2018秋九年级数学上册 第24章 解直角三角形 24.4 解直角三角形(第1课时)课件 (新版)华
- 格式:ppt
- 大小:2.60 MB
- 文档页数:31
第3课时 坡度问题1.使学生掌握测量中坡角、坡度的概念.2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解与坡度有关的实际问题.重点解决有关坡度的实际问题. 难点解决有关坡角的实际问题.一、情境引入教师展示图片,引出问题. 读一读在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i ,即i =hl .坡度通常写成1∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作α,有i =hl=tan α. 显然,坡度越大,坡角α就越大,坡面就越陡.二、探究新知教师利用课件展示例1,例2,结合前面所学知识,可由学生自主完成,小组讨论,教师适当给予分析,最后作出点评.例1 如图,一段路基的横截面是梯形,高为4.2米,上底宽为12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)解:作DE⊥AB,CF ⊥AB ,垂足分别为点E ,F. 知DE =CF =4.2,EF =CD =12.51, 在Rt △ADE 中, ∵DE AE =4.2AE =tan 32°, ∴AE =4.2tan 32°≈6.72.在Rt △BCF 中,同理可得 BF =4.2tan 28°≈7.90.∴AB =AE +EF +BF≈6.72+12.51+7.90 ≈27.1(米)答:路基下底的宽约为27.1米.例2 学校校园内有一小山坡AB ,经测量,坡角∠ABC=30°,斜坡AB 长为12米,为方便学生行走,决定开挖小山坡,使斜坡BD 的坡比是1∶3(即CD 与BC 的长度之比).A ,D 两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.解:在Rt △ABC 中,∠ABC =30°,则易求得AC =6,BC =6 3.在Rt △BDC 中,i =DC BC =13,易得DC =13BC =23,∴AD =AC -DC =(6-23)米. 三、练习巩固教师利用课件展示练习,可由学生独立完成,其中第1,2,3,4题由学生抢答,第5题教师点名上台展示,再给予点评.1.已知一坡面的坡度i =1∶3,则坡角α为( ) A .15° B .20° C .30° D .45°2.彬彬沿坡度为1∶3的坡面向上走50米,则他离地面的高度为( ) A .25 3 米 B .50米 C .25米 D .50 3 米3.某水库大坝某段的横断面是等腰梯形,坝顶宽6米,坝底宽126米,斜坡的坡比是1∶3,则此处大坝的坡角和高分别是________米.4.如图,一束光线照在坡度为1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是________.5.如图,已知在山脚的C 处测得山顶A 的仰角为45°,沿着坡角为30°的斜坡前进400 m 到点D 处,测得点A 的仰角为60°,求AB 的高度.四、小结与作业 小结1.本节学习的数学知识:利用解直角三角形的知识解决实际问题. 2.本节学习的数学方法:数形结合的思想和数学建模的思想. 布置作业从教材相应练习和“习题24.4”中选取.本节课以实际情境,引导学生将实际问题抽象为数学问题,构造几何模型,应用三角函数的知识解决问题.在整体设计上,由易到难,难度层层推进,尽量满足不同层次学生的学习需要.在教学过程中,让学生经历知识的形成过程,体会数形结合的数学思想,进一步培养学生应用数学的意识.第二十三章旋转23.1 图形的旋转第1课时旋转的概念及性质基础题知识点1 认识旋转现象1.下列运动形式属于旋转的是( )A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动 D.运动员掷出的标枪2.(广州中考)将如图所示的图案以圆心为中心,旋转180°后得到的图案是( )3.下列图形中,右边的图形不能通过左边的图形旋转得到的是( )4.将左图按顺时针方向旋转90°后得到的是( )5.(雅安中考)如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90° B.顺时针旋转45°C.逆时针旋转90° D.逆时针旋转45°6.如图所示,△AOB绕着点O旋转至△A′OB′,此时:(1)点B的对应点是________;(2)旋转中心是________,旋转角为________;(3)∠A的对应角是______,线段OB的对应线段是线段______.知识点2 图形旋转的性质7.如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4 cm2,∠AOB为120°,则图中阴影部分的面积之和为________cm2.8.(镇江中考)如图,将△OAB绕着点O逆时针旋转两次得到△OA″B″,每次旋转的角度都是50°,若∠B″OA=120°,则∠AOB=________.9.(益阳中考)如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是________.10.如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.中档题11.(巴彦淖尔中考)如图,E,F分别是正方形ABCD的边AB,BC上的点,且BE=CF,连接CE,DF,将△DCF绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为( )A.30° B.45° C.60° D.90°12.(桂林中考)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70° B.35° C.40° D.50°13.(眉山中考)如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°14.(哈尔滨中考)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C是由△ABC绕C点顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( )A.6 B.4 3 C.3 3 D.315.(铁岭中考)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________.16.(吉林中考)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________度.17.(茂名中考)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?综合题18.(襄阳中考)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.参考答案基础题1.C2.D3.D4.A5.C6.(1)点B′(2)点O ∠AOA′或∠BOB′(3)∠A′OB′7.48.20°9.60°10.(1)旋转角的度数为60°.(2)证明:∵点A,B,C1在一条直线上,∴∠ABC1=180°.∵∠ABC=∠A1BC1=120°,∴∠ABA1=∠CBC1=60°.∴∠A1BC=60°.又AB=A1B,∴△ABA1是等边三角形.∴∠AA1B=∠A1BC=60°.∴AA1∥BC.∴∠A1AC=∠C.∵△ABC≌△A1BC1,∴∠C=∠C1.∴∠A1AC=∠C1.中档题11.D 12.C 13.C 14.A17.(1)证明:在正方形ABCD中,∠A=∠BCD=90°,AD=CD,∴∠FCD=90°.∴∠A=∠FCD=90°.又∵AE=CF,∴△AED≌△CFD(SAS).(2)∵∠ADC=90°,∴将△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.综合题18.(1)证明:由旋转可知∠EAF=∠BAC,AF=AC,AE=AB.∴∠EAF+∠BAF=∠BAC+∠BAF,即∠BAE=∠CAF.又∵AB=AC,∴AE=AF.∴△ABE≌△ACF.∴BE=CF.(2)∵四边形ACDE是菱形,AB=AC=1,∴AC∥DE,DE=AE=AB =1.又∵∠BAC=45°,∴∠AEB=∠ABE=∠BAC=45°.∵∠AEB+∠BAE+∠ABE=180°,∴∠BAE=90°.∴BE=AB2+AE2=12+12= 2.∴BD=BE-DE=2-1.[随机事件]各位领导、评委老师,大家好!今天我说课的课题:九年级第26章概率初步第一课时[随机事件],下面我将从以下几个方面进行说明。
24.4 解直角三角形1. 解直角三角形【知识与技能】1.使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.【过程与方法】让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.【情感态度】通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想.【教学重点】用直角三角形的三个关系式解直角三角形.【教学难点】用直角三角形的有关知识去解决简单的实际问题.一、情境导入,初步认识前面的课时中,我们学习了直角三角形的边角关系,下面我们通过一道例题来看看大家掌握得怎样.例在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值.二、思考探究,获取新知把握好直角三角形边角之间的各种关系,我们就能解决直角三角形有关的实际问题了.例1如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?学生结合引例讨论,得出结论:利用锐角三角函数的逆过程.通过上面的例子,你们知道“解直角三角形”的含义吗?学生讨论得出“解直角三角形”的含义:在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.【教学说明】学生讨论过程中需使其理解三角形中“元素”的内涵,至于“元素”的定义不作深究.问:上面例子中,若要完整解该直角三角形,还需求出哪些元素?能求出来吗? 学生结合定义讨论目标和方法,得出结论:利用两锐角互余.【探索新知】问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?例2如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,在炮台A 处测得敌舰C 在它的南偏东40°的方向,在炮台B 处测得敌舰C 在它的正南方,试求敌舰与两炮台的距离(精确到1米).解:在Rt △ABC 中,∵∠CAB=90°-∠DAC=50°,BCAB=tan ∠CAB,∴BC=AB ·tan ∠CAB=2000×tan50°≈2384(米). ∵AB AC=cos50°, ∴AC=20005050AB cos cos =︒︒≈3111(米). 答:敌舰与A 、B 两炮台的距离分别约为3111米和2384米.问:AC 还可以用哪种方法求?学生讨论得出各种解法,分析比较,得出:使用题目中原有的条件,可使结果更精确. 问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?(几个学生展示)学生讨论分析,得出结论.问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?学生交流讨论归纳:解直角三角形,只有下面两种情况:(1)已知两条边;(2)已知一条边和一个锐角.【教学说明】使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素(至。
解直角三角形的方法口诀
口诀(一)
已知一边一锐角,求其余边和余角.
求出它们很是绕,概括三句口诀妙.
求直角边用乘,求斜边用除灵.
是对边用正,是邻边用余.
有斜边用弦,无斜边用切.
[注]:余边、余角即其余边和其余角.已知角的三角函数,求直角边用乘,求斜边用除.当已知边为斜边时,求对边用正弦,求邻边用余弦.已知一直角边求另一直角边用正切和余切.
口诀(二)——选用关系式
选用关系式归纳为:
已知斜边求直边,正弦余弦很方便.
已知直边求直边,正切余切理当然.
已知两边求一边,勾股定理最方便.
已知两边求一角,函数关系要选好.
已知锐角求锐角,互余关系要记牢.
已知直边求斜边,用除还需正余弦.
计算方法要选择,能用乘法不用除.
1 / 1。