数电实验一报告总结
- 格式:doc
- 大小:10.00 KB
- 文档页数:1
姓名:谭国榕班级:12电子卓越学号:201241301132实验一逻辑门电路的研究一、任务1.熟悉实验室环境及实验仪器、设备的使用方法。
2.掌握识别常用数字集成电路的型号、管脚排列等能力。
3.熟悉74 LS系列、CMOS 4000B系列芯片的典型参数、输入输出特性。
4.掌握常规数字集成电路的测试方法。
二、实验设备及芯片双踪示波器(DF4321C)1台信号发生器(DF1641B1)1台数字万用表(UT58B)一台数电实验箱1个(自制)芯片2个:74LS04 CD4069 。
三、实验内容1.查阅芯片的PDF文件资料,分清管脚名与逻辑功能的对应关系及对应的真值表。
74LS04:CD4069:2.静态测试验证6非门74LS04、4069逻辑功能是否正常,并用数字万用表测量空载输出的逻辑电平值(含高、低电平)。
结论:由表格可以看出,CD4069输出的高电平比74LS04高,输出的低电平比74LS04低,所以CD4069的噪声容限相对于74LS04来说较大,故其抗干扰能力强。
3.动态测试测逻辑门的传输延迟时间:将74LS04、4069中的6个非门分别串接起来,将函数发生器的输出调为方波,对称,幅度:0-5V,单极性,加至第一个门的输入端,并用示波器的通道1观察;用示波器的通道2观察最后一个非门的输出信号,对比输入输出波形以及信号延迟时间。
调节方波信号:74LS04输出延迟特性:CD4069输出延迟特性:输出延迟时间的实验数据表:结论:74LS04的输出延迟比CD4069的输出延迟要短,说明前者的工作速度比后者快。
4.观察电压传输特性用函数发生器的输出单极性的三角波,幅度控制在5伏,用示波器的X-Y 方式测量TTL 、CMOS 逻辑门的传输特性,记录波形并对TTL 、CMOS 两种类型电路的高电平输出电压、低电平输出电压以及噪声容限等作相应比较。
(1) 调节函数发生器的输出:单极性三角波,对称,幅度:5V ,频率:500Hz ,从函数发生 器的下部50Ω输出端输出信号; 如图:(2) 扫描方式改为X-Y ,CH1、CH2 接地,调光标使其处于左下角附近;(3) CH1 用 2.0V/DIV (DC ),接函数发生器输出(即非门的输入);CH2 用 0.2V/DIV (DC ),接非门输出。
实验一门电路逻辑功能及测试一、实验目的1、熟悉门电路逻辑功能。
2、熟悉数字电路学习机及示波器使用方法。
二、实验仪器及材料1、双踪示波器2、器件74LS00 二输入端四与非门2片74LS20 四输入端双与非门1片74LS86 二输入端四异或门1片74LS04 六反相器1片三、预习要求1、复习门电路工作原理相应逻辑表达示。
2、熟悉所有集成电路的引线位置及各引线用途。
3、了解双踪示波器使用方法。
四、实验内容实验前按学习机使用说明先检查学习机是否正常,然后选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意Vcc及地线不能接错。
线接好后经实验指导教师检查无误方可通电。
试验中改动接线须先断开电源,接好线后在通电实验。
1、测试门电路逻辑功能。
(1)选用双输入与非门74LS20一只,插入面包板,按图连接电路,输入端接S1~S4(电平开关输入插口),输出端接电平显示发光二极管(D1~D8任意一个)。
(2)将电平开关按表1.1置位,分别测出电压及逻辑状态。
(表1.1)2、异或门逻辑功能测试(1)选二输入四异或门电路74LS86,按图接线,输入端1﹑2﹑4﹑5接电平开关,输出端A﹑B﹑Y接电平显示发光二极管。
(2)将电平开关按表1.2置位,将结果填入表中。
表 1.23、逻辑电路的逻辑关系(1)选用四二输入与非门74LS00一只,插入面包板,实验电路自拟。
将输入输出逻辑关系分别填入表1.3﹑表1.4。
(2)写出上面两个电路的逻辑表达式。
表1.3 Y=A ⊕B表1.4 Y=A ⊕B Z=AB 4、逻辑门传输延迟时间的测量用六反相器(非门)按图1.5接线,输80KHz 连续脉冲,用双踪示波器测输入,输出相位差,计算每个门的平均传输延迟时间的tpd 值 : tpd=0.2μs/6=1/30μs 5、利用与非门控制输出。
选用四二输入与非门74LS00一只,插入面包板,输入接任一电平开关,用示波器观察S 对输出脉冲的控制作用:一端接高有效的脉冲信号,另一端接控制信号。
一,实验结果分析实验一:Quartus II 原理图输入法设计(2)实验名称:设计实现全加器实验任务要求:用实验内容(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真并验证其功能,并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。
原理图:仿真波形图:仿真波形图分析:输入a,b代表加数与被加数,输入c代表低位向本位的进位。
输出s代表本位和,输出co代表向高位的进位。
可得真值表为:实验三:用VHDL设计与实现时序逻辑电路(3)实验名称:连接8421计数器,分频器和数码管译码器实验任务要求:用VHDL语言设计实现一个带异步复位的8421码十进制计数器,分频器的分频系数为25k,并用数码管显示数字。
VHDL代码:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;entity div isport(clk1 : in std_logic;clk_out : out std_logic);end;architecture d of div issignal cnt : integer range 0 to 12499999;signal clk_tmp : std_logic;beginprocess(clk1)beginif (clk1'event and clk1='1') thenif cnt=12499999 thencnt<=0;clk_tmp<= not clk_tmp;elsecnt<=cnt+1;end if;end if;end process;clk_out<=clk_tmp;end;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY count10 ISPORT(clk2,clear2:IN STD_LOGIC;q:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END count10;ARCHITECTURE count OF count10 ISSIGNAL q_temp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk2,clear2)BEGINIF clear2='1' THEN q_temp<="0000";ELSIF (clk2'event AND clk2='1') THENIF q_temp="1001" THENq_temp<="0000";ELSEq_temp<=q_temp+1;END IF;END IF;END PROCESS;q<=q_temp;END count;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY seg7 ISPORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0); b: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); cat1:OUT STD_LOGIC_VECTOR(5 DOWNTO 0) );END seg7;ARCHITECTURE show OF seg7 ISBEGINPROCESS(a)BEGINCASE a ISWHEN"0000"=>b<="1111110";WHEN"0001"=>b<="0110000";WHEN"0010"=>b<="1101101";WHEN"0011"=>b<="1111001";WHEN"0100"=>b<="0110011";WHEN"0101"=>b<="1011011";WHEN"0110"=>b<="1011111";WHEN"0111"=>b<="1110000";WHEN"1000"=>b<="1111111";WHEN"1001"=>b<="1111011";WHEN OTHERS=>B<="0000000";END CASE;END PROCESS;cat1<="111011";END show;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity jishuqi8421 isport(clk,clear:IN STD_LOGIC;cout:OUT STD_LOGIC_VECTOR(6 DOWNTO 0); cat:OUT STD_LOGIC_VECTOR(5 DOWNTO 0) );end jishuqi8421;architecture ji of jishuqi8421 iscomponent div25mport(clk1 : in std_logic;clk_out : out std_logic);end component;component count10PORT(clk2,clear2:IN STD_LOGIC;q:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); end component;component seg7PORT(a:IN STD_LOGIC_VECTOR(3 DOWNTO 0); b: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); cat1:OUT STD_LOGIC_VECTOR(5 DOWNTO 0) );end component;signal c:std_logic;signal d:std_logic_vector(3 downto 0);beginu1:div port map(clk1=>clk,clk_out=>c);u2:count10 port map(clk2=>c,clear2=>clear,q=>d); u3:seg7 port map(a=>d,b=>cout,cat1=>cat);end ji;仿真波形图:(由于实际使用的50000000分频不方便仿真,仿真时使用12分频)仿真波形图分析:每隔12个时钟信号计数器的值会增加1,直到计数器的值为9时,再次返回0计数。
实验一组合逻辑电路设计与分析1.实验目的(1)学会组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。
2.实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻输入信号的取值组合。
根据电路确定功能,是分析组合逻辑电路的过程,一般按图1-1所示步骤进行分析。
图1-1 组合逻辑电路的分析步骤根据要求求解电路,是设计组合逻辑电路的过程,一般按图1-2所示步骤进行设计。
图1-2 组合逻辑电路的设计步骤3.实验电路及步骤(1)利用逻辑转换仪对已知逻辑电路进行分析。
a.按图1-3所示连接电路。
b.在逻辑转换仪面板上单击由逻辑电路转换为真值表的按钮和由真值表导出简化表达式后,得到如图1-4所示结果。
观察真值表,我们发现:当四个输入变量A,B,C,D中1的个数为奇数时,输出为0,而当四个输入变量A,B,C,D 中1的个数为偶数时,输出为1。
因此这是一个四位输入信号的奇偶校验电路。
图1-4 经分析得到的真值表和表达式(2)根据要求利用逻辑转换仪进行逻辑电路的设计。
a.问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾探测器。
为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。
b.在逻辑转换仪面板上根据下列分析出真值表如图1-5所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高电平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。
因此,令A、B、C分别表示烟感、温感、紫外线三种探测器的探测输出信号,为报警控制电路的输入、令F 为报警控制电路的输出。
图1-5 经分析得到的真值表(3)在逻辑转换仪面板上单击由真值表到处简化表达式的按钮后得到最简化表达式AC+AB+BC。
4.实验心得通过本次实验的学习,我们复习了数电课本关于组合逻辑电路分析与设计的相关知识,掌握了逻辑转换仪的功能及其使用方法。
一、实验名称1. 实验一QuartusⅡ原理图输入法设计与实现2. 实验二用VHDL设计与实现组合逻辑电路(一)3. 实验三用VHDL设计与实现时序逻辑电路(二)4.实验四用VHDL设计与实现时序逻辑电路(三)(数码管动态扫描控制器)二、实验任务要求1.实验一:○1用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模块单元;○2用上面生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能,并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号;○3用3线-8线译码器(74LS138)和逻辑门设计实现函数F=CBA+CBA+CBA+CBA,仿真验证其功能,并下载到实验班测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号;2.实验二:○1用VHDL语言设计实现一个4位二进制奇校验器,输入奇数个…1‟时,输出为…1‟,否则输出为…0‟,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号;○2用VHDL语言设计实现一个8421码转换为余3码的代码转换器,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号;○3用VHDL语言设计实现一个共阴极7段数码管译码器,仿真验证其功能,并下载到实验班测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号;3.实验三:○1用VHDL语言设计实现一个分频系数为12,分频输出信号占空比为50%的分频器。
要求在Quartus Ⅱ平台上设计程序并仿真验证设计;○2用VHDL语言设计实现一个带异步复位的8421码十进制计数器,仿真验证其功能,并下载到实验板测试。
要求用拨码开关设定输入信号,发光二极管显示输出信号;○3将分频器、8421十进制计数器、数码管译码器3个电路进行连接并下载测试。
4.实验四:○1用VHDL语言设计并实现六个数码管串行扫描电路,要求同时显示0、1、2、3、4、5这6个不同的数字图形到6个数码管上,仿真验证其功能,并下载到实验板测试;(必做)○2用VHDL语言设计并实现六个数码管循环左滚动,时钟点亮6个数码管,坐出右进,状态为:012345→123450→234501→345012→450123→501234→012345;(选做)○3用VHDL语言设计并实现六个数码管向左滚动,用全灭的数码管填充右边,直至全部变灭,然后再一次从右边一个一个地点亮。
数电实验报告实验一心得引言本实验是数字电路课程的第一次实验,旨在通过实际操作和观察,加深对数字电路基础知识的理解和掌握。
本次实验主要涉及布尔代数、逻辑门、模拟开关和数字显示等内容。
在实验过程中,我对数字电路的原理和实际应用有了更深入的了解。
实验一:逻辑门电路的实验实验原理逻辑门是数字电路中的基本组件,它能够根据输入的布尔值输出相应的结果。
常见的逻辑门有与门、或门、非门等。
本次实验主要是通过搭建逻辑门电路实现布尔函数的运算。
实验过程1. 首先,我按照实验指导书上的电路图,使用示波器搭建了一个简单的与门电路。
并将输入端连接到两个开关,输出端连接到示波器,以观察电路的输入和输出信号变化。
2. 其次,我打开示波器,观察了两个开关分别为0和1时的输出结果。
当两个输入均为1时,示波器上的信号为高电平,否则为低电平。
3. 我进一步观察了两个开关都为1时的输出信号波形。
通过示波器上的脉冲信号可以清晰地看出与门的实际运行过程,验证了实验原理的正确性。
实验结果和分析通过本次实验,我成功地搭建了一个与门电路,并观察了输入和输出之间的关系。
通过示波器上的信号波形,我更加直观地了解了数字电路中布尔函数的运算过程。
根据实验结果和分析,我可以总结出:1. 逻辑门电路可以根据布尔函数进行输入信号的运算,输出相应的结果。
2. 在与门电路中,当输入信号均为1时,输出信号为1,否则为0。
3. 示例器可以实时显示电路的输入和输出信号波形,方便实验者观察和分析。
结论通过本次实验,我对数字电路的基本原理和逻辑门电路有了更深刻的理解。
我学会了如何搭建逻辑门电路,并通过示波器观察和分析输入和输出信号的变化。
这对我进一步理解数字电路的设计和应用具有重要意义。
通过实验,我还锻炼了动手操作、实际观察和分析问题的能力。
实验过程中,需要认真对待并细致观察电路的运行情况,及时发现和解决问题。
这些能力对于今后的学习和研究都非常重要。
总之,本次实验让我更好地理解了数字电路的基本原理和应用,提高了我的实验能力和观察分析能力。
《数字电路与逻辑设计》课程实验报告系(院):计算机与信息学院专业:班级:姓名:学号:指导教师:学年学期: 2018 ~ 2019 学年第一学期实验一基本逻辑门逻辑以及加法器实验一、实验目的1.掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验所用器件和仪表1.二输入四与非门74LS00 1片2.二输入四或非门74LS28 1片3.二输入四异或门74LS86 1片三、实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS28一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.掌握全加器的实现方法。
用与非门74LS00和异或门74LS86设计一个全加器。
四、实验提示1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的+5V 连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接。
指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五、实验接线图及实验结果74LS00中包含4个二与非门,74LS28中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V。
图中的K1、K2是电平开关输出,LED0是电平指示灯。
1.测试74LS00逻辑关系接线图及测试结果(每个芯片的电源和地端要连接)图1.1 测试74LS00逻辑关系接线图表1.1 74LS00真值表输 入输 出 引脚1引脚2 引脚3 L L HL H H HL H HHL2. 测试74LS28逻辑关系接线图及测试结果i.ii.iii. 图1.2 测试74LS28逻辑关系接线图表1.2 74LS28真值表i. 输 入 ii. 输 出 iii. 引脚2 iv. 引脚3v. 引脚1 vi. L vii. L viii. H ix. L x. H xi. L xii. Hxiii. L xiv. L xv. H xvi. Hxvii. L3.测试74LS86逻辑关系接线图及测试结果图1.3 测试74LS86逻辑关系接线图表1.3 74LS68真值表输 入输 出 引脚1引脚2 引脚3 L L L L H H H L H HHL4. 使用74LS00和74LS86设计全加器(输入来源于开关K2、K1和K0,输出送到LED 灯LED1和LED0 上,观察在不同的输入时LED 灯的亮灭情况)。
数电实验总结五篇第一篇:数电实验总结数字电子技术是一门理论与实践密切相关的学科,如果光靠理论,我们就会学的头疼,如果借助实验,效果就不一样了,特别是数字电子技术实验,能让我们自己去验证一下书上的理论,自己去设计,这有利于培养我们的实际设计能力和动手能力。
通过数字电子技术实验, 我们不仅仅是做了几个实验,不仅要学会实验技术,更应当掌握实验方法,即用实验检验理论的方法,寻求物理量之间相互关系的方法,寻求最佳方案的方法等等,掌握这些方法比做了几个实验更为重要。
在数字电子技术实验中,我们可以根据所给的实验仪器、实验原理和一些条件要求,设计实验方案、实验步骤,画出实验电路图,然后进行测量,得出结果。
在数字电子技术实验的过程中,我们也遇到了各种各样的问题,针对出现的问题我们会采取相应的措施去解决,比如:1、线路不通——运用逻辑笔去检查导线是否可用;2、芯片损坏——运用芯片检测仪器检测芯片是否正常可用以及它的类型;3、在一些实验中会使用到示波器,这就要求我们能够正确、熟悉地使用示波器,通过学习我们学会了如何调节仪器使波形便于观察,如何在示波器上读出相关参数,如在最后的考试实验《555时基电路及其应用》中,我们能够读出多谐振荡器的Tpl、Tph和单稳态触发器的暂态时间Tw,还有有时是因为接入线的问题,此时可以通过换用原装线来解决。
同时,我们也得到了不少经验教训:1、当实验过程中若遇到问题,不要盲目的把导线全部拆掉,然后又重新连接一遍,这样不但浪费时间,而且也无法达到锻炼我们动手动脑能力的目的此时,我们应该静下心来,冷静地分析问题的所在,有可能存在哪一环节,比如实验原理不正确,或是实验电路需要修正等等,只有这样我们的能力才能有所提高。
2、在实验过程中,要学会分工协作,不能一味的自己动手或是自己一点也不参与其中。
3、在实验过程中,要互相学习,学习优秀同学的方法和长处,同时也要学会虚心向指导老师请教,当然这要建立在自己独立思考过的基础上。
实验一数字电路实验基础一、实验目的⑴掌握实验设备的使用和操作⑵掌握数字电路实验的一般程序⑶了解数字集成电路的基本知识二、预习要求复习数字集成电路相关知识及与非门、或非门相关知识三、实验器材⑴直流稳压电源、数字逻辑电路实验箱、万用表⑵74LS00、74LS02、74LS48四、实验内容和步骤1、实验数字集成电路的分类及特点目前,常用的中、小规模数字集成电路主要有两类。
一类是双极型的,另一类是单极型的。
各类当中又有许多不同的产品系列。
⑴双极型双极型数字集成电路以TTL电路为主,品种丰富,一般以74(民用)和54(军用)为前缀,是数字集成电路的参考标准。
其中包含的系列主要有:▪标准系列——主要产品,速度和功耗处于中等水平▪LS系列——主要产品,功耗比标准系列低▪S系列——高速型TTL、功耗大、品种少▪ALS系列——快速、低功耗、品种少▪AS系列——S系列的改进型⑵单极型单极型数字集成电路以CMOS电路为主,主要有4000/4500系列、40H系列、HC系列和HCT系列。
其显著的特点之一是静态功耗非常低,其它方面的表现也相当突出,但速度不如TTL集成电路快。
TTL产品和CMOS产品的应用都很广泛,具体产品的性能指标可以查阅TTL、CMOS集成电路各自的产品数据手册。
在本实验课程中,我们主要选用TTL数字集成电路来进行实验。
2、TTL集成电路使用注意事项⑴外形及引脚TTL集成电路的外形封装与引脚分配多种多样,如附录中所示的芯片封装形式为双列直插式(DIP)。
芯片外形封装上有一处豁口标志,在辨认引脚分配时,芯片正面(有芯片型号的一面)面对自己,将此豁口标志朝向左手侧,则芯片下方左起的第一个引脚为芯片的1号引脚,其余引脚按序号沿芯片逆时针分布。
⑵电源每片集成电路芯片均需要供电方能正常使用其逻辑功能,供电电源为+5V单电源。
电源正端(+5V)接芯片的VCC引脚,电源负端(0V)接芯片的GND引脚,两者不允许接反,否则会损坏集成电路芯片。
数字电路实验心得体会篇一:数电实验一报告总结数电实验一报告总结实验一就是要求我们进行全加器的设计,对于全加器我们都不陌生,但是要我们真正设计的时候未免不会出现问题,像我,就出现了接线不会接啊,软件不会用啊,什么什么的,好多的错误堆积成心中的一块大石头,就这样,没有信心面对下一个问题,在老师检查的时候心里好紧张好紧张的,一按就出错。
不过实验一是最简单的一个实验了。
篇二:学习数字电路之心得体会学习数字电路之心得体会不知不觉中,本学期数字电路的学习就要结束了,现在回想一下,到底学了哪些东西呢?如果不看书的话,真有点记不住学习内容的先后顺序了,看了目录以后,就明白到底学了什么东西了,最开始学的内容还比较简单,而后面的内容就学得糊里糊涂了,似懂非懂,按老师的说法,就是前面的东西只有十几度的水温,而到了后面,温度就骤升了,需要花更多的时间。
其实吧,总的来说,学习的思路还是很清楚的,最开始学的是数制与码制,特别是二进制的一些东西,主要是为后面的学习打基础,因为对于数字电路来说,输入就是0和1,输出也是这样,可以说,明白二进制是后面学习最基础的要求。
到第二章,又学了一些逻辑代数方面的基本知识,首先就有很多的逻辑代数的公式,然后就是逻辑函数了,我感觉这里的函数和原来学的其实都差不多,只不过这里是逻辑函数,每一个变量的取值只有0和1罢了,然后就是用不同的方式来表达逻辑函数,学了很多方法,有逻辑图,波形图等等,过后又学了逻辑函数的两种标准形式—最小项之和和最大项之积,还有逻辑函数的化简方法,之后还有一些无关项和任意项的知识。
总而言之,前两章的内容还是比较简单的,都是一些基础的东西,没有多大的难度,学习起来也相对轻松。
第三章老师没有讲,是关于门电路的知识,我认为还是比较重要的,因为数字电路的构成就是一系列的门电路的组合,以此来完成一定的功能。
第四章讲的是组合电路,说白了,就是组合门电路来实现特定的功能,其最大的特点就是此时的输出只与此时的输入有关,并且电路中不含记忆原件。