二次函数综合训练(五)相似三角形
- 格式:doc
- 大小:117.00 KB
- 文档页数:4
2023年中考数学压轴题专项训练压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似三角形)题型一:二次函数与等腰三角形存在性问题例1.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.题型二:二次函数与直角三角形存在性问题例2.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B 的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.题型三:二次函数与等腰直角三角形存在性问题例3.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.题型四:二次函数与相似三角形存在性问题例4.(2023•宜兴市一模)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C,连接BC、AC.(1)求二次函数的函数表达式;(2)设二次函数的图象的顶点为D,求直线BD的函数表达式以及sin∠CBD的值;(3)若点M在线段AB上(不与A、B重合),点N在线段BC上(不与B、C重合),是否存在△CMN 与△AOC相似,若存在,请直接写出点N的坐标,若不存在,请说明理由.一.解答题(共20小题)1.(2023•绥宁县模拟)如图,一次函数y=12x+2与x轴,y轴分别交于A、C两点,二次函数y=ax2+bx+c的图象经过A、C两点,与x轴交于另一点B,其对称轴为直线x=−3 2.(1)求该二次函数表达式;(2)在y轴的正半轴上是否存在一点M,使以点M、O、B为顶点的三角形与△AOC相似,若存在,求出点M的坐标,若不存在,请说明理由;(3)在对称轴上是否存在点P,使△P AC为等腰三角形,若存在,求出点P的坐标;若不存在,请说明理由.2.(2023•泗阳县校级一模)如图,二次函数y=ax2+bx+4与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C.(1)求函数表达式及顶点坐标;(2)连接AC,点P为线段AC上方抛物线上一点,过点P作PQ⊥x轴于点Q,交AC于点H,当PH =2HQ时,求点P的坐标;(3)是否存在点M在抛物线上,点N在抛物线对称轴上,使得△BMN是以BN为斜边的等腰直角三角形,若存在,直接写出点M的横坐标;若不存在,请说明理由.3.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.4.(2023•崂山区开学)如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4).与x轴交于点B,C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c(a≠0)的表达式;(2)判断△ABC的形状,并说明理由;(3)如图2,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(4)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.5.(2023•泰山区校级一模)已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,求出此时点N的坐标,并说明理由;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.(2023•灞桥区校级二模)如图,二次函数y=−12x2−x+4的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)若点P在抛物线对称轴上,且在x轴上方,当△PBC为等腰三角形时,求出所有符合条件的点P 的坐标.7.(2023春•仓山区校级期中)如图抛物线y=﹣x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求二次函数的解析式及顶点P的坐标;(2)过定点(1,3)的直线l:y=kx+b与二次函数的图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.8.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.9.(2023•广水市模拟)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B',E',当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.是否存在点M使△PBC为直角三角形,若存在,请直接写出点M的坐标,若不存在,请说明理由.10.(2023•江油市模拟)抛物线y=ax2+114x−6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.11.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数的表达式;(2)点M为一次函数下方抛物线上的点,△ABM的面积最大时,求点M的坐标;(3)设一次函数y=0.5x+2的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.12.(2023•儋州一模)如图,在直角坐标系中有Rt△AOB,O为坐标原点,A(0,3),B(﹣1,0),将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=ax2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.13.(2023•保亭县一模)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.14.(2022秋•蔡甸区期末)如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.15.(2023•二道区校级一模)已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.(1)求a、b的值;(2)如图1,M为∠APC内一点,且PM=1,E,F分别为边P A和PC上两个动点,求△MEF周长的最小值;(3)若△P AC是直角三角形,求点C的坐标.16.(2023•靖江市一模)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴交于点A,与y轴交于点(0,−32),顶点为C(﹣1,﹣2).(Ⅰ)求该二次函数的解析式;(Ⅱ)过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(Ⅲ)当p+q≥﹣2时,试确定实数p,q的值,使得当p≤x≤q时,p≤y≤q.17.(2023•泰山区一模)二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y 轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.18.(2023•东营区一模)如图,已知二次函数的图象与x轴交于A(1,0)和B(﹣3,0)两点,与y轴交于点C(0,﹣3),直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E.(1)求抛物线的解析式;(2)如图1,点M在AE下方的抛物线上运动,求△AME的面积最大值;(3)如图2,在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由.19.(2023•铁西区模拟)如图①,已知抛物线y=mx2﹣3mx﹣4m(m<0)的图象与x轴交于A、B两点(A 在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴交于点E,且OC=2OE.(1)求出抛物线的解析式;(2)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,若△MCN与△BQM相似,请求出Q的坐标;(3)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M',是否存在点Q,使得M'恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.20.(2023•东胜区模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣2,0),B(4,0),C(0,8)三点,点P是直线BC上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC的面积最大,求此时P点坐标及△PBC面积的最大值;(3)在y轴上是否存在点Q,使以O,B,Q为顶点的三角形与△AOC相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
专题05 二次函数与实际应用(图形动态问题)1.(2021—2022江苏苏州九年级月考)如图所示,已知ABC 中,12BC =,BC 边上的高6h =,D 为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x ,则DEF 的面积y 关于x 的函数图象大致为( )A .B .C .D .【答案】D【分析】可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的性质可求出EF ,进而求出函数关系式,由此即可求出答案.【详解】解:如图,过点A 向BC 作AH ⊥BC 于点H ,∵//EF BC ,∴△AEF ∽△ABC , ∴EF h x BC h -=,即6126EF x -=, ∴()26EF x =-,∴y =12×2(6-x )x =-x 2+6x (0<x <6),∴该函数图象是抛物线y =-x 2+6x (0<x <6)的部分,故选:D .【点睛】此题考查相似三角形的判定和性质,二次函数的图象,解题的关键是综合运用相关知识解题.2.(2021·山东邹城·中考二模)如图,四边形ABCD 是边长为1的正方形,点E 是射线AB 上的动点(点E 不与点A ,点B 重合),点F 在线段DA 的延长线上,且AF AE =,连接ED ,将ED 绕点E 顺时针旋转90︒得到EG ,连接,,EF FB BG .设AE x =,四边形EFBG 的面积为y ,下列图象能正确反映出y 与x 的函数关系的是( )A .B .C .D .【答案】B【分析】分两种情况求出函数的解析式,再由函数解析式对各选项进行判断.【详解】解:∵四边形ABCD 是边长为1的正方形,∴∠DAB =90°,AD =AB ,在△ADE 和△ABF 中,AD AB DAE BAF AE AF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABF (SAS ),∴∠ADE =∠ABF ,DE =BF ,∵∠DEG =90°,∴∠ADE +∠AED =∠AED +∠BEG ,∴∠BEG =∠ADE ,∴∠BEG =∠ABF ,∴EG //BF ,∵DE =BF ,DE =GE ,∴EG =BF ,∴四边形BFEG 是平行四边形,∴四边形EFBG 的面积=2△BEF 的面积=2⨯12BE •AF ,设AE =x ,四边形EFBG 的面积为y ,当0≤x ≤1时,y =(1-x )•x =-x 2+x ;当x >1时,y =(x -1)•x =x 2-x ;综上可知,当0≤x ≤1时,函数图象是开口向下的抛物线;当x >1时,函数图象是开口向上的抛物线,符合上述特征的只有B ,故选:B .【点睛】本题综合考查了正方形的性质和二次函数图象及性质,分段求出函数的解析式是解题的关键.3.(2021·山东威海·中考真题)如图,在菱形ABCD 中,2cm AB =,60D ∠=︒,点P ,Q 同时从点A 出发,点P 以1cm /s 的速度沿A ﹣C ﹣D 的方向运动,点Q 以2cm /s 的速度沿A﹣B ﹣C ﹣D 的方向运动,当其中一点到达D 点时,两点停止运动.设运动时间为x (s ),APQ的面积为y (cm 2),则下列图象中能大致反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先证明∠CAB =∠ACB =∠ACD =60°,再分0≤x ≤1、1<x ≤2、2<x ≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D =60°,∴△ABC ,ACD 都是等边三角形,∴∠CAB =∠ACB =∠ACD =60°.如图1,当0≤x ≤1时,AQ =2x ,AP =x ,作PE ⊥AB 于E ,∴sin PE AP PAE x =∠=, ∴21332222y x x =⨯=, 故D 选项不正确;如图2,当1<x ≤2时,CP =2-x ,CQ =4-2x ,BQ =2x -2,作PF ⊥BC 与F ,作QH ⊥AB 于H ,∴)sin 2PF CP PCF x =∠=-,))sin 221QH BQ B x x =∠=-=-,∴)()()22113221422222y x x x x =-⨯--⨯--=, 故B 选项不正确;当2<x ≤3时,CP =x -2,CQ =2x -4,∴PQ =x -2,作AG ⊥CD 于G ,∴sin 2AG AC ACD =∠==∴()132322y x x =⨯-= 故C 不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.4.(2021—2022福建厦门市九年级期中)如图,将矩形OABC 置于平面直角坐标系xOy 中,A ,(0,2)C .抛物线y =﹣x 2+bx +c 经过点B ,C ,顶点为D .将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<360°),得到矩形OA 'B 'C ',记A 'C '的中点E ,连结DE ,线段DE 的长度最大值为 ___.【答案】2##【分析】由A 0),(0,2)C ,得B ,2),用待定系数法可得抛物线解析式为22y x =-++,即得顶点D 5),可得27OD ,根据E 为A C ''的中点,得11222OE A C AC ''===,当D 、O 、E 不构成三角形,即E 在DO 的延长线上时,DE 的长度最大,此时2DE OD OE =+=. 【详解】 解:如图:四边形OABC 是矩形,A 0),(0,2)C ,B ∴2),4AC =,将B ,2),(0,2)C 代入2y x bx c =-++得:2122c c ⎧=-++⎪⎨=⎪⎩,解得2b c ⎧=⎪⎨=⎪⎩∴抛物线解析式为22y x =-++,∴顶点D 5),OD ∴=E 为A C ''的中点,11222OE A C AC ''∴===,在DOE ∆中,DE OD OE <+,∴当D 、O 、E 构成三角形时,2DE <,当D 、O 、E 不构成三角形,即E 在DO 的延长线上时,DE 的长度最大,如图:此时2DE OD OE =+=,故答案为:2.【点睛】本题考查二次函数的综合应用,涉及待定系数法、矩形的性质、三角形三边关系等知识,解题的关键是掌握E 在DO 的延长线上时,DE 的长度最大.5.(2021·浙江·温州市实验中学九年级月考)如图,四边形ABCD 中,AD ∥BC ,AB =10,CD =P 从点A 沿着A -B -C 运动,同时点Q 从点D 沿着D -A 运动,它们同时到达终点,设点P 运动的路程为x ,AQ 的长度为y ,且2163y x =-+. (1)求AD ,BC 的长和四边形ABCD 的面积.(2)连接PQ ,设△APQ 的面积为S ,在P ,Q 的运动过程中,S 是否存在最大值,若存在,求出S 的最大值;若不存在,请说明理由.(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.【答案】(1)120;(2)存在,最大值为1123;(3)24043x=或487x=或12x=【分析】(1)当x=0时,当y=0时,分别求解得出对应线段的长度,过点B作BM⊥AD,过点D作DN⊥BC,求出高,即可求解;(2)分情况讨论(点P在线段AB上、当P在BC上时),得出△APQ的面积的函数表达式,根据函数性质求解即可;(3)分三种情况讨论,利用三角形相似的性质求解即可.【详解】解(1):由题意:∵P,Q两点同时到达终点,所以,当x=0时,y=16,即AD=16;当y=0时,x=24,所以BC=14过点B作BM⊥AD,过点D作DN⊥BC,如下图:又∵AD∥BC,可知四边形BMDN为矩形设AM=m,∴MD=16-m,即BN=16-m,∴CN=m-2,根据BM=DN,可得:102-m2=2-(m-2)2,解得m=6.即BM=8,4CN=∴四边形ABCD 的面积为:(16+14)×8÷2=120(2)当点P 在线段AB 上时,010x <≤,作PE AD ⊥,如下图,则//PE BM ,∴APE ABM △∽△ ∴AP PE AE AB BM AM ==,即45PE x =,35AE x = 21124432(16)2235155APQ S AQ PE x x x x =⨯=-+⨯=-+△ 对称轴为12x =,0a <又∵010x <≤∴10x =时,APQ S 最大,为1123当P 在BC 上时,1024x ≤≤, 186423APQ S AQ BM x =⨯=-+△ 0k <,APQ S 随x 的增大而减小,综上所述,APQ S 的最大值为1123(3)当PQ AB ⊥时,如下图:∴APQ AMB △∽△ ∴AP AQ AM AB =,即2163610x x -+=,解得487x = 当PQ BC ⊥时,可得BP MQ =,即2101663x x -=-+- 解得12x =当PQ CD ⊥时,如下图:∵//AD BC ,∴C QDH ∠=∠又∵90H CND PEQ ∠=∠=∠=︒,PQE DQH ∠=∠∴PEQ DHQ CND △∽△∽△ ∴PE CN EQ DN= 由(1)(2)得45PE x =,35AE x =,4CN =,8DN = ∴231635EQ x x =-+- ∴4452381635x x x =-+-,解得24043x = 综上所得24043x =或487x =或12x = 【点睛】 本题考查了一次函数图象和性质,二次函数最值问题,三角形面积,勾股定理,相似三角形的判定和性质等,是一道关于四边形的综合题,解题关键是熟练掌握并运用二次函数性质、相似三角形的判定和性质等相关知识,并应用数形结合思想、方程思想和分类讨论思想解决问题.6.(2021·吉林·中考真题)如图,在矩形ABCD 中,3cm AB =,AD =.动点P 从点A 出发沿折线AB BC -向终点C 运动,在边AB 上以1cm/s 的速度运动;在边BC的速度运动,过点P 作线段PQ 与射线DC 相交于点Q ,且60PQD ∠=︒,连接PD ,BD .设点P 的运动时间为()s x ,DPQ 与DBC △重合部分图形的面积为()2cm y .(1)当点P 与点A 重合时,直接写出DQ 的长;(2)当点P 在边BC 上运动时,直接写出BP 的长(用含x 的代数式表示); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)1;(2))3PB x =-;(3)222)3)(34)x x y x x x ≤≤⎪⎪⎪=<≤⎨⎪⎪<≤⎪⎪⎩ 【分析】(1)在Rt PDQ中,由tan 60ADDQ︒== (2)点P 在AB 上运动时间为()313s ÷=,则点P 在BC上时)3PB x -.(3)分类讨论①:点P 在AB 上,点Q 在CD 上;②:点P 在AB 上,点Q 在DC 延长线上;③:点P 在BC 上. 【详解】 解:(1)如图,在Rt PDQ中,AD =60PQD ∠=︒,∴tan 60ADDQ︒==∴1DQ AD ==. (2)点P 在AB 上运动时间为()313s ÷=, ∴点P 在BC上时:)3PB x -.(3)当03x ≤≤时,点P 在AB 上,作PM CD ⊥于点M ,PQ 交AB 于点E ,作EN CD ⊥于点N ,同(1)可得1MQ AD ==. ∴1DQ DM MQ AP MQ x =+=+=+, 当13x +=时2x =,①∴02x ≤≤时,点Q 在DC 上,∵tan BC BDC CD ∠==∴30DBC ∠=︒, ∵60PQD ∠=︒, ∴90DEQ ∠=°. ∵1sin 302EQ DQ ︒==, ∴1122x EQ DQ +==,∵sin 60EN EQ ︒==,∴)1EN x ==+,∴()))21111122y DQ EN x x x =⋅=++=+)202x x =≤≤.②当23x <≤时,点Q 在DC 延长线上,PQ 交BC 于点F ,如图, ∵132CQ DQ DC x x =-=+-=-,tan 60CFCQ︒=,∴)tan 602CF CQ x =⋅︒-,∴211(2)2)22CQF S CQ CF x x =⋅=--=-+△∴22DEQ CQF y S S =-=+-+⎝△△23)x x x =<≤.③当34x <≤时,点P 在BC 上,如图,∵3)CP CB BP x =--=,∴11(34)22y DC CP x x =⋅=⨯=<≤.综上所述:222)3)(34)x x y x x x x ≤≤⎪⎪⎪=<≤⎨⎪⎪<≤⎪⎪⎩. 【点睛】题目主要考察运用三角函数解三角形求出相应边的长度,然后利用三角形面积公式确定函数解析式,同时也对二次函数在几何动点问题进行考察,难点是在进行分类讨论时,作出对应图形并作出相应辅助线,同时确定相应的自变量范围.7.(2021·湖北天门·中考真题)如图1,已知45RPQ ∠=︒,ABC 中90ACB ∠=︒,动点P 从点A出发,以的速度在线段AC 上向点C 运动,,PQ PR 分别与射线AB 交于E ,F 两点,且PE AB ⊥,当点P 与点C 重合时停止运动,如图2,设点P 的运动时间为s x ,RPQ ∠与ABC 的重叠部分面积为2cm y ,y 与x 的函数关系由15(0)C x <≤和2()5C x n <≤两段不同的图象组成.(1)填空:①当5s x =时,EF =______cm ; ②sin A =______;(2)求y 与x 的函数关系式,并写出x 的取值范围; (3)当236cm y ≥时,请直接写出....x 的取值范围.【答案】(1)①10;(2)222(05)34360900(56)x x y x x x ⎧<≤=⎨-+-<≤⎩;(3)6x ≤≤. 【分析】(1)①先根据等腰直角三角形的判定与性质可得EF PE =,再根据5x =时,50y =即可得; ②先根据运动速度和时间求出AP 的长,再根据正弦三角函数的定义即可得;(2)先求出当点P 与点C 重合时,n 的值,再分05x <≤和5x n <≤两种情况,解直角三角形求出PE 的长,然后利用三角形的面积公式即可得;(3)分05x <≤和56x <≤两种情况,分别利用二次函数的性质即可得. 【详解】解:(1)①,45PE AB RPQ ∠=︒⊥,Rt EFP ∴是等腰直角三角形, EF PE ∴=,由图可知,当5x =时,2115022y EF PE EF =⋅==, 解得10EF =或10EF =-(不符题意,舍去), 故答案为:10;②由题意得:当5x =时,5AP ==则sinPE EF A AP AP ==(2)由函数图象可知,当5x =时,点F 与点B 重合,如图所示:10cm AP PE EF ===,20cm AE ∴=,30cm AB AE BE AE EF ∴=+=+=,在Rt ABC 中,sin BC AB A =⋅=,AC ∴=,则当点P 与点C 重合时,6()n s ==,①当05x <≤时,cm AP =,sin 2cm EF PE AP A x ==⋅=, 则2211222RtEFPy S EF PE EF x ==⋅==; ②当56x <≤时,如图,设PR 交BC 于点N ,过点F 作FM AC ⊥,交AC 延长线于点M ,连接BP ,2cm AP =,sin 2cm EF PE AP A x ==⋅=,4cm AE x ∴==,)cm CP AC AP =-=, (304)cm BE AB AE x ∴=-=-,6cm AF EF AE x =+=,在Rt AFM △中,sin cm FM AF A x =⋅=,cm AM ∴,cm PM AM AP ∴=-=, ,90FM AC ACB ∠=︒⊥,//BC FM ∴, PCN PMF ∴~,CN CP FM PM ∴==,解得(cm)CN =,BN BC CN ∴=-=-,则1122BNP BEPy SSBN CP BE PE =+=⋅+⋅,11)(304)222x x =-+-⋅, 234360900x x =-+-,综上,222(05)34360900(56)x x y x x x ⎧<≤=⎨-+-<≤⎩; (3)①当05x <≤时,22y x =,令2236x =,解得x =x =-, 在05x <≤内,y 随x 的增大而增大,∴当36y ≥时,5x ≤;②当56x <≤时,234360900x x y =-+-, 此二次函数的对称轴为3609034217x =-=-⨯,则由二次函数的性质可知,当90517x <≤时,y 随x 的增大而增大;当90617x <≤时,y 随x 的增大而减小,当5x =时,2345360590050y -⨯+⨯-==, 当6x =时,234636069003650y -⨯+⨯-=<=, 则当6x =时,y 取得最小值,最小值为36, 即在56x<≤内,都有36y ≥,综上,当236cm y ≥时,x 的取值范围为6x ≤. 【点睛】本题考查了二次函数的图象与性质、解直角三角形、相似三角形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论,并通过作辅助线,构造相似三角形和直角三角形是解题关键.8.(2021·内蒙古·包头市第四十八中学九年级月考)在矩形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm /s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ = ,PB = (用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于26cm 2?若存在,请求出此时t 的值;若不存在,请说明理由.(4)是否存在t 的值,使△BPQ 的面积最大,若存在,请直接写出此时t 的值;若不存在,请说明理由.【答案】(1)2t ,(5)t -;(2)2;(3)存在.1t =时,使得五边形APQCD 的面积等于26 2cm ;(4)存在, 52t =时,使得PBQ ∆的面积最大,等于2542cm .【分析】(1)根据路程与速度的关系解决问题即可;(2)利用勾股定理得到方程222(5)(2)5t t -+=,求解即可得到结果;(3)根据长方形ABCD 的面积减去PBQ ∆的面积等于五边形APQCD 的面积,列出方程,然后求解即可得到结果;(4)根据(3)可知PBQ ∆的面积为252524t ⎛⎫--+ ⎪⎝⎭,据此求解即可.【详解】解:(1)由题意:2BQ t = cm ,(5)PB t cm =-, 故答案为2t ,(5)t -.(2)由题意得:222(5)(2)5t t -+=, 解得10t =(不合题意,舍去),22t =, ∴当t=2秒时,PQ 的长度等于5cm . (3)存在.理由如下:长方形ABCD 的面积是:25630()cm ⨯=,使得五边形APQCD 的面积等于26 2cm , 则PBQ ∆的面积为230264()cm -=, 即有:11(5)2422PB BQ t t =-=, 解得14t =,21t =.当4t =时,28BQ t BC ==>,不合题意,舍去, 即当1t =时,使得五边形APQCD 的面积等于262cm . (4)存在,理由如下:由(3)可知PBQ ∆的面积为2211525(5)252224PB BQ t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,即当52t =时,使得PBQ ∆的面积最大,等于2542cm .【点睛】本题考查四边形综合题,考查了矩形的性质,多边形的面积,最值等知识,利用参数构建方程解决问题是解题的关键.9.(2021·广东佛山·九年级月考)如图1,在Rt △ABC 中,∠C =90º,AC =4cm ,BC =3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm /s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2cm /s ;连结PQ .若设运动时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时?PQ //BC ?(2)设△APQ 的面积为y (cm 2),求y 与t 之间的函数关系?(3)是否存在某一时刻t ,使线段PQ 恰好把△ABC 的周长和面积同时平分?若存在求出此时t 的值;若不存在,说明理由.(4)如图2,连结PC ,并把△PQC 沿AC 翻折,得到四边形PQP 'C ,那么是否存在某一时刻t ,使四边形PQP 'C 为菱形?若存在求出此时t 的值;若不存在,说明理由.【答案】(1)t =107;(2)y =-235t +3t (0<t <2);(3)不存在,理由见解析;(4)存在,t =109【分析】(1)当PQ ∥BC 时,我们可得出△APQ 和△ABC 相似,那么可得出关于AP ,AB ,AQ ,AC 的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,由相似三角形的性质构建二次函数即可解决问题.(3)如果将△ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是△ABC面积的一半,从而判断出是否存在这一时刻.(4)过P作PD⊥AC于点D,若QD=CD,则PQ=PC,四边形PQP'C就为菱形,同(2)的方法求出AD的表达式,再根据QD=CD即可求出t的值.【详解】解:(1)连接PQ,4,3,90,AC BC C==∠=︒5,AB∴==若APAB=AQAC时,PQ//BC,即55t-=24t,∴t=10 7(2)过P作PD⊥AC于点D,则有APAB=PDBC,即55t-=3PD,∴PD=35(5-t)∴y=12·2t·35(5-t)=-235t+3t(0<t<2)(3)若平分周长则有:AP+AQ=12(AB+AC+BC),即:5-t +2t =6, ∴t =1当t =1时,y =3.4;而三角形ABC 的面积为6,显然不存在.(4)过P 作PD ⊥AC 于点D ,若QD =CD ,则PQ =PC ,四边形PQP 'C 就为菱形.同(2)方法可求AD =45(5-t ),所以: 45(5-t )-2t =4-45(5-t ); 解之得:t =109. 即t =109时,四边形PQP 'C 为菱形.【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会由参数构建方程解决问题. 10.(2021·天津·中考真题)在平面直角坐标系中,O 为原点,OAB 是等腰直角三角形,90,OBA BO BA ∠=︒=,顶点()4,0A ,点B 在第一象限,矩形OCDE 的顶点7,02E ⎛⎫- ⎪⎝⎭,点C 在y 轴的正半轴上,点D 在第二象限,射线DC 经过点B .(Ⅰ)如图①,求点B 的坐标;(Ⅰ)将矩形OCDE 沿x 轴向右平移,得到矩形O C D E '''',点O ,C ,D ,E 的对应点分别为O ',C ',D ,E ',设OO t '=,矩形O C D E ''''与OAB 重叠部分的面积为S .①如图②,当点E '在x 轴正半轴上,且矩形O C D E ''''与OAB 重叠部分为四边形时,D E ''与OB 相交于点F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当5922t ≤≤时,求S 的取值范围(直接写出结果即可). 【答案】(Ⅰ)点B 的坐标为()2,2;(Ⅰ)①21717228S t t =-+-, t 的取值范围是1142t ≤<;②2363816S ≤≤. 【分析】(I )过点B 作BH OA ⊥,垂足为H ,由等腰三角形的“三线合一”性质得到122OH OA ==,再由∠BOH =45°得到△OBH 为等腰直角三角形,进而2BH OH ==,由此求得B 点坐标; (II )①由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==,进而得到72FE OE t '==-',再由重叠部分面积OABFOE S S S'=-即可求解;②画出不同情况下重叠部分的图形,分5722t ≤≤和7922t <≤两种情况,将重叠部分的面积表示成关于t 的二次函数,再结合二次函数的最值问题求解. 【详解】解:(I )如图,过点B 作BH OA ⊥,垂足为H .由点()4,0A ,得4OA =. ∵,90BO BA OBA =∠=︒,∴122OH OA ==.又∠BOH =45°,∴△OBH 为等腰直角三角形,∴2BH OH ==. ∴点B 的坐标为()2,2.(II )①由点7,02E ⎛⎫- ⎪⎝⎭,得72OE =.由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==. ∴72OE OO O E t '''='=--,90FE O ∠='︒.∵BO BA =,90OBA ∠=︒, ∴45BOA BAO ∠=∠=︒. ∴9045OFE BOA ∠=︒-∠='︒ ∴FOE OFE ∠=∠''. ∴72FE OE t '==-'. ∴2117222FOE SOE FE t '⎛⎫=⋅=- ⎪⎝'⎭'. ∴211742222OABFOE S S St '⎛⎫=-=⨯⨯-- ⎪⎝⎭. 整理后得到:21717228S t t =-+-.当'O 与A 重合时,矩形O C D E ''''与OAB 重叠部分刚开始为四边形,如下图(1)所示:此时4OO t '==,当'D 与B 重合时,矩形O C D E ''''与OAB 重叠部分为三角形,接下来往右平移时重叠部分一直为三角形直到'E 与A 点重合,如下图(2)所示:此时''711222t OO DD ===+=, ∴t 的取值范围是1142t ≤<, 故答案为:21717228S t t =-+-,其中:1142t ≤<;②当5722t ≤≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图3所示:此时'4AO t =-,∠BAO =45°,'AO F 为等腰直角三角形, ∴''4AO FO t , ∴22'111''(4)48222AO FSAO FO t t t , ∴重叠部分面积22'114(48)4422AOBAO FS SSt t t t , ∴S 是关于t 的二次函数,且对称轴为4t =,且开口向下, 故自变量离对称轴越远,其对应的函数值越小, 故将72t =代入, 得到最大值217731()442228S , 将52t =代入, 得到最小值215523()442228S, 当7922t <≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图4所示:此时''4'AO OA OO t FO =-=-=,7'''2OE EE EO t ME =-=-= 'AO F 和'OE M 均为等腰直角三角形, ∴22'111''(4)48222AO FSAO FO t t t , 22'1171749''()222228OE MSOE ME t t t , ∴重叠部分面积222''1174915814(48)()222828AOBOE MAO FS SSSt t t t t t , ∴S 是关于t 的二次函数,且对称轴为154t =,且开口向下, 故自变量离对称轴越远,其对应的函数值越小,故将154t =代入,得到最大值21515158163()424816S , 将92t =代入, 得到最小值291598127()22288S , ∵272388,6331168, ∴S 的最小值为238,最大值为6316, 故答案为:2363816S ≤≤. 【点睛】本题考查了矩形的性质、坐标与图形性质、平移的性质、直角三角形的性质、二次函数的最值等问题,属于综合题,需要画出动点不同状态下的图形求解,本题难度较大,需要分类讨论. 11.(2021·安徽·中考一模)如图,直线443y x =+与x 轴、y 轴分别交于点A ,B ,过点()40C ,的直线恰好与y 轴交于点B ,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作//PQ BC 交AB 于点Q ,点A 关于PQ 的对称点为点D ,连接PD QD BD ,,.(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)设点P 的坐标为()0m ,,若PDQ 和ABC 重叠部分的面积S 与点P 的横坐标m 之间的函数解析式为221(3)326161 4772a m m S m bm m ⎧⎛⎫+-<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎩,,其图象如图②所示,请结合图①、②,求出a ,b 的值;(3)当BDQ △为直角三角形时,求出点P 的坐标.【答案】(1)1,02⎛⎫ ⎪⎝⎭;(2)27a =,207b =;(3)点P 的坐标为3,07⎛⎫ ⎪⎝⎭或4,07⎛⎫⎪⎝⎭【分析】(1)由直线AB 与y 轴交于点B ,即可得出()04B ,,再由()40C ,,易得直线BC 的解析式为4y x =-+.设点P 的坐标为()0x ,,由题意可知4OB OC PQ BC ==,∥,即可求出290APD QPA ∠=∠=︒,所以可知点D 的坐标为()4x x -+,,最后由AP PD =,即可得出34x x +=-+,解x 即可得出点P 的坐标;(2)设直线PQ 的解析式为y x n =-+,即得y x m =-+.联立443y x y x m⎧=+⎪⎨⎪=-+⎩,可求出Q 点坐标为31241277m m -+⎛⎫⎪⎝⎭,.当231m -<≤时,点D 在ABC 内, 即PQDAPQS SS==,即可列出等式,求出a .再由函数图象可知点3227⎛⎫⎪⎝⎭,在267671m S bm ++=-的图象上,即3261642777b =-⨯++,解出b 即可. (3)由(2)可知312412(04)(3)77m m B D m m Q -+⎛⎫+ ⎪⎝⎭,,,,,.由于BQD ∠不可能为90︒,所以分类讨论①当BDQ ∠为直角时,过点Q ,B 作PD 的垂线,分别交PD 及其延长线于点M ,N ,连接BD .由余角的性质可推出MDQ NBD ∠=∠,即tan tan MDQ NBD ∠=∠,所以MQ NDMD BN=,由题意可知3124124123934(3)17777m m m m MQ m MD m BN m ND m m -+++=-==+-===-+=-,,,,即41217397m m m m+-=+,解出m 即可求出P 点坐标.②当QBD ∠为直角时,即BD QB ⊥,由此可得直线BD 的解析式为344y x =-+,将()3D m m +,代入,即3344m m +=-+,解出m即可求出P 点坐标. 【详解】 (1)对于直线443y x =+,令x =0,则y =4;令y =0,则x =-3. ∴B 点坐标为()04,,A 点坐标为()30-,. 设经过点B 、C 的直线解析式为y kx b =+,则404bk b =⎧⎨=+⎩,解得:14k b =-⎧⎨=⎩,∴设经过点B 、C 的直线解析式为4y x =-+.设点P 的坐标为()0x ,, ∵4OB OC PQ BC ==,∥, ∴45QPA BCO ∠=∠=︒, ∴290APD QPA ∠=∠=︒,∴点D 的坐标为()4x x -+,, ∵AP PD =,∴34x x --=-+(), 解得12x =, ∴点P 的坐标为102⎛⎫⎪⎝⎭,; (2)设直线PQ 的解析式为y x n =-+,将点()0P m ,代入得直线PQ 的解析式的得:y x m =-+, 联立443y x y x m ⎧=+⎪⎨⎪=-+⎩,解得31274127m x m y -⎧=⎪⎪⎨+⎪=⎪⎩.∴31241277m m Q -+⎛⎫⎪⎝⎭,.当231m -<≤时,点D 在ABC 内, ∴重叠部分的面积即为PQD △的面积, ∴[]()()221133224122(3)77PQDAPQQ S S SAP y m a m m m +-===⋅=+=-⋅=+, ∴27a =, ∵由函数图象可得,当2m =时,327S =, ∴将3227⎛⎫⎪⎝⎭,代入267671m S bm ++=-,得3261642777b =-⨯++, 解得207b =. (3)由(2)得,312412(04)(3)77m m B D m m Q -+⎛⎫+ ⎪⎝⎭,,,,,.分析题目可知BQD ∠不可能为90︒,∴①当BDQ ∠为直角时,过点Q 、B 作PD 的垂线,分别交PD 及其延长线于点M 、N ,连接BD .∵9090NDB NBD NDB MDQ ∠+∠=︒∠+∠=︒,, ∴MDQ NBD ∠=∠, ∴tan tan MDQ NBD ∠=∠,即MQ NDMD BN=, ∵3124124123934(3)17777m m m m MQ m MD m BN m ND m m -+++=-==+-===-+=-,,,,∴41217397m m m m+-=+,解得37m =或3m =-(舍去),∴点P 的坐标为307⎛⎫⎪⎝⎭,; ②当QBD ∠为直角时,即BD QB ⊥,由此可得直线BD 的解析式为344y x =-+,将()3D m m +,代入,得3344m m +=-+,解得:47=m , ∴407P ⎛⎫⎪⎝⎭,. 综上,当BDQ △为直角三角形时,点P 的坐标为307⎛⎫ ⎪⎝⎭,或407⎛⎫⎪⎝⎭,. 【点睛】本题为一次函数与二次函数综合题.考查利用待定系数法求解析式,平行线的性质,两直线的交点问题,解直角三角形,两垂直直线的比例系数的关系,综合性强,很难.正确的作出辅助线和利用分类讨论的思想是解答本题的关键.12.(2021·江苏·淮安市中考模拟预测)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形,点,A C 分别在x 轴和y 轴的正半轴上,连接,3,30AC OA OAC =∠=︒,点D 是BC 的中点.(1)OC =_________;点D 的坐标为_________;(2)若在矩形边BC 上存在点E 满足2CE =,如图2,动点P 从点C 出发,沿C O A --以每秒1个单位长度匀速运动,到达点A 后停止运动.点P 在运动过程中,记点C 关于直线PE 的对称点为点C ',求当t 为何值时,点C '落在矩形的一边上.(3)过,,O B D 三点的抛物线记为1C ,点F 为直线OB 上方的抛物线1C 上一点,已知点()1,1M ,点()3,1N ,过,M N 两点的抛物线记为()22:0C y ax bx c a =++<①当FBO BAD ∠=∠时,求点F 的坐标;②过点O 作OG BF ⊥交直线BF 于点G ,记m =,若直线y mx =与抛物线2C 恰好有3个交点,请直接写出实数a 的值.【答案】(132⎛ ⎝;(2),1s ;(3)①⎛ ⎝;②91,.22-- 【分析】(1)由四边形OABC 是矩形,3,30OA OAC =∠=︒,利用锐角三角函数与中点的含义可得答案;(2)分两种情况讨论,如图,当P 在CO 上时,则0t ≤≤ 由,C C '关于PE 对称,则,,,PC PC t OP t CC PE ''===⊥ 再表示32CP OC tOC CE '== 再由勾股定理列方程)222,t t=+⎝⎭解方程可得答案,如图,当P 在AO 上时,3,t ≤≤ 由,C C '关于PE 对称,则2,CE C E '== 此时,A C '重合,同理可得:(3,OP t PC PA t PC '===-= 而(222,PC t =+ 再列方程解方程可得答案;(3)①先求解过,,O B D 抛物线的解析式为:2,y = 如图,作DAB 的外接圆K ,过D 作//,DP OB 与外接圆交于点,P 连接BP 与抛物线的交点为,F 外接圆与OB 交于,H 连接,,,DH FH DA 当//,DP OB 证明,BHD BAD FBO ∠=∠=∠则满足条件,再求解DP 为y = P 的坐标为15,8P ⎛ ⎝⎭同理可得:BP 的解析式为:y = 再解方程组可得答案;②由()1,1M ,点()3,1N ,求解抛物线为()22:4310C y ax ax a a =-++<如图,延长BF 交y 轴于,Q 过O 作OG BF ⊥于,G 过G 作GT y ⊥轴于,T 再求解OG ==可得3,m === 正比例函数为:3y x =或3,y x =- 显然:3y x =-与抛物线记为()22:4310C y ax ax a a =-++<有两个交点,所以:3y x =与抛物线记为()22:4310C y ax ax a a =-++<只有一个交点,从而可得答案.【详解】解:(1)四边形OABC 是矩形,3,30OA OAC =∠=︒,113tan 30,222OC OA CD BC OA ∴=︒=== 3.2D ⎛∴ ⎝(2)如图,当P 在CO 上时,则0t ≤≤ 由,C C '关于PE 对称,则,,,PC PC t OP t CC PE ''===⊥90,PCC CPE CPE CEP '∴∠+∠=︒=∠+∠ ,PCC CEP '∴∠=∠ tan tan ,PCC CEP '∴∠=∠,CP OC CE OC'∴= 32CP OC tOC CE '∴==)222,t t∴=+⎝⎭(30,t t ∴--=解得:t =t =,如图,当P 在AO 3,t ≤ 由,C C '关于PE 对称, 则2,CE C E '== 此时,A C '重合,同理可得:(3,OP t PC PA t PC '===-=而(222,PC t =+((2233,t t ⎡⎤∴+=-⎣⎦66,t ∴=1,t ∴=综上:当t =或)1t s =时,点C '落在矩形的一边上.(3)①设过()(30,0,,2O B D ⎛ ⎝的抛物线为2,y ax bx =+939342a b a b ⎧+=⎪∴⎨+=⎪⎩解得:a b ⎧=⎪⎨⎪=⎩所以抛物线的解析式为:2,y x = 如图,作DAB 的外接圆K ,过D 作//,DP OB 与外接圆交于点,P 连接BP 与抛物线的交点为,F 外接圆与OB 交于,H 连接,,,DH FH DA当//,DP OB 则,DPH PHB ∠=∠∴ ,DH BP = ,BD PH ∴=,BHD BAD FBO ∴∠=∠=∠满足条件,设OB 为,y kx =则3k =k ∴=∴ 设DP为,y b + 3,3,2D ⎛⎝b = b ∴= ∴DP 为y x = ()390,,3,0,2ABD D A ⎛∠=︒⎝9,44K DK AK ⎛∴=== ⎝⎭设,P x ⎛ ⎝⎭由PK DK =可得,2229,4x ⎫⎛⎫∴-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()815230,x x ∴--=12153,,82x x ∴== 当158x =时,158y =15,8P ⎛∴ ⎝⎭同理可得:BP的解析式为:y =2,y y ⎧=⎪⎪∴⎨⎪=⎪⎩解得:2x y =⎧⎪⎨=⎪⎩3x y =⎧⎪⎨=⎪⎩ ()3,3,B.F ⎛∴ ⎝ ②由()1,1M ,点()3,1N ,过,M N 两点的抛物线记为()22:0C y ax bx c a =++<1931a b c a b c ++=⎧∴⎨++=⎩可得:431b a c a =-⎧⎨=+⎩ ∴ 抛物线为()22:4310C y ax ax a a =-++<如图,延长BF 交y 轴于,Q 过O 作OG BF ⊥于,G 过G 作GT y ⊥轴于,T90,QGT OGT TOG OGT ∴∠+∠=︒=∠+∠,QGT TOG ∴∠=∠tan tan ,QGT TOG ∴∠=∠,QT TG TG TO∴= 则2,TG QT TO =:BF y = 则,Q ⎛ ⎝⎭ 设,,G x x ⎛ ⎝⎭2,x ⎛∴= ⎝⎭G 在第一象限,则x >0,3,7x ∴= 则OG =3,m ∴=== 3,m ∴=±∴ 正比例函数为:3y x =或3,y x =-显然:3y x =-与抛物线()22:4310C y ax ax a a =-++<有两个交点,所以:3y x =与抛物线()22:4310C y ax ax a a =-++<只有一个交点,∴ 24313ax ax a x -++=有两个相等的实数根,()243310ax a x a ∴-+++=时,=0,242090,a a ∴++=1291,,22a a ∴=-=- 【点睛】本题考查的矩形与二次函数的综合题,考查了矩形与折叠,锐角三角函数的应用,利用待定系数法求解二次函数的解析式,二次函数与一元二次方程的关系,难度大,灵活选择解题方法是解题的关键.。
中考数学压轴题:二次函数综合、相似三角形存在性问题1.如图,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若C1C2=65,求m的值.2.如图,抛物线y=ax2+bx+√3与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C.(1)求抛物线的解析式,并直接写出点D的坐标;(2)连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.3.如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由;(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.4.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.6.如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.7.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)D是C关于x轴的对称点,P是抛物线上的一点,当△PBD与△AOC相似时,求符合条件的P点的坐标.8.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P 运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;9.如图,已知二次函数y =﹣x 2+bx +c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连接BC .(1)求该二次函数的解析式及点M 的坐标;(2)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标.10.如图,抛物线y =ax 2+bx 经过两点A (﹣1,1),B (2,2).过点B 作BC ∥x 轴,交抛物线于点C ,交y 轴于点D .(1)求此抛物线对应的函数表达式及点C 的坐标;(2)若抛物线上存在点M ,使得△BCM 的面积为72,求出点M 的坐标; (3)连接OA 、OB 、OC 、AC ,在坐标平面内,求使得△AOC 与△OBN 相似(边OA 与边OB 对应)的点N 的坐标.11.如图1,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.。
第二十七章第2节《相似三角形》训练题(较难) (5)一、单选题1.下列说法正确的是( )A .有一组邻边相等的平行四边形是菱形B .平分弦的直径垂直于弦C .两条边对应成比例且有一个内角相等的两个三角形相似D .对角线相等的四边形是矩形2.已知ABC ,2,则与ABC 相似的三角形的三边长可能是( )A .1B .1 2C .1D .13.如图,在△ABC 中,DE//BC ,AD DB =2,记△ADE 的面积为a ,四边形DBCE 的面积为b ,则a b的值是( )A .45B .59C .23D .49二、填空题4.如图,在矩形ABCD 中,4AB =,6BC =,点E 是AD 上的动点(不与端点重合),在矩形ABCD 内找点F ,使得EF AD ⊥,且满足2·AF AE AD =,则线段BF 的最小值是__________.5.如图,已知矩形ABCD 中,AB=6,BC =8,点F 在边CD 上,连接BF ,沿BF 折叠矩形使点C 落在点E 处.连接AE ,则AE 长度的最小值为___.6.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.8米,BD =1米,BE =0.2米,那么井深AC 为____米.7.如图,ABC 中,90BAC ∠=︒,尺规作图:在BC 上求作E 点,使得ABE △与ABC 相似;(保留作图痕迹,不写作法)8.在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①APE AME ∆≅∆;②PM PN AC +=;③222PE PF PO +=;④POF BNF ∆∆∽;⑤点O 在M 、N 两点的连线上,其中正确的是____________.9.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.10.在ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点1,2F DE AB =,则:AF BC =__________.11.在平面直角坐标系xOy 中,设点P 的坐标为(n -1,3n +2),点Q 是抛物线y =-x 2+x +1上一点,则P ,Q 两点间距离的最小值为______.三、解答题12.如图,在等腰Rt ABC △中,90ACB ∠=︒,点D ,E 分别在AB ,BC 上运动,将线段DE 绕点E 按顺时针方向旋转90°得到线段EF .(1)如图1,若D 为AB 中点,点E 与点C 重合,AF 与DC 相交于点O ,求证:OE OD ;(2)如图2,若点E 不与C ,B 重合,点D 为AB 中点,点G 为AF 的中点,连接DG ,连接BF ,判断线段BF ,CE ,AD 的数量关系并说明理由;(3)如图3,若AB =3AD BD =,点G 为AF 的中点,连接CG ,90GDE ∠=︒,请直接写出CE 的长.13.如图,已知二次函数24y ax bx =++的图象与x 轴交于A (−3,0)、B (1,0)两点,与y 轴交于点C .(1)求二次函数的解析式;(2)当04y ≤≤时,请直接写出x 的范围;(3)点D 是抛物线上位于第二象限的一个动点,连接CD ,当∠ACD=90°时,求点D 的横坐标. 14.已知:如图,在△ABC 中,D 为AB 中点,E 为AC 上一点,延长DE 、BC 交于点F .求证:BF·EC=CF·AE .15.如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)当点Q 在线段CA 上时,如图1,求证:△BPE ∽△CEQ ;(2)当点Q 在线段CA 的延长线上时,如图2,△BPE 和△CEQ 是否相似?说明理由; (3)在(2)的条件下,若BP =1,CQ =92,求PQ 的长.16.如图,在△ABC 中,点D 在BC 边上,点E 在AC 边上,且AD =AB ,∠DEC =∠B . (1)求证:△AED ∽△ADC ;(2)若AE =1,EC =3,求AB 的长.17.如图,在ABC 中,D 、E 分别在边AB ,BC 上,AE 与CD 交于点F ,AE 平分BAC ∠,AB AF AC AE ⋅=⋅.(1)证明AEC AFD ∠=∠.(2)若//EG CD ,交边AC 的延长线于点G .证明CD CG FC BD ⋅=⋅.18.如图,函数2y x bx c =-++的图象经过点(),0A m ,()0,B n 两点,m ,n 分别是方程2230x x --=的两个实数根,且 m n <.(1)求m ,n 的值以及函数的解析式;(2)对于(1)中所求的函数2y x bx c =-++,当03x ≤≤时,求函数y 的最大值和最小值; (3)设抛物线2y x bx c =-++与x 轴的另一个交点为C ,抛物线的顶点为D ,连接AB ,BC ,BD ,求证:BCD OBA ∽△△19.如图,一次函数1y mx n =+与反比例函数()20k y x x=>的图象分别交于点(),4A a 和点()8,1B ,与坐标轴分别交于点C 和点D .(1)求一次函数与反比例函数的表达式;(2)在x 轴上是否存在点P ,使COD ∆与ADP ∆相似,若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,小华和同伴在游玩期间,发现在某地小山坡的点E 处有颗梅花树,他想利用平面镜测量的方式计算一下梅花树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且3BC =米,11.5CD =米,120CDE ∠=︒,已知小华的身高AB 为2米,请你利用以上的数据求出DE 的长度.(结果保留根号)21.问题背景:已知EDF ∠的顶点D 在ABC ∆的边AB 所在直线上(不与,A B 重合),DE 交AC 所在直线于点,M DF 交BC 所在直线于点,N B A EDF ∠=∠=∠(1)初步尝试:如图①,当ABC ∆是等边三角形,判断:ADM ∆ BND ∆(填相似或全等关系);(2)类比探究:如图②,当AC BC =时,上述结论是否还成立?请说明理由.(3)延伸拓展:如图③,在(2)的条件下,当点D 在BA 的延长线上运动到点M 与点C 重合时,若:1:2,:1:3,1ADM BND S S BN BM AD ∆∆===,则DN =22.如图,在菱形ABCD 中,点E ,F 分别在边BC ,DC 上,AE 与BD 交于点H ,AE 的延长线与DC 的延长线交于点G ,∠BAE=∠DAF .(1)求证:AD 2=DF·DG ; (2)若HE=4,EG=5,求AH 的长.23.苏科版九年级下册数学课本91页有这样一道习题:如图,在正方形ABCD 中,E 是AD 的中点,F 是CD 上一点,且CF=3DF ,图中有哪几对相似三角形?把它们表示出来,并说明理由(1)复习时,小明与小亮、数学老师交流了自己的两个见解,并得到了老师的认可: ①可以假定正方形的边长AB =4a ,则AE =DE =2a ,DF =a ,利用“两边分别成比例且夹角相等的两个三角形相似”可以证明△ABE ∽△DEF ;请结合提示写出证明过程.②图中的相似三角形共三对,而且可以借助于△ABE 与△DEF 中的比例线段来证明△EBF 与它们相似.证明过程如下:证明:∵ABE DEF ∽△△∴,ABE AB BE DEF DE EF=∠=∠ 又∵9A 90,0ABE AEB ︒︒=∴∠+∠=∠∴90EF ,90D AEB BEF A BEF ︒︒∠+∠=∠=∴∠=∠= ∴AE ,,AB BE AB AE DE AE EF BE EF=∴== ∴,ABE EBF DEF EBF ∴∆∆∆∆∽∽(2)交流之后,小亮尝试对问题进行了变化,在老师的帮助下,提出了新的问题,请你解答: 已知:如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC .(AB >AE )①求证:△AEF ∽△ECF ;②设BC =2,AB =a ,是否存在a 值,使得△AEF 与△BFC 相似.若存在,请求出a 的值;若不存在,请说明理由.24.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB 在两棵同样高度的树苗CE 和DF 之间,树苗高2 m ,两棵树苗之间的距离CD 为18 m ,在路灯的照射下,树苗CE 的影长CG 为1 m ,树苗DF 的影长DH 为3 m ,点G 、C 、B 、D 、H 在一条直线上.求路灯AB 的高度.25.顶角等于36的等腰三角形称为黄金三角形,如图1,在ABC 中,已知:,AB AC =且36,A DE ∠=是AB 的垂直平分线,交AC 于D ,并连接BD .(1)BCD △是不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(2)设1,AB BC x ==,试求x 的值;(3)如图2,在ABC 中将BC 延长至点F ,使1CF AC ==,求BC AF的值. 26.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点,2F CD DE =.(1)求证:ABF CEB △△;(2)若DEF 的面积为2,求平行四边形ABCD 的面积.27.如图,平面直角坐标系中,点A 、点B 在x 轴上(点A 在点B 的左侧),点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC ,抛物线y =ax 2-8ax +12a (a <0)经过A 、B 、C 三点.(1)求线段OB 、OC 的长;(2)求点C 的坐标及该抛物线的函数关系式;(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标:若不存在,请说明理由.28.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m,求小明举起的手臂超出头顶的高度是多少米?29.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G.(1)求证:△ABE∽△CGE;(2)若AF=2FD,求BEEG的值.30.如图,在边长为1小正方形的网格中,△ABC的顶点A、B、C均落在格点上,请用无刻度的直尺按要求作图.(保留画图痕迹,不需证明)(1)如图①,点P在格点上,在线段AB上找出所有..符合条件的点Q,使△APQ和△ABC相似;(2)如图②,在AC上作一点M,使以M为圆心,MC为半径的⊙M与AB相切,并直接写出此时⊙M的半径为.【答案与解析】1.A【解析】根据菱形的判定定理、垂径定理的推论、相似三角形的判定定理、矩形的判定定理依次对选项进行判断即可.A:根据菱形的判定定理可知,有一组邻边相等的平行四边形是菱形,故此选项符合题意;B:根据垂径定理可知,平分弦的直径不一定垂直于弦,但垂直于弦的直径一定平分这条弦,故此选项不符合题意;C:根据三角形相似的判定定理可知,两条边对应成比例且夹角相等的两个三角形相似,故此选项不符合题意;D:对角线相等且平分的四边形是矩形,故此选项不符合题意;故选:A.本题考查矩形、菱形、相似三角形的判定定理及垂径定理的推论,掌握各判定定理是解题的关键.2.A【解析】根据相似三角形的判定定理即可得到结论.解:∵△ABC,2,∴△ABC:2=1∴△ABC相似的三角形三边长可能是1故选:A.本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.3.A【解析】先由DE∥BC判定△ADE∽△ABC,再由相似三角形的面积比等于相似比的平方,得出含有a与b 的比例式,化简即可得出答案.解:∵DE∥BC,∴△ADE∽△ABC,∵23 ADAB,∴49ABCaS∆=,∴49aa b=+,∴9a=4a+4b,∴5a=4b,∴4 =5ab.故选:A.本题考查了相似三角形的判定与性质,数形结合并熟练掌握相似三角形的性质是解题的关键.4.2【解析】连结FD,由2·AF AE AD=可证△FAE∽△DAF,可得∠DFA=90°,可知点F在以AD中点为圆心,3为半径的半圆上运动,由B、F、O三点共线时,利用两点之间线段最短知BF最短,在Rt△ABO中,由勾股定理得,可求BF=5-3=2.连结FD,∵2·AF AE AD=,∴AF AD AE AF=,∵∠FAE=∠DAF,∴△FAE∽△DAF,∴∠FEA=∠DFA,∵EF AD⊥,即∠FEA=90°,∴∠DFA=90°,∴点F在以AD中点为圆心,3为半径的半圆上运动,当B、F、O三点共线时,BF最短,在Rt△ABO中,由勾股定理得,,BF=5-3=2,BF的最小值为2,故答案为:2.本题考查三角形相似判定与性质,圆周角性质,勾股定理,两点之间线段最短,掌握三角形相似的判定方法和性质的应用,会根据直角确定点F 在圆周上运动,利用两点之间线段最短解决问题是关键.5.154【解析】结合题意,得8BE BC ==;当点F 和点D 重合时,ABE ∠取最小值,过点A 作AM BD ⊥交BD 于点M ,过点E 作EN BD ⊥交BD 于点N ,得90AMB END ∠=∠=,//AM EN ;根据轴对称和矩形性质,得ABD MBA △∽△,EDB NDE △∽△,根据相似比性质,计算得AM ,BM ,EN ,DN ,通过证明四边形AMNE 为平行四边形,得AE ;当ABE ∠取最小值时,AE 长度取最小值,从而完成求解.∵AB=6,BC =8,点F 在边CD 上,连接BF ,沿BF 折叠矩形使点C 落在点E 处∴8BE BC ==如下图,当点F 和点D 重合时,ABE ∠取最小值,过点A 作AM BD ⊥交BD 于点M ,过点E 作EN BD ⊥交BD 于点N∴90AMB END ∠=∠=,//AM EN∵沿BF 折叠矩形使点C 落在点E 处∴6DE CD AB ===,BED BCD ∠=∠∵矩形ABCD∴90BAD BED BCD ∠=∠=∠=,8AD BC ==∴90AMB BAD ABM ABD ⎧∠=∠=⎨∠=∠⎩,90END BED EDN EDB⎧∠=∠=⎨∠=∠⎩,10BD == ∴ABD MBA △∽△,EDB NDE △∽△ ∴BM AM AB AB AD BD ==,DN EN DE DE EB BD== ∴245AB AM AD BD =⨯=,185AB BM AB BD =⨯=,245DE EN EB BD =⨯=,185DE DN DE BD =⨯= ∴245AM EN ==,181********MN BD BM DN =--=--= 又∵//AM EN∴四边形AMNE 为平行四边形 ∴145AE MN ==, 当ABE ∠取最小值时,AE 长度取最小值∴AE 长度的最小值为145 故答案为:145. 本题考查了轴对称、三角形边角关系、相似三角形、勾股定理,平行四边形、矩形的知识;解题的关键是熟练掌握轴对称、三角形边角关系、相似三角形、平行四边形、矩形的性质,从而完成求解. 6.8【解析】根据相似三角形的判定和性质定理即可得到结论.解:∵BD ⊥AB ,AC ⊥AB ,∴BD ∥AC ,∴△ACE ∽△BDE , ∴AC AE BD BE=, ∴ 1.80.210.2AC -=, ∴AC=8(米),故答案为:8.本题考查了相似三角形的应用,正确的识别图形是解题的关键.7.见解析【解析】过点A 作AE ⊥BC 于E ,因为∠B=∠B, 90BAC BEA ∠=∠=︒,即可得到△ABE 与△ABC 相似.解:如图所示,点E 即为所求.本题考查作图-复杂作图,过直线外一点作已知直线的垂线,以及三角形相似的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.①②③⑤【解析】根据正方形的每一条对角线平分一组对角可得∠PAE=∠MAE=45°,然后利用“角边角”证明△APE 和△AME 全等,由此判断①;根据全等三角形对应边相等可得PE=EM=12PM ,同理,FP=FN=12NP ,证出四边形PEOF 是矩形,得出PF=OE ,证得△APE 为等腰直角三角形,得出AE=PE ,PE+PF=OA ,即可得到PM+PN=AC ,由此判断②;根据矩形的性质可得PF=OE ,再利用勾股定理即可得到PE 2+PF 2=PO 2;由此判断③;判断出△POF 不一定等腰直角三角形,△BNF 是等腰直角三角形,从而确定出两三角形不一定相似;⑤证出△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,从而判断④由垂直平分线的性质求得点O 是直角三角形PMN 的外接圆圆心,从而结合圆周角定理判断⑤. 解:①∵四边形ABCD 是正方形,∴∠BAC=∠DAC=45°,∵PM ⊥AC ,∴∠AEP=∠AEM=90°,在△APE 和△AME 中,BAC DAC AE AE AEP AEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APE ≌△AME (ASA ),故①正确;②∵△APE≌△AME,∴PE=EM=12 PM,同理,FP=FN=12 NP,∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE ∴四边形PEOF是矩形.∴PF=OE,∵在△APE中,∠AEP=90°,∠PAE=45°,∴△APE为等腰直角三角形,∴AE=PE,∴PE+PF=OA,又∵PE=EM=12PM,FP=FN=12NP,OA=12AC,∴PM+PN=AC,故②正确;③∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确;④∵△APE≌△AME,∴AP=AM△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故④错误;∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN 是直径,∴M ,O ,N 共线,故⑤正确.故答案为:①②③⑤此题主要考查了正方形的性质、矩形的判定、勾股定理的综合应用、等腰直角三角形的判定与性质、相似三角形的判定与性质等知识;熟记各性质并准确识图是解决问题的关键.9.73【解析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大,此时BP 最大值为:27+=BC CP ,∴OQ 的最大值为:73. 本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.10.2:3【解析】证明△ABF ∽△DEF ,进而得到2=1=AB AF DE DF ,设AF=2k(k≠0),则DF=k ,得到BC=AD=3k ,由此即可求解.解:∵ABCD 为平行四边形,∴AB ∥DE ,∴∠A=∠FDE ,且∠AFB=∠DFE ,∴△ABF ∽△DEF , ∴2=1=AB AF DE DF , 设AF=2k(k≠0),则DF=k ,BC=AD=3k , ∴2233==AF k BC k , 故答案为:2:3.本题考查了平行四边形的性质及相似三角形的判定和性质,属于基础题,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.11【解析】先求出点P 所在直线的解析式,再求出与点P 所在直线平行的直线解析式,然后求出这两条直线间的距离,即可求解.∵点P 的坐标为(n -1,3n +2),∴设x= n -1,y=3n +2,∴y=3x+5,即:点P 在直线y=3x+5上,设与直线y=3x+5平行的直线为:y=3x+b ,当直线y=3x+b 与抛物线y =-x 2+x +1相切时,则3x+b=-x 2+x +1,即:x 2+2x+b-1=0,∴∆=2241(1)0b -⨯⨯-=,解得:b=2,∴与直线y=3x+5平行且和抛物线相切的直线为:y=3x+2,此时,直线y=3x+5与直线y=3x+2的距离就是P ,Q 两点间距离的最小值.设直线y=3x+5与y 轴的交点为C ,直线y=3x+2与x ,y 轴的交点分别为F ,E ,如图所示,则C(0,5),E(0,2),F(23-,0),∴CE=3,OE=2,OF=23,= 过点C 作CD ⊥EF 于点D ,∵∠CDE=∠FOE=90°,∠CED=∠FEO ,∴∆CDE~∆FOE , ∴CD CE FO FE =,即3223CD =,解得:∴P ,Q.本题主要考查一次函数图像和二次函数图像的综合,以及相似三角形的判定和性质,把两点间的最小距离化为两直线间的距离,是解题的关键.12.(1)详见解析;(2)CE+BF ,详见解析;(3)CE =【解析】(1)证明△AOD ≌△FOC ,即可得到结论;(2)过点E 作EH ⊥BC 于H ,EM ∥AB 交AC 于M ,则四边形AMEH 是平行四边形,得到AH=EM ,求得CE ,证明△HED ≌△BEF ,得到HD=BF ,即可得到CE+BF ; (3)如图,作DN ⊥BC 于N ,FR ⊥BC 于R ,连接DF ,取AB 中点O ,连接OG ,设CE=x ,证明△DEN ≌△EFR ,得到FR=EN=3-x ,证明D 、E 、F 、B 四点共圆,求得∠DBF=90︒,计算出(3-x),得到OG=1)2BF x=-,过点E作ET⊥AB于T,证明△ODG∽△TED,得到OG ODDT ET=,由BE=4-x,得到)x-,代入数值得(3)2x-=x的值即可(1)在Rt△ABC中,90ACB∠=︒,点D为AB中点,AC=BC,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴CF=AD,∵∠AOD=∠COF,∠ADE=∠DCF=90︒,∴△AOD≌△FOC,∴OD=OC即OD=OE;(2)CE+BF,理由如下:如图,过点E作EH⊥BC交AB于H,EM∥AB交AC于M,则四边形AMEH是平行四边形,∴AH=EM,∠MEC=∠ABC=45︒,∴CE,∵EH⊥BC,∴∠HEB=∠DEF=90︒,∴∠HED+∠DEB=∠BEF+∠DEB,∠EHB=∠HBE=45︒,∴∠HED=∠BEF,HE=BE,∵DE=EF,∴△HED≌△BEF,∴HD=BF,∵AD=AH+HD,∴;(3)如图,作DN ⊥BC 于N ,FR ⊥BC 于R ,连接DF ,取AB 中点O ,连接OG ,设CE=x ,∵AB =3AD BD =,∴,AC=BC=4,∵∠DBE=45︒,∴DN=BN=1,∴EN=3-x ,∵∠DEF=90︒,∴∠DEN+∠FER=∠DEN+∠EDN ,∴∠EDN=∠FER .∵ED=EF ,∴△DEN ≌△EFR ,∴FR=EN=3-x ,∵∠DBE=∠DFE=45︒,∴D 、E 、F 、B 四点共圆,∴∠DEF+∠DBF=180︒,∵∠DEF=90︒,∴∠DBF=90︒,∴∠FBR=45︒,∴BR=FR=3-x ,(3-x),∵点G 为AF 中点,点O 为AB 中点,∴OG ∥BF ,∴∠GOD=90︒,OG=1)22BF x =-,过点E 作ET ⊥AB 于T ,∵∠GDE=90︒,∴∠ODG+∠EDT=∠ODG+∠OGD ,∴∠OGD=∠EDT ,∴△ODG ∽△TED , ∴OG OD DT ET=, ∵BE=4-x ,∴BT=ET=)2x -, ∴-)2x -,)2x -=,解得:x =x =,∴CE = .此题考查等腰直角三角形的性质,全等三角形的判定及性质,旋转的性质,平行四边形的判定及性质,相似三角形的判定及性质,四点共圆的判定及性质,是一道综合题,较难,辅助线的引出是解题的关键.13.(1)248433y x x =--+;(2)32x --≤≤或01x ≤≤;(3)2316-. 【解析】(1)用待定系数法解二次函数的解析式即可;(2)分别计算临界点=0y 、=4y 时,相对应的x 的值,再结合图象解题即可;(3)过点D 作DE ⊥y 轴于点E ,由题意设248(,4)33D x x x --+,继而证明△AOC ∽△CED ,最后根据相似三角形对应边成比例性质及解一元二次方程解题.解:(1)把A (−3,0)、B (−1,0)代入2+4y ax bx =+,得9340+40a b a b -+=⎧⎨+=⎩, 解得4383a b ⎧=-⎪⎪⎨⎪=-⎪⎩所以二次函数的解析式为248433y x x =--+;(2)当=0y 时,即抛物线与x 轴的交点12=1=3x x -,当=4y 时,2484=433x x --+ 即248=033x x -- 220x x +=120,2x x ∴==-结合图象可得,当04y ≤≤时,32x --≤≤或01x ≤≤;(3)∵A (−3,0),C (0,4),∴OA=3,OC=4,如图,过点D 作DE ⊥y 轴于点E , 设248(,4)33D x x x --+, ∵点D 在第三象限,∴x<0, ∴224848,443333D C DE x x CE y y x x x x ==-=-=--+-=-- ∵∠ACD=90°,∴∠ACO+∠DCE=90°,∵∠CDE+∠DCE=90°,∴∠ACO=∠CDE ,又∵∠AOC=∠DEC=90°,∴△AOC ∽△CED , ∴OA CE OC DE=, 即2483334x x x--=-, 21632=333x x x ∴--- 216230x x ∴+=解得12230,16x x ==-(舍去), 即点D 的横坐标是2316-. 本题考查二次函数综合题,涉及相似三角形的判定与性质、坐标与图形、一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.14.见解析【解析】作DG ∥BC ,DH ∥AC ,可得G 是AC 中点,H 是BC 中点,BC=2DG ,AC=2AG ,根据DG ∥BC可得DG EG CF CE =,根据1DG CF +=21EG CE+,化简即可解题. 证明:作DG ∥BC ,DH ∥AC ,则△ADG ∽△ABC ,∵D 是AB 中点,∴G 是AC 中点,H 是BC 中点,BC=2DG ,AC=2AG ,∵△DGE ∽△FCE , ∴DG EG CF CE=, ∴22DG EG CF CE =,即2BC EG CF EC=, ∴211BC EG CF EC+=+, 即BC CF EG EG EC CF EC +++=, ∵EG+EC=GC=AG ,∴EG+EG+EC=EG+AG=AE , ∴BC CF AE CF EC +=,即BF AE CF EC=, ∴BF·EC=CF·AE .本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ADG ∽△ABC 是解题的关键.15.(1)见解析;(2)△BPE ∽△CEQ ;见解析;(3)52【解析】(1)由∠BEQ =∠BEP +∠DEF =∠EQC +∠C 及∠B =∠C =∠DEF =45°,所以∠BEP =∠EQC ,所以△BPE ∽△CEQ ,结论得证;(2)同(1)方法; (3)根据△BPE ∽△CEQ ,所以BP BE CE CQ =,因为BE CE = ,将BP =1,CQ =92问题即可求解. 解:(1)证明:∵△ABC 和△DEF 是两个全等的等腰直角三角形,∴∠B =∠C =∠DEF =45°,∵∠BEQ =∠BEP +∠DEF =∠EQC +∠C ,∴∠BEP +45°=∠EQC +45°,∴∠BEP =∠EQC ,∵∠B =∠C ,∴△BPE ∽△CEQ ;(2)△BPE ∽△CEQ ;理由如下:∵∠BEQ =∠EQC +∠C ,即∠BEP +∠DEF =∠EQC +∠C ,∴∠BEP +45°=∠EQC +45°,∴∠BEP =∠EQC ,又∵∠B =∠C ,∴△BPE ∽△CEQ ;(3) ∵△BPE ∽△CEQ , ∴BP BE CE CQ=, ∵BE =CE , ∴192CE CE =,解得:BE =CE=2, ∴BC=∴AB =AC=322BC =⨯=, ∴AQ =CQ ﹣AC =93322-=,AP =AB ﹣BP =3﹣1=2, 在Rt △APQ 中,PQ52==. 本题考查了等腰直角三角形的性质,三角形外角的性质,勾股定理,相似三角形的判定和性质等知识,根据两角对应相等的两个三角形相似是解本题的关键.16.(1)见解析;(2)2【解析】(1)利用三角形外角的性质及∠DEC=∠ADB 可得出∠ADE=∠C ,结合∠DAE=∠CAD 即可证出△AED ∽△ADC ;(2)利用相似三角形的性质可求出AD 的长,再结合AD=AB 即可得出AB 的长.解:(1)证明:∵∠DEC=∠DAE+∠ADE ,∠ADB=∠DAE+∠C ,∠DEC=∠ADB ,∴∠ADE=∠C .又∵∠DAE=∠CAD ,∴△AED ∽△ADC .(2)∵△AED ∽△ADC , ∴AD AE AC AD =,即113AD AD=+, ∴AD =2或AD =﹣2(舍去).又∵AD =AB ,∴AB =2本题考查了相似三角形的判定与性质,解题的关键是:(1)利用“两角对应相等,两三角形相似”证出△AED ∽△ADC ;(2)利用相似三角形的性质,求出AD 的长.17.(1)见解析;(2)见解析【解析】(1)根据已知条件先证明△BAF ∽△CAF ,推出∠AEB =∠AFC ,由等角的补角相等可得出结论. (2)由(1)结论得出=AEC AFD CFE ∠=∠∠,得出CE =CF ,由//EG CD 内错角相等,同位角相等得出∠DCB =∠CEG ,∠G =∠ACF =∠B ,推出△BDC ∽△GCE ,由相似三角形的性质可得出结论.(1)证明:∵AB•AF =AC•AE , ∴AB AC AE AF=, ∵AE 平分∠BAC ,∴∠BAE =∠CAE ,∴△BAE ∽△CAF ,∴∠AEB =∠AFC ,∴180°−∠AEB =180°−∠AFC ,∴∠AEC =∠AFD ;(2)证明:∵由(1)证得=AEC AFD CFE ∠=∠∠,∴CE =CF ,∵DC//EG ,∴∠DCB =∠CEG ,∠G =∠ACF ,∵(1)中证得△BAE ∽△CAF ,∴ ∠ACF =∠B∴∠G =∠ACF =∠B ,∴△BDC ∽△GCE , ∴BD GC CG DC CE CF==, ∴CD•CG =FC•BD .本题考查了相似三角形的判定与性质,解题关键是能够灵活运用相似三角形的判定与性质. 18.(1)m=-1,n=3,2y x 2x 3=-++;(2)当1x =时,=4y 最大值;当3x =时,=0y 最小值; (3)见解析【解析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可; (2)由抛物线2y x 2x 3=-++解析式,可得对称轴为1x =,根据增减性可知:x=1时,y 有最大值,当x=3时,y 有最小值;(3)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标根据勾股定理的逆定理可得∠DBC=90°,根据边长可得△AOB 和△DBC 两直角边的比相等,则两直角三角形相似. 解:(1)∵m ,n 分别是方程x 2-2x-3=0的两个实数根,且m <n ,用因式分解法解方程:(x+1)(x-3)=0,∴x 1=-1,x 2=3,∴m=-1,n=3,∴A (-1,0),B (0,3),把(-1,0),(0,3)代入得,103b c c --+⎧⎨⎩== ,解得23b c ⎧⎨⎩== , ∴函数解析式为2y x 2x 3=-++.综上所述,m=-1,n=3,2y x 2x 3=-++.(2)抛物线2y x 2x 3=-++的对称轴为1x =,顶点为()1,4D ,在03x ≤≤范围内,当1x =时,=4y 最大值;当3x =时,=0y 最小值;(3)由2y x 2x 3=-++,易得()1,0A -,()0,3B ,()3,0C ,()1,4D ,则BC =,BD DC =222CD DB CB =+,BCD ∴△是直角三角形,且90DBC ︒∠=,AOB DBC ∴∠=∠,在Rt AOB 和Rt DBC 中,2AO BD ==,2OB BC ==, AO OB BD BC∴=, BCD OBA ∴△∽△.【点评】本题是二次函数的综合题型,其中考查的知识点有:利用待定系数法求抛物线的解析式,三角形相似的性质和判定,勾股定理的逆定理,最值问题等知识.19.(1)1152y x =-+;28y x =;(2)存在,P ()2,0或()0,0. 【解析】(1)把(),4A a 和()8,1B 分别代入反比例函数解析式中求出8k和2a =,再代入一次函数解析式中求出一次函数的解析式;(2)先求出C 点和D 点的坐标,再分情况讨论当~COD APD ∆∆时和当~COD PAD ∆∆时求解即可.解:(1)把()8,1B 代入反比例函数2k y x=,得8k ∴反比例函数的表达式为28y x =. 点(),4A a 在28y x=图象上,2a ∴=,即()2,4A把()2,4A ,()8,1B 两点代入1y mx n =+, 解得12m =-,5n = 所以一次函数的表达式为1152y x =-+. (2)由(1)得一次函数的表达式为1152y x =-+ 当0x =时,5y =,()0,5C ∴,即5OC =.当0y =时,10x =,D ∴点坐标为()10,0,即10OD =,CD ∴=()2,4A ,AD ∴=设P 点坐标为(),0b ,由题可以,点P 在点D 左侧,则10PD b =-,由CDO ADP ∠=∠可得:①当~COD APD ∆∆时,AD PDCD OD =,1010b -=, 解得2b =,故点P 坐标为()2,0;②当~COD PAD ∆∆时,AD PDOD CD =,10∴=, 解得0b =,即点P 的坐标为()0,0.因此,点P 的坐标为()2,0或()0,0时,COD ∆与ADP ∆相似.本题考查了待定系数法求一次函数和反比例函数的解析式,相似三角形的性质和判定等,属于综合题,熟练掌握各性质及解析式的求法是解决本题的关键.20.()4米【解析】过E 作EF BC ⊥于点F ,设DF=x ,根据∠CDE=120°求出∠EDF=60°,进而将DE 、EF 分别用x 的代数式表示,最后根据△ABC ∽△EFC 线段成比例求出x 的值即可求解.解:如图所示,过E 作EF BC ⊥于点F ,120CDE ∠=︒,60EDF ∴∠=︒设DF 为x 米,2DE x =米,EF =米,90B EFC ∠=∠=︒,∠=∠ACB ECD ,~ABC EFC ∴∆∆,AB EF BC FC ∴=,代入数据:即23=,解得2x =,则24DE x ==,DE ∴的长度为()4米.本题考查相似三角形测高,相似三角形的应用,本题的关键是能证明△ABC ∽△EFC ,进而通过边成比例求解.21.(1)∽;(2)成立,见解析;(3)【解析】(1)根据等边三角形的性质结合AA 定理判定三角形相似;(2)根据等腰三角形的性质结合AA 定理判定三角形相似;(3)先判定三角形相似,然后利用相似三角形的性质,相似三角形面积比等于对应边比的平方列比例式求解解:(1)∵ABC ∆是等边三角形,且B A EDF ∠=∠=∠∴=60B A EDF ∠=∠=∠︒∴120MDA NDB NDB BND ∠+∠=∠+∠=︒∴MDA BND ∠=∠在ADM ∆ 和BND ∆中MDA BND A B ∠=∠⎧⎨∠=∠⎩∴ADM ∆∽BND ∆故答案为:∽(2)上述结论还成立理由:AB BC =A B ∴∠=∠在NBD ∆中B BND EDF ADM ∠+∠=∠+∠B EDF ∠=∠BND ADM ∴∠=∠在BDN ∆ 和AMD ∆中BND ADM A B ∠=∠⎧⎨∠=∠⎩∴ADM ∆∽BND ∆(3)AB BC =CAB CBA ∴∠=∠,即CAD DBN ∠=∠在NBD ∆中,CBA BDN BND ∠=∠+∠CBA CDN CDA BDN ∠=∠=∠+∠BND CDA ∴∠=∠在BDN ∆ 和ACM ∆中BND ADM MAD DBN ∠=∠⎧⎨∠=∠⎩∴ADM ∆∽BND ∆∴21=()2ADM BND S AD S BN ∆∆= 又∵AD=1 ∴2112BN =,解得:∵:1:3BN BM =,∴BM=AC=由ADM ∆∽BND ∆,可得AC BD AD BN=∴1=,解得:BD=6,即AB=BD=AD=5 过点M 作MG ⊥BD∵AC=BC 且MG ⊥BD∴AG=1522AB = 在Rt △ACG中,CG === 在Rt △DCG中,CD === ∵ADM ∆∽BND ∆,∴CD AD DN BN =,DN =,解得:DN=故答案为:本题考查等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质以及勾股定理等知识,解题的关键是灵活运用所学知识解决问题.22.(1)证明见解析;(2)6【解析】(1)证明∠G=∠DAF ,结合∠ADF=∠GDA 即可证明△ADF ∽△ADG ,进一步可得结论; (2)根据平行线分线段成比例定理即可得到结论.(1)∵四边形ABCD 为菱形,∴AB//DG ,∴∠BAE=∠G ,∵∠BAE=∠DAF ,∴∠G=∠DAF ,∵∠ADF=∠GDA ,∴△ADF ∽△ADG ,∴AD :DG=DF :AD ,即AD 2=DF·DG ; (2)∵//,//AB CD AD BC ∴HD HG BH AH =,AH HD HE BH=, ∴AH HG HE AH = ∵4HE =,5EG =,∴24(45)4936AH HE HG =⋅=⨯+=⨯=∴6AH =(负值舍去)此题主要考查了相似三角形的判定与性质,证明△ADF ∽△ADG 是解答此题的关键.23.(1)①见解析;(2)①见解析;②存在,a 【解析】(1)①假定正方形的边长AB=4a ,则AE=DE=2a ,DF=a ,利用“两边分别成比例且夹角相等的两个三角形相似”可以证明△ABE ∽△DEF ;(2)①依据∠AEF=∠DCE ,∠A=∠D=90°,即可得到△AEF ∽△DCE ,进而得出AF EF ED CE =,根据AE=ED ,可得 AF AE EF CE=,根据∠A=∠CEF=90°,即可得到 △AEF ∽△ECF . ②由△AEF ∽△DCE 得:AF=1a ,故BF=a-1a .根据∠A=∠B=90°,分两种情况讨论:若△AEF ∽△BFC ,则AE AF BF BC =;若 △AEF ∽△BCF ,则AE AF BC BF =.即可得到当a= △AEF与△BFC 相似.解:(1)①证明:如图,假定正方形的边长AB=4a ,则AE=DE=2a ,DF=a ,在正方形ABCD 中,∠A=∠D=90°. ∵2AB AE DE DF==,∠A=∠D=90°. ∴△ABE ∽△DEF .(2)①证明:如图,∵∠D=90°,∴∠DEC+∠DCE=90°,∵EF ⊥EC ,∴∠DEC+∠AEF=90°,∴∠AEF=∠DCE ,又∵∠A=∠D=90°,∴△AEF ∽△DCE , ∴AF EF ED CE=, ∵AE=ED , ∴AF EF AE CE =,即AF AE EF CE =, ∵∠A=∠CEF=90°,∴△AEF ∽△ECF .②由题意得:BC=AD=2,AB=DC=a ,AE=DE=1,由△AEF ∽△DCE 得:AF=1a ,故BF=a-1a. 若△AEF ∽△BFC , 则AE AF BF BC =,即1112a a a =-, 此时a 无解;若△AEF ∽△BCF , 则AE AF BC BF =,即1112a a a =-,此时所以,当△AEF 与△BFC 相似.本题属于相似形综合题,主要考查了相似三角形的判定与性质,解题时注意:有两组角对应相等的两个三角形相似;两组对应边的比相等且夹角对应相等的两个三角形相似.解决问题的关键是进行分类讨论,利用相似三角形的对应边成比例进行计算求解.24.11m【解析】设CB x =,则18BDx =-,根据题意证明△△GCE GBA 和△△HBA HDF ,列出方程即可求解;解:设CB x =,则18BDx =-, ∵CE ∥AB ,∴△△GCE GBA , ∴GC EC GB AB =,即12=1x AB+, ∴()21AB x =+,同理可得:△△HBA HDF, ∴DH DF HB AB =,即32=318x AB+-, ∴()2213AB x =-,∴()()221213x x +=-, 解得:92x =, ∴()2111AB x =+=.本题主要考查了相似三角形的应用,准确利用中心投影的知识点求解是解题的关键.25.(1)△BDC 是黄金三角形,理由见解析;(2)x =;(335 【解析】(1)先根据AB=AC ,∠A=36°证明∠ABC=∠ACB=72°,再根据线段垂直平分线的性质证明∠ABD=∠A=36°,∠BDC=∠C ,从而可得结论;(2)证明BDC ABC ∆∆,根据相似三角形的性质可得方程,求解方程即可; (3)证明FBA ABC ∆∆可得结论.解:()1BCD 是黄金三角形.证明如下:点D 在AB 的垂直平分线上,,AD BD ∴=,ABD A ∴∠=∠36,A AB AC ∠=︒=72ABC C ∴∠=∠=,36,ABD DBC ∴∠=∠=︒又72BDC A ABD ∠=∠+∠=,,BDC C ∴∠=∠,BD BC ∴=BCD ∴△是黄金三角形.()2设,1BC x AC ==,由()1知,AD BD BC x ===.,DBC A C C ∠=∠∠=∠BDC ABC ∴∆∆,。
2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。
二次函数与相似三角形二次函数与相似三角形例1 如图1,已知抛物线x x 41y 2+-=的顶点为A ,且经过原,与x 轴交于点O 、B 。
(1)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;点的坐标;(2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. . 函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、在未知三角形中利用勾股定理、三角函数、三角函数、三角函数、对称、对称、旋转等知识来推导边的大小。
识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
度,之后利用相似来列方程求解。
解:⑴如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6 将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3); 例1题图题图 图1 OAByxOAByx图2 COABDyx图1 13E A'OAB Py x图2 (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长;(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.解答:解:(1)∵抛物线y=ax 2﹣2ax+c (a≠0)经过点A (3,0),点C (0,4), ∴,解得,∴抛物线的解析式为y=﹣x 2+x+4; (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4), ∴,解得,∴直线AC 的解析式为y=﹣43x+4.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,﹣43m+4), ∵点P 的横坐标为m ,点P 在抛物线y=﹣x 2+x+4上,∴点P 的坐标为(m ,﹣ m 2+m+4), ∴PM=PE﹣ME=(﹣m 2+m+4)﹣(﹣43m+4)=﹣m 2+73m ,即PM=﹣m 2+73m (0<m <3); (3)在(2)的条件下,连结PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=﹣m+4,CF=m ,PF=﹣m 2+m+4﹣4=﹣m 2+m . 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况:①若△PFC∽△AEM,则PF :AE=FC :EM ,即(﹣m 2+m ):(3﹣m )=m :(﹣ m+4), ∵m≠0且m≠3, ∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM 为直角三角形;②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3﹣m )=(﹣m 2+m ):(﹣m+4), ∵m≠0且m≠3,yxEQP C B OA ∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为或1,△PCM 为直角三角形或等腰三角形.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习1、已知抛物线225333y x x =-+经过53(33)02P E æöç÷ç÷èø,,,及原点(00)O ,. (1)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.点的坐标;若不存在,说明理由.(2)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?之间存在怎样的关系?为什么?(1)存在.)存在.设Q 点的坐标为()m n ,,则225333n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12232m m ==,.当123m =时,2n =,即为Q 点,所以得(232)Q ,要使,BQ PB OCP QBP OC CP =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12333m m ==,,当3m =时,即为P 点,点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.相似.Q 点的坐标为(232)(333)-,,,.(2)在Rt OCP △中,因为3tan 3CP COP OC Ð==.所以30COP Ð=. 当Q 点的坐标为(232),时,30BPQ COP Ð=Ð=. 所以90OPQ OCP B QAO Ð=Ð=Ð=Ð=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.都是直角三角形.又在Rt OAQ △中,因为3tan 3QA QOA AO Ð==.所以30QOA Ð=. 即有30POQ QOA QPB COP Ð=Ð=Ð=Ð=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ Ð=Ð=,所以OQA OQP △≌△.2.在平面直角坐标系xOy 中,已知二次函数223y x x =-++的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C .(1)若直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO Ð与ACO Ð的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.的取值范围.(1)假设存在直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B \-,,,. 令0x =,得3y =.(03)C \,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .yCl xB A 1x = 练习3图yx B E A OC D1x =l点B的坐标为(30),,点C的坐标为(03),,点A的坐标为(10)-,.4345.AB OB OC OBC\===Ð=,,223332BC\=+=.要使BOD BAC△∽△或BDO BAC△∽△,已有B BÐ=Ð,则只需BD BOBC BA=,①或.BO BDBC BA=②成立.成立.若是①,则有3329244BO BCBDBA´===.而45OBC BE DEÐ=\=,.\在Rt BDE△中,由勾股定理,得222229224BE DE BE BDæö+===ç÷ç÷èø.解得解得94BE DE==(负值舍去).93344OE OB BE\=-=-=.\点D的坐标为3944æöç÷èø,.将点D的坐标代入(0)y kx k=¹中,求得3k=.\满足条件的直线l的函数表达式为3y x=.[或求出直线AC的函数表达式为33y x=+,则与直线AC平行的直线l的函数表达式为3y x=.此时易知BOD BAC△∽△,再求出直线BC的函数表达式为3y x=-+.联立33y x y x==-+,求得点D的坐标为3944æöç÷èø,.]若是②,则有342232BO BABDBC´===.而45OBC BE DEÐ=\=,.\在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得解得2BE DE ==(负值舍去).321OE OB BE \=-=-=.\点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =¹中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.\存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944æöç÷èø,或(12),.(2)设过点(03)(10)C E ,,,的直线3(0)y kx k =+¹与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-. \此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y \==-,.\点P 的坐标为(512)-,.此时,锐角PCO ACO Ð=Ð.又二次函数的对称轴为1x =,\点C 关于对称轴对称的点C ¢的坐标为(23),. \当5px>时,锐角PCO ACO Ð<Ð;当5p x =时,锐角PCO ACO Ð=Ð; 当25p x <<时,锐角PCO ACO Ð>Ð.OxBEA O C1x =PC ¢ ·3.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C ,过点A 作AP ∥CB 交抛物线于点P . 在x 轴上方的抛物线上是否存在一点M ,过M 作MG ^x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.否则,请说明理由. 解:解: 假设存在假设存在A (1,0)-B (1,0)C (0,1)- ∵ÐPAB=ÐBAC =45 ∴P A ^AC ∵MG ^x 轴于点G , ∴ÐMGA=ÐPAC =90 在Rt △AOC 中,OA=OC=1 ∴AC=2 在Rt △PAE 中,AE=PE=3 ∴AP= 32 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-(ⅰ) 当D AMG ∽D PCA 时,有AG PA =MG CA∵AG=1m --,MG=21m -即211322m m ---=解得11m =-(舍去)(舍去) 223m =(舍去)(舍去)(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即 211232m m ---=解得:1m =-(舍去)(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当D AMG ∽D PCA 时有AG PA =MGCA∵AG=1m +,MG=21m -G M 图3 C B y P A oxG M 图2 C B y P A ox图1 C P B y A ox∴211322m m +-=解得11m =-(舍去)(舍去) 243m =∴M 47(,)39(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即211232m m +-=解得:11m =-(舍去)(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似相似M 点的坐标为(2,3)-,47(,)39,(4,15)4.4.(2013•曲靖压轴题)如图,在平面直角坐标系(2013•曲靖压轴题)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线y=﹣x 2﹣3x+4..点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C ,交抛物线于点E .(1)当DE=4时,求四边形CAEB 的面积.的面积. (2)连接BE BE,,是否存在点D ,使得△DBE 和△DAC 相似?若存在,求此点D 坐标;若不存在,说明理由.说明理由.考点: 二次函数综合题. 分析: (1)首先求出点A 、B 的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C 坐标为(m ,0)(m <0),根据已知条件求出点E 坐标为(m ,8+m );由于点E 在抛物线上,则可以列出方程求出m 的值.在计算四边形CAEB 面积时,利用S 四边形CAEB =S △A CE +S 梯形OCEB ﹣S △BCO ,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x 2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x 2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴C E=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.5.5.(2013•绍兴压轴题)抛物线(2013•绍兴压轴题)抛物线y=y=((x ﹣3)(x+1x+1))与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.为顶点.(1)求点B 及点D 的坐标.的坐标.(2)连结BD BD,,CD CD,抛物线的对称轴与,抛物线的对称轴与x 轴交于点E .①若线段BD 上一点P ,使∠DCP=∠BDE,求点P 的坐标.的坐标.②若抛物线上一点M ,作MN⊥CD,交直线CD 于点N ,使∠CMN=∠BDE,求点M 的坐标.的坐标.考点: 二次函数综合题.3718684分析: (1)解方程(x ﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x ﹣3)(x+1)与x轴交于A ,B 两点(点A 在点B 左侧),确定点B 的坐标为(3,0);将y=(x ﹣3)(x+1)配方,写成顶点式为y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,即可确定顶点D 的坐标;(2)①根据抛物线y=(x ﹣3)(x+1),得到点C 、点E 的坐标.连接BC ,过点C 作CH⊥DE 于H ,由勾股定理得出CD=,CB=3,证明△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R .根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q 的坐标(﹣9,0),运用待定系数法求出直线CQ 的解析式为y=﹣x ﹣3,直线BD 的解析式为y=2x ﹣6,解方程组,即可求出点P 的坐标;②分两种情况进行讨论:(Ⅰ)当点M 在对称轴右侧时.若点N 在射线CD 上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.解答:解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.6.6.(2013•恩施州压轴题)如图所示,直线(2013•恩施州压轴题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线y=y=x x 2﹣4x+3过点B 、C 和D (3,0). (1)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.的坐标. (2)在抛物线上是否存在点P ,使S △PBD =6=6?若存在,求出点?若存在,求出点P 的坐标;若不存在,说明理由.由.考点: 二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: (1)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M(2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N 1(0,0);(II )若BD 为直角边,B 为直角顶点,则点N 在x 轴负半轴上,∵OB=OD=ON 2=3,∴N 2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(2)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m 2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.。
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
中考复习二次函数与相似三角形的存在问题
1.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,
过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.
2. 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形, 求D 点的坐标;
⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
参考答案
1.解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4).
∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,
∴,
解得:b=﹣3,c=4,
∴抛物线的解析式为:y=﹣x2﹣3x+4.
(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.
∵OA=OB=4,∴∠BAC=45°,
∴△ACD为等腰直角三角形,∴CD=AC=4+m,
∴CE=CD+DE=4+m+4=8+m,
∴点E坐标为(m,8+m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴8+m=﹣m2﹣3m+4,解得m=﹣2.
∴C(﹣2,0),AC=OC=2,CE=6,
S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.
(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似
∴△DBE必为等腰直角三角形.
i)若∠BED=90°,则BE=DE,
∵BE=OC=﹣m,
∴DE=BE=﹣m,
∴CE=4+m﹣m=4,
∴E(m,4).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,
∴D(﹣3,1);
ii)若∠EBD=90°,则BE=BD=﹣m,
在等腰直角三角形EBD中,DE=BD=﹣2m,
∴CE=4+m﹣2m=4﹣m,
∴E(m,4﹣m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,
∴D(﹣2,2).
综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).
2.解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-=
∵抛物线过原点, ∴1)20(a 02+-= ∴4
1a -=. 抛物线的解析式为1)2x (41y 2+--=,即x x 41y 2+-=
⑵如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==,
∴B(4,0) , OB =4.
∴D 点的横坐标为6
将x =6代入1)2x (41y 2+--=,得y =-3,
∴D(6,-3);
根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB 是平行四边形, 此时D 点的坐标为(-2,-3),
当OB 为对角线即四边形OCBD 是平行四边形时,D 点即为A 点,此时D 点的坐标为(2,1)
若△BOP 与△AOB 相似,必须有∠POB =∠BOA =∠BPO
设OP 交抛物线的对称轴于A′点,显然A′(2,-1)
∴直线OP 的解析式为x 21y -
= 由x x 4
1x 212+-=-, 得6x ,0x 21== ∴P(6,-3)
过P 作PE ⊥x 轴,在Rt △BEP 中,BE =2,PE =3,
∴PB =13≠4.
∴PB≠OB,∴∠BOP≠∠BPO,
∴△PBO 与△BAO 不相似,
同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点.
所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.。