平行线的性质1
- 格式:doc
- 大小:84.50 KB
- 文档页数:4
平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。
本文将探讨平行线的特征,以及与平行线相关的性质和定理。
一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。
这意味着两条平行线之间的距离始终相等。
二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。
2. 永不相交:平行线永远不会相交。
无论延长多远,它们仍然保持平行的形状。
3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。
这是平行线的一个重要性质。
4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。
这是平行线特征的一个重要应用。
三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。
2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。
3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。
斜率是直线在坐标系中的倾斜度量。
四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。
2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。
通过平行线的布局,可以创建出各种角度和形状。
3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。
五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。
2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。
3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。
六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。
它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。
综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。
第03讲平行线的性质(核心考点讲与练)平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.考点一:平行线的性质【例题1】(2021秋•宜宾期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90° D.β+γ﹣α=180°【变式训练1】((2020秋•宁波期末)如图,已知AB∥CD,则下列结论中正确的是()A.∠EAD=∠ABC B.∠BAC=∠DCA C.∠ADB=∠DBC【变式训练2】((2021•浙江模拟)如图,三根木条相交形成∠1,∠2,∠3,∠4(∠1为锐角)固定木条b,c,转动木条a,则可能和∠1相等的角是()A.∠2 B.∠3 C.∠4 D.不存在【变式训练3】((2021秋•鄞州区月考)如图,AB∥CD,∠A=25°,∠E=80°,则∠C的度数是.【变式训练4】((2020秋•温州期末)一副直角三角板,按如图方式叠放在一起,其中∠A=45°,∠D=30°.若DF∥BC,则∠AGE等于.【变式训练5】((2021秋•温州月考)已知:如图,直线m∥n,将Rt△ABC按如图方式放置,其中点C在直线n上,点A在直线m上,若∠1=50°,则∠2的度数为.【变式训练6】((2021春•上虞区期末)如图,将直角三角板ABC与直尺贴在一起,使三角板ABC的直角顶点C在直尺的一边上,若∠1=63°,则∠2的度数为.【变式训练7】((2021秋•琼海期末)一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FD∥AB,∠B=30°,则∠ADB的度数是()A.95°B.105°C.115°D.125°【变式训练8】((2021•浙江模拟)如图,将一副直角三角板按如图所示位置摆放,∠A=∠FDE=90°,∠B=45°,∠E=30°,点D在边AC上,若EF∥BC,则∠ADE的度数为()A.60°B.65°C.75°D.80°【变式训练9】((2021•义乌市模拟)如图,一辆汽车经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角α为64°,则第二次转过的角β为°.【变式训练10】((2020秋•柯桥区期末)如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线l上,点O都落在直线MN上,直线MN∥l.在△ABC中,若∠BOC=125°,则∠BAC的度数为()A.60°B.65°C.70°D.75°【变式训练11】((2021秋•平阳县期中)如图1是一个消防云梯,其示意图如图2所示,此消防云梯由救援台AB,延展臂BC(B在C的左侧),伸展主臂CD,支撑臂EF构成,在操作过程中,救援台AB,车身GH及地面MN三者始终保持平行.当∠EFH=65°,BC∥EF时,∠ABC=度;如图3,为了参与另外一项高空救援工作,需要进行调整,使得延展臂BC与支撑臂EF所在直线互相垂直,且∠EFH=68°,则这时∠ABC=度.【变式训练12】((2021春•嵊州市期末)如图,AB∥CD,∠BOC=100°,BE,CF分别平分∠ABO,∠OCD,则∠2﹣∠1=.【变式训练13】((2021春•嵊州市期末)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD 在同一直线上,再沿BF折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°【变式训练14】((2021春•诸暨市期末)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线EF从水中射向空气发生折射,光线变成FH,点G在射线EF上,已知∠HFB=25°,∠FED=65°,则∠GFH=.考点二:平行线的判定与性质【例题2】(2021春•浦江县期末)如图是小聪同学的作业,在※处填的理由是()如图,∠A+∠D=180°,则∠DCE=∠B.完成下面的说理过程.解:已知∠A+∠D=180°,根据(同旁内角互补,两直线平行),得AB∥CD又根据(※)得∠DCE=∠BA.两直线平行,同位角相等B.两直线平行,内错角相等C.两直线平行,同旁内角互补D.同位角相等,两直线平行【变式训练1】(2021春•拱墅区期末)如图,能判定BE∥CD的条件是()A.∠BAD+∠2=180°B.∠1=∠BC.∠BAD+∠B=180°D.∠1=∠D【变式训练2】(2021春•拱墅区期末)如图,已知直线AB,CD被EF所截,EG是∠AEF的角平分线,若∠1=∠2,∠2+∠4=120°,则∠3=.【变式训练3】(2021春•镇海区期中)如图,∠1=∠2=∠3=55°,求∠4的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠2=55°(已知),∴∥(),∴∠3+∠4=180°(),∵∠3=55°(已知),∴∠4=.【变式训练4】(2021春•鹿城区校级期中)如图,已知a,b,c,d四条直线,若∠1=105°,∠2=75°,∠3=65°,则∠4=度.【变式训练5】(2021•金华)某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【变式训练6】(2021•椒江区校级开学)如图,AD与BC交于点O,点E在AD上,∠C=∠3,∠2=80°,∠1+∠3=140°,∠A=∠D,求∠B的度数.【变式训练7】(2021春•嵊州市期末)如图,D是BC上一点,DE∥AB,交AC于点E.(1)若∠1=∠A,判断DF与AC是否平行,并说明理由;(2)若DF∥AC,∠B+∠C=120°,求∠1的度数.【变式训练8】(2021春•任丘市期末)如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是.【变式训练9】(2021•温州三模)如图,已知AB⊥BC,DE⊥AB,∠1=∠2.(1)请说明BD∥FG的理由.(2)若D是AC的中点,F是BC的中点,已知AB=4,BC=3,求FG的长度.【变式训练10】(2021春•长兴县月考)如图,已知CF∥AG,E是直线AB上的一点,CE平分∠ACD,射线CF⊥CE,∠2=58°.(1)求∠ACE的度数;(2)若∠1=32°,说明:AB∥CD.类型一、平行线的性质例1、如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.【变式】如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132° B.134° C.136° D.138°类型二、两平行线间的距离例2、如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.类型三、平行的性质与判定综合应用例3、如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m2例4、如图所示,∠ABC的边BC与∠DEF的边DE交于点K,下面给出三个论断:①∠B=∠E;②AB∥DE;③BC∥EF.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断为结论,填人“试说明”栏中,使之成为一个完整的正确命题,并将理由叙述出来.已知:如图所示,∠ABC的边BC与∠DEF的边DE交于点K,________,________,试说明________.【变式】已知,如图,∠1=∠2,∠3=65°,则∠4= .例5、如图,AB∥CD,点M,N分别为AB,CD上的点.(1)若点P1在两平行线内部,∠BMP1=45°,∠DNP1=30°,则∠MP1N=;(2)若P1,P2在两平行线内部,且P1P2不与AB平行,如图,请你猜想∠AMP1+∠P1 P2N与∠MP1 P2+∠P2ND的关系,并证明你的就论;(3)如图,若P1,P2,P3在两平行线内部,顺次连结M,P1,P2,P3,N,且P1P2,P2P3不与AB平行,直接写出你得到的就论.【变式】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( )A.120° B.130° C.140° D.150°题组A 基础过关练一.选择题(共6小题)1.(2021春•上虞区期末)如图,将一条两边沿互相平行的纸带折叠,设∠1为x度,用关于x的代数式表示α,则表示正确的是()A.α=120°﹣x B.α=90°﹣x C.α=60°+x D.α=45°+x2.(2021春•北仑区期末)如图,平行直线a,b被直线c所截,∠1=120°,则∠2的度数为()A.50°B.60°C.70°D.80°3.(2021春•西湖区期末)如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=60°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转()分层提分A.60°B.40°C.30°D.20°4.(2021春•拱墅区期中)下列语句中正确的是()A.经过一点有只有一条直线与已知直线平行B.如果两个角的两边分别平行,那么这两个角相等C.垂直于同一直线的两条直线互相平行D.平行于同一条直线的两条直线互相平行5.(2020•奎文区一模)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2 B.∠2=∠4 C.∠1=∠3 D.∠2=∠3 6.(2020春•曹县期末)如图,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD二.填空题(共6小题)7.(2021春•拱墅区期末)如图,AB∥CD,CB∥DE,若∠D=2∠B+30°,则∠C的度数为°.8.(2021春•镇海区校级期末)如图,已知DE∥BC,CD是∠ACB的平分线,∠A=60°,∠B=76°,则∠EDC的度数为.9.(2021•宁波模拟)如图,AB⊥CD于点B,BE∥AC,∠DBE=40°,则∠A的度数为度.10.(2021•江干区模拟)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=35°,∠EFC=120°,则∠A=.11.(2020春•如皋市期末)如图,已知∠1=80°,∠2=100°,∠3=70°,则∠4=.12.(2020春•下城区期末)如图,已知∠1=∠2=∠3=50°,则∠4=.三.解答题(共8小题)13.(2021春•宁阳县期末)如图,CD是∠ACB的平分线,∠ACB=82°,∠B=48°,DE∥BC.求∠EDC和∠BDC的度数.14.(2019春•鹿城区校级期中)如图,已知AB∥CD,∠B=60°,∠FCG=90°,CF平分∠BCE,求∠BCG的度数.15.(2018春•椒江区校级月考)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,求∠2的度数.16.(2021春•嘉兴期末)如图,已知∠DEB=100°,∠BAC=80°.(1)判断DF与AC的位置关系,并说明理由;(2)若∠ADF=∠C,∠DAC=120°,求∠B的度数.17.(2021春•慈溪市期末)如图,已知AB∥CD,∠ABC=∠CDA,说明AD∥BC的理由.18.(2021春•双辽市期末)如图所示,AD与BE相交于点F,∠A=∠C,∠1与∠2互补.证明:AB∥CE.19.(2021春•鹿城区校级期中)如图,已知∠1+∠2=180°,∠4=∠A,试说明∠ACB=∠DEB.解:∵∠1+∠2=180°(已知),又∵+∠5=180°(平角的意义),∴∠2=(同角的补角相等),∴AB∥EF(),∴∠3=(两直线平行,内错角相等).∵∠4=∠A(已知),∴=∠A(等量代换),∴∥AC(),∴∠ACB=∠DEB().20.(2021春•拱墅区期中)如图,FG∥CD,∠1=∠3,∠B=60°,求∠BDE的度数,请把下面的解答过程补充完整.解:∵FG∥CD(已知),∴∠1=().又∵∠1=∠3(已知),∴∠3=(),∴BC∥(),∴∠B+ =180°().又∵∠B=60°(已知),∴∠BDE=().题组B 能力提升练一.选择题(共7小题)1.(2021春•浦江县期末)如图,AD∥BE,AC与BC相交于点C,且∠1=∠DAB,∠2=∠EBA.若∠C=45°,则n=()A.2 B.3 C.4 D.52.(2021春•椒江区期末)如图,BD为∠ABC的角平分线,AD∥BC,∠BDC=90°,∠A与∠C的数量关系为()A.∠A+∠C=180°B.∠A=2∠CC.∠A﹣∠C=90°D.∠A+∠C=90°3.(2021春•望城区期末)将一个直角三角板和一把直尺按如图所示摆放,若∠1=35°,则∠2的度数为()A.35°B.45°C.50°D.55°4.(2021•启东市模拟)如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°5.(2021春•奉化区校级期末)如图,将一副三角板如图放置,则下列结论:①∠1=∠3;②如果∠2=45°,则有BC∥AE;③如果∠2=30°,则有DE∥AB;④如果∠2=45°,必有∠4=∠E.其中正确的有()A.①②B.①③C.①②④D.①③④6.(2021春•奉化区校级期末)如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F:③HE平分∠AHG;④HE⊥AB,其中正确的有()A.1个B.2个C.3个D.4个7.(2021春•奉化区校级期末)如图,小明用两块同样的三角板,按下面的方法作出了平行线,则AB∥CD的理由是()A.∠2=∠4 B.∠3=∠4C.∠5=∠6 D.∠2+∠3+∠6=180°二.填空题(共9小题)8.(2021•深圳模拟)将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CDE=42°,那么∠BAF的度数为.9.(2020秋•奉化区校级期末)在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若∠1=55°,则∠2的度数是.10.(2020春•东阳市期末)已知直线AB∥CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为秒时,PB′∥QC′.11.(2021秋•平阳县期中)如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,EF与上拉杆CF形成的∠F=150°,主柱AD垂直于地面,通过调整CF和后拉杆BC的位置来调整篮筐的高度.当∠CDB=40°时,点H,D,B在同一直线上,则∠H的度数是.12.(2020春•海曙区期末)两块不同的三角板按如图所示摆放,两个直角顶点C重合,∠A=60°,∠D=45°.接着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC 的上方,若三角板CDE有一条边与斜边AB平行,则∠ACD=.13.(2021春•滨江区校级期末)如图a,已知长方形纸带ABCD,将纸带沿EF折叠后,点C、D 分别落在H、G的位置,再沿BC折叠成图b,若∠DEF=72°,则∠GMN=°.14.(2021春•奉化区校级期末)如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH=180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是(填序号).15.(2021春•奉化区校级期末)某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动秒,两灯的光束互相平行.16.(2021春•奉化区校级期末)如图,AE∥CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD⊥BC,下列结论:①BC平分∠ABG;②AC∥BG;③与∠DBE互余的角有2个;④若∠A=α,则∠BDF=.其中正确的有.(把你认为正确结论的序号都填上)三.解答题(共9小题)17.(2021春•温州期末)如图,AB∥CD,E是CD上一点,AE交BC于点F,且∠ABE=∠DBC,∠ABC =∠AEB.(1)试判断AE与BD的位置关系,并说明理由;(2)若BE平分∠CBD,∠AEB=40°,求∠D的度数.18.(2021春•诸暨市月考)推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程及依据填写完整.∵EF∥AD,∴∠2=(),又∵∠1=∠2,∴∠1=∠3(),∴AB∥(),∴∠BAC+ =180°(),∵∠BAC=70°,∴∠AGD=.19.(2021春•鹤城区期末)如图,E,G是分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,如果AB∥DG,∠1+∠2=180°.(1)判断AD与EF的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠2=145°,求∠B的度数.20.(2021春•拱墅区月考)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.21.(2021春•奉化区校级期末)如图,∠ABC和∠BCD的平分线交于点P,延长CP交AB于点Q,且∠PBC+∠PCB=90°.(1)求证:AB∥CD.(2)探究∠PBC与∠PQB的数量关系.22.(2021春•奉化区校级期末)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)DF与AC平行吗?请说明理由.(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(2020秋•北仑区期末)如图1,点O在直线AB上,过点O引一条射线OC,使∠AOC=50°,将一个直角三角尺的直角顶点放在点O处,直角边OM在射线OB上,另一边ON在直线AB的下方.【操作一】:将图1中的三角尺绕着点O以每秒15°的速度按顺时针方向旋转.当它完成旋转一周时停止,设旋转的时间为t秒.(1)∠BOC的度数是,图1中与它互补的角是.(2)三角尺旋转的度数可表示为(用含t的代数式表示):当t=时,MO⊥OC.【操作二】:如图2将一把直尺的一端点也放在点O处,另一端点E在射线OC上.如图3,在三角尺绕着点O以每秒15°的速度按顺时针方向旋转的同时,直尺也绕着点O以每秒5°的速度按顺时针方向旋转,当一方完成旋转一周时停止,另一方也停止旋转,设旋转的时间为t秒.(3)当t为何值时,OM⊥OE,并说明理由?(4)试探索:在三角尺与直尺旋转的过程中,当0≤t≤,是否存在某个时刻,使得∠COM 与∠COE中其中一个角是另一个角的两倍?若存在,请求出所有满足题意的t的值;若不存在,请说明理由.24.(2021春•诸暨市期末)如图,直线FG∥直线HK,一块三角板的顶点A在直线HK上,边BC、AC 分别交直线FG于D、E两点.∠BAC=60°,∠B=90°,∠C=30°.(1)如图1,∠BAH=40°,则:①∠FDB=°;②若∠CDE与∠CAK的角平分线交于点I,则∠I=°.(2)如图2,点I在∠EDC的平分线上,连接AI,且∠CAI:∠KAI=1:3,若∠I=35°,求∠FDB的度数;(3)如图3,若∠CDI:∠GDI=1:n,∠CAI:∠KAI=1:n,则∠I=°(用含n的式子表示).25.(2021春•嵊州市期末)如图,直线AB、CD被DQ所截,AB∥CD,∠BDC=50°,点E是直线CD上的动点(点E与点D不重合),连结BE,作∠ABE的角平分线交直线CD于点F.(1)如图1,点E在点D左侧,若∠DBE=20°,求∠EBF的度数.(2)射线BG平分∠EBQ.①如图2,点E在点D左侧,求∠FBG的度数.②若F′是BF反向延长线上的一点,求∠F′BG的度数.题组C 培优拔尖练一.解答题(共8小题)1.(2020秋•罗湖区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.2.(2021春•临邑县期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.3.(2021春•河北区期末)如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=35°,求∠BFC的度数.4.(2021春•饶平县校级期末)如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,试说明BC平分∠DBE.5.(2020春•九龙坡区期末)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.6.(2021春•越城区期末)如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.(1)求证∠APB=∠DAP+∠FBP;(2)利用(1)的结论解答:①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系是.②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,则∠AP2B的度数是.7.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.8.(2018春•金华期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC、CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=60°,∠C=85°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB∥CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB∥DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.。
平行线的判定和性质
1、平行线的判定方法:
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;
另:平行于同一条直线的两条直线相互平行;垂直于同一条直线的两条直线互相平行。
2、平行线的性质:
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
3、注意区别平行线的性质和判定方法:
(1)叙述方式不同:尽管叙述平行线的性质与判定方法的文字相同,个数相同,但条件和结论的顺序是不同的;
(2)意义不同:平行线的判定方法是根据三种角(同位角、内错角、同旁内角)的数量关系,来识别两直线是否平行;而平行线的性质,是已知两直线平行,得到三种角的数量关系。
(3)作用不同:一个是作为平行线的识别,一个是平行线的特征。
本文由101教育整理发布。
全方位教学辅导教案学科:数学任课教师:授课时间: 2020 年月日(星期)【知识讲解】一、平行线的性质1、性质1:两条平行线被第三条直线所截,同位角相等。
2、性质2:两条平行线被第三条直线所截,内错角相等。
3、性质3:两条平行线被第三条直线所截,同旁内角互补。
提示:(1)只有当两条直线平行时,才会有同位角相等、内错角相等、同旁内角互补。
(2)平行线的性质和判定是直线的位置关系和角的数量关系之间的相互转换,不同的是性质以平行为条件,即由平行得到角相等或互补;判定是以平行为结论,即由角相等或互补得到两条直线平行。
二、命题1.命题的定义:判断一件事的语句叫做命题2.命题的构成:(1)命题是由题设和结论两部分组成的,题设是已知事项,结论是由已知事项退出的事项。
(2)命题通常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。
例如,命题是“对顶角相等”,可以改写成:如果两个角使对顶角,那么这两个角相等。
题设:两个角是对顶角,结论:这个两个角相等。
3.命题分类:如果题设成立,结论一定成立,这样的命题是真命题;如果题设成立,结论不一定成立,这样的命题是假命题。
提示:(1)命题是用语句的形式对某件事作出肯定或否定的判断,这些判断包含“是”或“不是”,“具有”或“不具有”的特点。
(2)命题是一种判断,这种判断可能正确也可能错误。
(3)在找命题的题设和结论时,要分清命题的“已知事项”和“推出事项”(4)为了准确表达命题的题设和结论,有时需要对命题的语序进行调整或增减,使语句通顺、语意明确,但是不能改变原意。
总结:判断一个语句是不是命题,关键是看他是否对一件事作出了判断,命题的题设和结论不明显时,通常把语句改写成:如果……那么……的形式,“如果”后面接的是题设,“那么”后面接的是结论。
三、定理和证明1.定理:一些命题,它们的正确性是经过推理证实的,这样得到的真命题叫做定理,即所有的定理都是真命题。
D EEF1 23 A CO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补. 例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知), 所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个;(2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AAB C 【答案】(1)2 个;(2) ∠3 ;∠2.B D 【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换);(2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2. 【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) aA .20B .80C .120D .180 b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50 ,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A 【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等) 因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义)所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H 2G1C F D3 1 24【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么?【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒ 所以 AB //CD ,CD //EF (同旁内角互补,两直线平行) 所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .AE【答案】见解析. 【解析】因为 AC / / DE (已知), 所以∠2 = ∠4 (两直线平行,内错角相等)因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行) 所以∠B = ∠ECD (两直线平行,同位角相等) B 因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换)所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C .E 【答案】见解析 A B【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行) 所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行)所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析 【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA GD【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等(平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形 AEFD 的面积. 【答案】21 【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEG B = S ∆AEG (同底等高的两个三角形面积相等) E F C因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 .所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由. 【答案】见解析 1A1 F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE , 所以 S = S - S - S = S - 1 S - S = 1 S - S∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2 四边形ABCD ∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析 【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析 【解析】过点 C 作 AB 的平行线 CF , 因为 AB ∥ED (已知) 所以 AB / /CF / / ED (平行的传递性)A BC F 所以∠B = ∠BCF ,∠D = ∠DCF (两直线平行,内错角相等)所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E D【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD . 5F E【答案】见解析A E【解析】过点 B 向右作 BF //AE , 所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知)B F所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行)所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补) C 所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360°方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补)所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°;方法三:过点 E 作 EF / / BA因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G ,则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BEB因为 AF ∥CD (已知) E所以∠FAD = ∠ADC (两直线平行,内错角相等) C D因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 . C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH . 6A BD2 1 因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3 所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ;(2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3 A 3C C C A 3 C2 1B 4 D B 4 D B 4 B 4 D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等)因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明.(3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ;②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2 P 1 A3 2 1随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ;(2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★G B AFC 【答案】(1)30°; (2)50°.E图(2) C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质)又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质)又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义)所以∠DEG = 180 - 90 - 40 = 50 (等式性质)【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★ 【答案】(1)14 厘米 ;(2) 1 .2 AD【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米; C(2)因为三角形 ACD 和三角形 ABC 高相等,所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD =1AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E 图(1) D D .【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180 (∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ).A .42°和 138°B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ ,即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ .【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系.P Q【难度】★★ 【答案】见解析. 1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知) R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义)因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质) 2 所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★ 【答案】略. 【解析】 AB / /CD (已知) ∴∠BGH = ∠DHF (两直线平行,同位角相等) 又 MG 平分∠BGH ,NH 平分∠DHF ∴∠1 = 1 ∠BGH , ∠2 = 1 ∠DHF 2 2 ∴∠1 = ∠(2 等量代换) ∴GM / / H N (同位角相等,两直线平行)【总结】本题考查平行线的判定A B 12 OC BC M1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少.【难度】★★【答案】1. 【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 . 2 【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF .A【难度】★★ 【答案】见解析. 【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义) 因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) B E 因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行)【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数;(2)若∠2 = x , ∠3 = y , ∠4 = [2(2x - y )] ,求 x 、 y 的值. 1 2 3 l【难度】★★ 【答案】见解析 4l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°;(2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算.【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线.【难度】★★★ E【答案】见解析. 【解析】因为∠ 1+ ∠ FDB =180°(已知), 又因为∠1 = ∠ABD (对顶角相等) 所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA E C所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质)因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D【难度】★★★【答案】相等,证明见解析. F【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质) B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知)所以∠ABC = ∠ACB = ∠DAE = ∠CAE所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等)所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B 【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180 因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质) 因为 EG 平分∠BEF (已知),所以∠BEG = 1∠BEF = 70 (角平分线的意义)2 因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换)【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★【答案】C A B C D2D 1 2E 3 【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行,(3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直A .3 个B .2 个C .1 个D .0 个【难度】★【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,×【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( )A .2B .3C .8D .2 或 8【难度】★★【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2.【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A【难度】★★【答案】略.【解析】因为∠1 = ∠B (已知) 所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换)B FC (两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF .【难度】★★ l【答案】略. 【解析】设∠2 的对顶角为∠3, 因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1 BC D 又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E 2 F【总结】本题主要考查平行线的判定.D ′ C′ F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD .【难度】★★【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行) 所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★A D 【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补) B C又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质)又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义)【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D 【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF = 180 - ∠AED '= 57.5 (等式性质)2 因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ .【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. AE D 【难度】★★【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D4 3 C 1 2所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。
初中数学平行线的性质知识点归纳摘抄初中数学平行线的性质知识点归纳摘抄在同一平面内,永不相交的两条直线互为平行线。
虽然平行线在平面内定义,但也适用于立体几何。
平行线的性质性质1 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
额外补充的是,在高等数学中的平行线的定义是相交于无限远的两条直线为平行线,因为理论上是没有绝对的平行的!初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
平行线的性质和几何定理平行线是几何学中非常重要的一个概念,它们有着特殊的性质和几何定理。
本文将介绍平行线的性质以及与之相关的几何定理,帮助读者更好地理解和应用平行线的知识。
1. 平行线的定义在平面几何中,如果两条直线在同一平面内,且不相交,那么它们被称为平行线。
用符号表示为:AB∥CD。
2. 平行线的性质平行线具有以下基本性质:(1) 平行线上的任意两点到另一条平行线的距离相等。
(2) 平行线上的任意两个角的对应角相等。
(3) 平行线与第三条相交线的对应角相等。
3. 平行线的几何定理(1) 互补定理:如果一条直线与两条平行线相交,那么所得到的内角互补。
证明:设直线l与平行线AB∥CD相交于点E,证明∠AEB与∠CDE互补。
由平行线性质可知∠AEB与∠BED对应角相等,∠BED 与∠CDE对应角相等,因此∠AEB与∠CDE互补。
(2) 平行线定理:如果一条直线与两条平行线相交,那么所得到的同旁内角相等。
证明:设直线l与平行线AB∥CD相交于点E,证明∠AEB与∠BEC同旁内角相等。
由平行线性质可知∠AEB与∠BED对应角相等,∠BED与∠BEC对应角相等,因此∠AEB与∠BEC同旁内角相等。
(3) 平行线夹角定理:如果两条直线被一条平行于它们的第三条直线相交,那么所得到的对应角相等。
证明:设直线m与平行线AB∥CD相交,其中点E在CD上,证明∠AEB与∠CEB对应角相等。
由平行线性质可知∠AEB与∠BED对应角相等,∠CEB与∠DEB对应角相等,∠BED与∠DEB对应角相等,因此∠AEB与∠CEB对应角相等。
4. 平行线的应用平行线的性质和定理在几何学中有着广泛的应用。
在解决几何问题时,经常需要利用平行线的性质进行推理和证明。
例如,在证明两个三角形相似时,可以利用平行线的定理来判断两组对应角是否相等。
此外,平行线也在实际生活中有着重要的应用,如建筑设计、道路规划等。
在建筑设计中,为了保持建筑物的美观和稳定,常常需要运用平行线的知识来确定各个部分的位置关系。
七年级下学期数学导学案
5.3.1平行线的性质(1)
【一.学习目标】
1.理解平行线的性质。
2.知道平行线的性质与判定的区别。
3、会利用平行线的性质解决问题。
【二.自学指导】 1.学习内容:阅读课本第19页到第21页。
2.知识导学: ①.性质1:两条平行线被第三条直线所截,____________简述为:__________。
几何语言描述为:∵a ∥b ﹙已知﹚ ∴∠1=∠2﹙ ﹚ ②.性质2:两条平行线被第三条直线所截,______________简述为:__________。
*利用性质1推理出性质2的过程为:
∵a ∥b ﹙已知﹚
∴∠1=∠2﹙ ﹚
∵∠1=∠3﹙ ﹚
∴∠2=∠3﹙ ﹚
几何语言表述为:∵a ∥b ﹙已知﹚
∴∠2=∠3﹙ ﹚
③.性质3:两条平行线被第三条直线所截,________________简述为:____________________。
*利用性质1推理出性质3的过程为:
∵a ∥b ﹙已知﹚
∴∠1=∠2﹙ ﹚
∵∠1+∠4=180º﹙ ﹚
∴∠2+∠4=180º﹙ ﹚,还能利用性质2推出吗? 几何语言描述为:
∵a ∥b ﹙已知﹚
∴∠2+∠4=180º﹙ ﹚
【三.自学检测】
1.若AD ∥BC ,则∠1=∠B ﹙ ﹚ 1
若AB ∥CD ,则∠2=∠3﹙ ﹚ A
C
若AB ∥CD ,则∠D +∠BAD =180º﹙ ﹚ 3
B D
2 C a b 1 4 2 3
2.一块梯形玻璃ABCD的下半部分打碎了,如图所示,
若∠A=125º,∠D=107º,求∠B和∠C。
L4 L3
3.如图,已知L1∥L2,L3∥L4,且∠1=48 º,L1
求∠2、∠3、∠4的度数。
1 4
2 3
L2
4.如图,已知AB∥CD,试在添上一个条件,
使∠1=∠2成立。
﹙要求至少给出两个答案﹚ A 1 B
F
E 2
C D
5.如图,已知AB∥CD,∠B=23 º,∠D=42 º, A B
求∠BED的度数。
E
C D
【四.归纳小结】
1.平行线的性质是已知平行得到角的____或____。
2.在用几何符号语言表述平行线的性质时,要注意因果关系及正确书写。
3.条件和结论不能有效联系时,往往需要作______________,作为条件和结论的纽带。
练习案
1. 如图,∵AB∥EF﹙已知﹚ A
∴∠A+___=180º﹙﹚ E D
∵ED∥CB﹙已知﹚
∴∠DEF=____﹙﹚ B
C F
2、如图,AB∥CD,若∠2是∠1的两倍,则∠2=__。
1
A 3 B
C 2 D
1.(3分)如图,已知∠1=100º,AB ∥CD ,则∠2=__,
∠3=__,∠4=__。
A
2. (3分)如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则与∠B 相等的角有__个。
B F C
3. (3分)两条平行线被第三条直线所截,同旁内角的比为2∶7,
则这两个角的度数分别为___________.
4. (3分)如图,直线L1∥L2,则∠α为__.
5. (3分)如图,AD ∥BC,点E 在BD 的延长线上,
若∠ADE =155º,则∠DBC 为__.
6. (3分)如图,已知AB ∥CD ∥EF,BC ∥DE, ∠E =120º,
则∠B =﹙ ﹚.
A.120º
B.60º
C.30º
D.不能确定
3.如图,AB ∥CD ,若AD ∥BC ,试说明∠A =∠C 。
4. 如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70º,
∠ACB =50º,求∠EDC 和∠BDC 的度数。
A
D E
B C
1. 如图,AB ∥CD ,试说明∠B +∠D +∠BED =360º
A B
E
C D
【附:】 测试案 D A B C
E 1 4 2 3 130° 70° l 1 l 2
α A D B E A B C D
E F
E G
7. (6分)如图,已知AB ∥CD,EF ∥GC,试说明∠1=∠C 。
A M N
B 1
F C D
8. (6分) 如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点 E
E 、F,EG 平分∠BEF,若∠1=50º,求∠2的度数。
A 4 3 B
1 2
C F G D
9. (4分)如图,OP ∥QR ∥ST,则下列等式中正确的是﹙ ﹚ A 、∠1+∠2-∠3=90º 2 1
B 、∠2+∠3-∠1=180º 3
C 、∠1-∠2+∠3=180º Q R
D 、∠1+∠2+∠3=180º
10、(8分)∠A 与∠B 的两边分别平行,则∠A 与∠B 有怎样的数量关系?画图说明理由。
11、(8分)已知,如左图,CE ∥AB,所以∠1=∠A ,∠2=∠B ,∴∠ACD =∠1+∠2=∠A
+∠B,这是一个有用的事实,请用这个结论,在右图的四边形ABCD 内引一条和边平行的直线,求∠A +∠B +∠C +∠D 的度数。
A
E A D
1
2
B C D B C
O P S T。