长方体 正方体练习测试题
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
完整版)“长方体和正方体”练习题及答案六年级第一学期“长方体和正方体”练题姓名成绩一、填空题。
(每空1分,共24分)1、在括号里填上合适的单位名称。
⑴一小瓶红墨水是60(毫升)。
⑵一台电冰箱的体积约是240(升)。
⑶一种油箱的容积是0.6(升)。
⑷一只火柴盒的体积约是9.6(立方厘米)。
⑸一种水箱可容水约24(升)。
2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是(正方形)形,还有(2)个面的面积相等,长方体的表面积是(94)平方厘米。
3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是(2)厘米,宽是(5)厘米。
4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是(5)厘米。
5、6.4立方米=(6400)立方分米,4500毫升=(4.5)升,80立方厘米=(0.08)立方分米,3.8升=(3800)毫升。
6、右图是由棱长1厘米的小正方体拼成的,它的体积是(8)立方厘米,至少再加上(7)个小正方体,就能成为一个较大的正方体。
7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了(4ac)立方米。
8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是(45)平方分米。
9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少(32)平方厘米。
10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为(300)立方厘米。
11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。
原来长方体的体积是(250)立方厘米。
二、判断题。
(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。
小学数学五年级下册——长方体和正方体姓名:__________ 班级:__________考号:__________一、单选题1.(2014·泉州)下面哪个答案最适合表示一瓶牛奶的净含量()A. 250cm3B. 0.25dm2C. 250mLD. 50L2.(2018六下·贵州期中)等底等高的圆柱、正方体、长方体体积相比较( )。
A. 正方体体积大B. 长方体体积大C. 圆柱体体积大D. 一样大3.(2019五下·滨州期末)一个水箱装满水可以装6L,这个水箱的()是6L。
A. 体积B. 容积C. 重量D. 面积4.一台电视机的体积约是12()。
A. 立方厘米B. 立方分米C. 立方米5.一个微波炉的容积约是18()。
A. 立方厘米B. 立方分米C. 立方米6.下列有的图形的立体图形是( )。
aA. B. C.7.求一个长方体冰块占空间的大小,是求长方体冰块的()。
①体积②容积③表面积A. 体积B. 容积C. 表面积8.(2019六上·邵阳期末)一间教室的空间大约是142()A. 平方米B. 立方米C. 立方分米9.一本数学书的体积大约是280()A. 平方厘米B. 立方分米C. 立方厘米D. 立方米10.(2014·遵义)下面哪个图形不能折成一个正方体。
()A. B. C.11.(2018五下·云南期末)一个正方体的棱长扩大为原来的2倍,它的体积扩大为原来的()倍。
A. 4B. 6C. 812.表面积是96 cm2的正方体,它的体积是()cm3A. 16B. 32C. 6413.(2020六上·宿迁月考)把长方体的长、宽、高都扩大3倍,长方体的表面积扩大()倍。
A. 3B. 6C. 9D. 2714.体积是()A. 0.64B. 4.096C. 0.512D. 2.5615.(2020五下·京山期末)一根正方体的木料,它的底面积是10cm2,把它截成3段,表面积增加了()cm2。
人教版五年级下册数学长方体和正方体单元训练(含答案)一、选择题1.如果一个正方体的棱长扩大到原来的2倍,那么它的表面积就扩大到原来的()倍。
A.2B.4C.6D.82.下面不能围成正方体的图形是()。
A.B.C.3.一个水池能蓄水3430m。
430m,我们就说,这个水池的()是3A.表面积B.体积C.容积4.一个正方体盒子表面展开如图,在该盒子上,“前”字的对面是()。
A.似B.锦C.你5.四个同学分别用8个1cm3的立方体测量3个盒子的容积,容积最小的盒子是()。
A.B.C.D.6.将一个长11厘米,宽4厘米,高2厘米的长方体木块分割成最大的正方体,最多可以分割成()个。
A.10B.11C.97.做一个长方体油箱,要用多少铁皮?是求这个油箱的()。
A.表面积B.容积C.底面积D.体积8.品轩用棱长1厘米的小正方体摆成一个物体,从前面、右面和上面分别观察这个物体,看到的形状如下图,这个物体的表面积是()平方厘米。
A.7B.20C.11D.22二、填空题9.学校运来38.4m的沙子,铺在一个长6m、宽28dm的沙坑里,可以铺( )m厚。
10.如图,不做移动,要搭成一个完整的长方体,至少还需要( )个小正方体。
11.用长36厘米的铁丝围成一个正方体的框架,这个正方体的表面积是( ),体积是( )。
12.用一根60cm长的铁丝正好做成一个正方形框架(接头处不计),这个正方体的体积是( )cm3,表面积是( )cm2。
13.由棱长1厘米的小正方体搭成的立体图形(如图),它的表面积是( )平方厘米,体积是( )立方厘米。
14.7.8立方米=( )立方分米 2.8立方分米=( )升=( )毫升6立方米30立方分米=( )立方米7.03升=( )升( )毫升三、图形计算15.求下面正方体和长方体的表面积和体积。
(单位:厘米)16.求图形的表面积和体积。
四、解答题17.一块长45cm、宽40cm的铁皮,从四个角各切掉一个边长为5cm的正方形,然后做成盒子。
长方体正方体练习题一1、长、宽、高分别为30cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?(30+30+20)×4=320(cm)答:至少需要320厘米的胶带。
2、五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装),已知工人俱乐部长90m,宽55m,高22m,工人叔叔至少需要多长的彩灯线?(90+55)×2+20×4=370(m)3、要做一个长2.2m、宽40cm、高80cm的玻璃柜台,现在要在柜台各边都安上角铁,至少需要多少米的角铁?40厘米=0.4米,80厘米=0.8米,(2.2+0.4+0.8)×4=13.6(米)答:至少需要13.6米的角铁。
4、一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。
5、把一个棱长46cm的正方体纸箱的各面都贴上红纸,将它作为给希望小学捐款的“爱心箱”。
(1)他们至少需要多少平方厘米的红纸?(2)如果只在棱上粘贴胶带纸,一卷长4.5m的胶带纸够用吗?(1)46×46×6=12696(平方厘米)答:他们至少需要12696平方厘米的红纸。
(2)46cm=0.46m0.46×12=5.52(m)5.52>4.5答:一卷长4.5m的胶带纸不够用。
6、玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(上面没有盖)3×3×5=45(平方分米)答:制作这个鱼缸时至少需要玻璃45平方分米。
7、一个长方体礼品盒,棱长 1.5dm,如果包装这个礼品盒的用纸是其表面积的1.5倍,至少需要多少平方分米的包装纸?6×1.22×1.5=12.96(平方分米)答:至少要用12.96平方分米的包装纸。
苏教版小学数学六年级上册《长方体与正方体》专项练习试题(10套)(1)(长方体和正方体的认识)一、填空:(38%)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。
2、长方体的每个面都是( )形或有一组对面是( )。
它有( )条棱,平行的( )条棱都相等。
3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。
4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。
5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。
6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。
7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。
8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。
二、选择(8%):1、一个长方体水池,长20米,宽10米,深2米,这个水池占地()平方米。
A、200B、400C、5202、下面的图形中,能按虚线折成正方体的是()。
3、从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如下图) ,它的表面积( ) 。
A.和原来同样大 B.比原来小 C.比原来大 D.无法判断4、用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。
A、2B、3C、4D、5三、计算下面每个形体的棱长和(6%)。
四、下面各题,列式计算,不写答。
(40%)1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。
2、用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?3、棱长是4分米的正方体,棱长总和是多少分米?4、一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度总和是多少厘米?5、同一根长96厘米的铁丝折成一个最大的正方体框架,求正方体框架的棱长。
六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少立方厘米?(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)答:粉刷面积是1280平方米.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行解答问题.。
人教数学五年级下册长方体、正方体练习题( 1)一、填空1、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。
2、一个长方体的长是6厘米,宽是5厘米,高是4厘米,它的上边的面积是()平方厘米;前方的面积是()平方厘米;右边的的面积是()平方厘米。
这个长方体的表面积是()平方厘米。
3、一个长方体最多能够有()个面是正方形,最多能够有()条棱长度相等。
4、把一根长80厘米,宽5厘米,高3厘米的长方体木材锯成长都是40厘米的两段,表面积比本来增添了()平方厘米。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,起码需要铁丝()厘米。
6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。
7、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。
8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不当心前方的玻璃被打碎了,维修时配上的玻璃的面积是()。
9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。
10、起码需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
二、应用题。
1、用一根铁丝恰好焊成一个棱长8厘米的正方体框架,假如用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应当是多少厘米?2、每日游泳池,长25米,宽10米,深米,在游泳池的周围和池底砌瓷砖,假如瓷砖的边长是1分米的正方形,那么起码需要这类瓷砖多少块?3、一个通风管的横截面是边长是米的正方形,长米.假如用铁皮做这样的通风管50只,需要多少平方米的铁皮?4、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,能够做这样的硬纸盒多少个?(不计接口)5、一个房间的长6米,宽米,高3米,门窗面积是8平方米。
长方体和正方体测试卷一、填空不困难,全对不简单。
(30分)1.下面的图形中,()是长方体,()是正方体。
2. 长方体和正方体都有()个面,()条棱,()个顶点。
长方体相对的面大小(),相对的棱长度()。
3.把两个同质量的实心铁块分别放入盛满水的甲、乙两个水杯里,如果甲杯溢出的水比乙杯溢出的水多,说明甲杯的容积比乙杯()。
4.如图:(1)前后两个面是完全相同的(),面积都是()。
(2)上下左右四面是完全相同的(),它们的面积之和是()。
(3)这个长方体的表面积是(),体积是()。
5.一个正方体的棱长是2厘米,这个正方体的底面积是(),表面积是(),体积是()。
6.把棱长20分米的正方体切成棱长5分米的小正方体,可以切成()块。
7. 0.1升=()立方分米=()毫升;7立方米=()立方分米=()升5040毫升=()立方厘米=()立方分米8.用“﹥”把下面各量排列起来。
3.3毫升 0.033升0.033立方米 3.3立方分米 330立方厘米()﹥()﹥()﹥()﹥()9、把一根方钢切割成3段、表面积增加了96平方分米,已知钢材长3米,原来这根方钢的体积是()。
二、我是小法官,对错我会判。
(5分)1. 表面积相等的长方体,体积也一定相等。
()2.一个水杯最多能装400毫升的水,说明这个水杯的容积是400毫升。
()3.面积单位比体积单位小。
()4.长方体的长扩大3倍,宽缩小3倍,高不变,则体积不变。
()5.棱长为1厘米的正方体,它的表面积和体积是一样大的。
()三、脑筋转转转,答案全发现。
(5分)1.把一个长方体的长、宽、高都扩大2倍,则它的体积扩大()倍。
A、2B、4C、8D、122.把一个大正方体切割成27个小正方体后,3面涂色的有()个。
A、4B、8C、3D、163.一个棱长为3分米的正方体所占空间为()立方分米。
A、54B、27C、9D、44.下面图形中,可以折出一个正方体的是()。
A、 B、 C、5.长方体与正方体的底面积相等,长方体的高是正方体的2倍,长方体的体积是正方体的()倍。
长方体和正方体专项练习题长方体和正方体专项练习题试题是用于考试的题目,要求按照标准回答。
它是命题者按照一定的考核目的编写出来的。
以下是小编为大家整理的长方体和正方体专项练习题,欢迎阅读,希望大家能够喜欢。
长方体和正方体专项练习题篇11、长方体有( )条棱,相对的棱的长度( ),有( )个面,( )的面的面积相等。
2、用一根长132厘米的铁丝,围成一个正方体的模型,棱长应是( )。
3、把3个棱长1厘米的小正方体拼成长方体,这个长方体的棱长和是( )厘米,体积是( )立方厘米。
4、把一个正方体切成两个完全一样的长方体,表面积增加了20平方厘米。
这个正方体的表面积是( )平方厘米。
5、单位换算5400立方厘米=( )立方分米530平方分米=( )平方米9600立方厘米=( )毫升=( )升5立方米=( )立方分米2.8立方分米=( )立方厘米0.8升=( )毫升1.7立方米=( )立方分米4平方米=( )平方分米2.5立方米=( )立方分米6、7升=( )升( )毫升8500立方厘米=( )毫升=( )升470立方厘米=( )立方分米4800平方厘米=( )平方分米270毫升=( )升=( )立方分米4.5立方分米=( )升=( )毫升6、长方体和正方体都有( )个面,( )条棱,( )个顶点。
7、物体所占( )的大小叫做物体的体积。
8、在( )里填上合适的单位。
一个药水瓶的容积是200( )一个仓库的占地面积是30( )一只热水瓶容积2( )运货集装箱的体积约是40( )9、一个长方体,长5分米,宽4分米,高3分米,它的表面积是( ),体积是( ),棱长总和是( )。
10、一个正方体的棱长是5厘米,它的表面积是( ),体积是( )。
11、一个长方体的体积是60立方分米,高4分米,它的底面积是( )平方分米,如果这个长方体的长是6分米,那么宽是( )分米。
12、有一个长方体的底面是正方形,边长12分米,高为4.2分米,将这个长方体平均截成两个相同的长方体,表面积增加( )或( )13、一个正方体的棱长和是36厘米,它的表面积是( ),体积是( )。
五年级下学期3.1--3.2测试题2
一、填空题(每小题4分,共36分)
1、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。
2、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是()厘米。
3、一个长方体的棱长总和是80厘米,长10厘米,宽是7厘米。
高是()厘米。
4、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。
5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。
6、一个长4分米、宽2分米、高2分米的长方体,它占地面积最大是( ),表面积是( )。
7、一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是()平方厘米。
8、正方体的棱长扩大3倍,它的表面积就扩大()倍。
9、把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了()平方厘米。
二、解决问题(每小题8分,共64分)
1、有一个长方体木箱,长0.7米,宽0.5米,高0.3米。
怎样放,这个木箱占地面积最小?最小是多少平方米?
2、用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?
3、张大爷制作了一种卖苹果用的长方体木箱(无盖),它的长是60厘米,宽40厘米,高30厘米。
做这种箱子至少用多少木板至少平方米?
4、要做一种管口周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?
5、一个卫生间长2.4米,宽1.8米,高2米。
(1)如果在四壁贴上花墙砖,贴墙砖的面积为多少平方米?
(2)用长30厘米,宽20厘米的花墙砖贴墙,需要多少块?
6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。
扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?
7、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米?。