数据如下表:据上表得回归方程b a x b yˆˆˆˆ中的+=为9.4,据此预报广告费用为6万元时销售额约为( )A 、63.6万元B 、65.5万元C 、67.7万元D 、72.0万元8、运行如右图所示的程序框图,则输出的数是5的倍数的概率为( )A 、51B 、101C 、21 D 、2019、函数()⎪⎭⎫⎝⎛≤≤--=232333x x x x f 的值域是( ) A 、⎥⎦⎤⎢⎣⎡-89,89 B 、⎥⎦⎤⎢⎣⎡-2,89C 、⎥⎦⎤⎢⎣⎡-89,2 D 、[]2,2- 10、已知抛物线x y 42=的焦点为F ,A , B 是该抛物线上的两点,弦AB 过焦点F ,且4=AB |,则线段AB 的中点坐标是( ) A 、⎪⎭⎫⎝⎛1,21B 、 ()1,2C 、()0,1D 、()2,311、设21,F F 分别是双曲线)0,0(12222>>=-b a by ax 的左,右焦点,若在双曲线右支上存在点P ,满足212F F PF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率等于( )A 、2B 、2C 、23 D 、3512、已知1F , 2F 是椭圆6222=+y x 的两个焦点,点M 在此椭圆上且︒=∠6021MF F ,则21F MF ∆的面积等于( ) A 、2B 、3C 、2D 、5第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、从一堆苹果中任取20个,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 %. 14、样本数据“1,2,3,4,5,6,7”的标准差等于 (用数字作答)。
高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。
高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
1a = 3b = a a b =+ b a b =- PRINT a ,b
惠州市2009-2010学年第一学期高二期末考试
文科数学试题
说明:
1、全卷分为两个部分,基础测试部分和期末考试部分,满分150分,时间120 分钟;
2、答卷前,考生务必将自己的姓名、县区、学校、班级、试室、座位号填写在答题卷上;
3、考试结束后,考生将答题卷交回.
第一部分 基础测试(共100分)
一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.算法的三种基本结构是 ( ) A . 顺序结构、模块结构、条件结构 B . 顺序结构、条件结构、循环结构 C . 顺序结构、循环结构、模块结构 D . 模块结构、条件结构、循环结构 2.给出以下命题:①42,x R x x ∀∈>有;②,R α∃∈使得sin 22sin αα=;③,a R ∃∈ 对x R ∀∈使220x x a ++〉.其中真命题的序号是 ( ) A.②③ B.①② C. ①③ D.①②③
3.已知P :2+2=5,Q:3>2,则下列判断正确的是 ( ) A.“P 或Q ”为假,“非Q ”为假 B. “P 且Q ”为假,“非P ”为假 C.“P 或Q ”为真,“非Q ”为假 D.“P 且Q ”为真,“P 或Q ”为假
4.计算机执行下面的程序段后,输出的结果是 ( ) A. 4,-2 B. 6,0 C.4,3 D. 4,1 5.“0x >”是“0x ≠”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.椭圆22
221x y a b
+=(a >b >0)的中心O 与一个焦点F 及短轴的一个端点M 组成等腰直角
三角形FMO ,则它的离心率是 ( ) A.
12
B.2
7.曲线3
2y x x =-在点(1,1)处的切线方程为 ( ) A .y =-x+1 B .y=x -2 C .y =-x D .y =-x+2
8.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍. 为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ) A.9 B .27 C .18 D .36
9.椭圆2
214
x y +=上到点A(1,0)的距离最近的点P 的坐标是 ( ) A.(
43
,) B .(13
,± C .(
43
,) D .(-43
,)
二、填空题:本大题共3小题,每小题5分,共15分,把答案填写在答题卷中指定的横
线上。
10.有一部三卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷
号恰为1,2,3,顺序的概率等于 . 11.过抛物线28y x =的焦点F 作倾斜角是
4
π
的直线,交抛物线于A,B 两点,则AB 等于 12.某程序框图如图1所示,该程序运行后输出的k 的值
是
三、解答题:本大题共3小题,共40分,解答应写出必要的计
算过程、推演步骤或文字说明。
13.(本小题满分14分)
某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:
(1 (2)预测当广告费支出为7百万元时的销售额.
(参考公式:回归方程为ˆ,y
bx a =+其中1
2
21
n
i i
i n
i
i x y nx y
b x
nx
==-=-∑∑, .a y bx =-)
(参考数据:
1380,13500,1455
1
51
2
5
1
2===∑∑∑===i i i i i i i
y x y x
)
(图1)
阅读右边的算法流程图(如图2所示), (1)写出算法输出的结果()y f x =;
(2)已知命题p :()1f x ≤,命题q :关于x 的不
等式22320(0)x ax a a -+〉>,且p 是q 的充分不必要条件,求a 的取值范围.
15.(本小题满分12分)
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .
(1)求事件“3x y +≤”的概率; (2)求事件“2x y -=”的概率.
第二部分 期末考试(共50分)
四、期末考试部分包括一道选择题(满分5分),一道填空题(满分5分)和三道解答题(满分40分),解答须写出文字说明、证明过程和演算步骤。
16.抛物线28
x y =-的准线方程是 ( )
A .132x =
B .y =2
C .1
4
x = D .y=4 17.将二进制数111 111(2) 转换为十进制数为 ()10
如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:
(1)79.5~89.5这一组的频数、频率
分别是多少?
(2)求样本中及格人数和及格率.
19.(本小题满分14分)
已知曲线M 上任意一点P
到两个定点()
1F
和)
2
F 的距离之和为4.
(1)求曲线M 的方程;
(2)设过()0,2-的直线l 与曲线M 交于C 、D 两点,且0OC OD ⋅=(O 为坐标原点),
求直线l 的方程.
20.(本小题满分14分)
已知函数32
()f x x bx ax d =+++的图象过点P (0,2),且在点M (-1,(1)f -)
处的切线方程为670x y -+=. (1)求函数()y f x =的解析式; (2)求函数()y f x =的单调区间.
(图3)。