二次根式(提高)知识讲解
- 格式:doc
- 大小:221.77 KB
- 文档页数:6
二次根式知识点的相关概念及对应的公式一、引言二次根式作为数学中的重要概念,它涉及到了数学运算、代数式简化等方面,对于学习数学的人来说是一个基础而又重要的概念。
在学习二次根式的过程中,我们需要了解相关的概念和对应的公式,并且能够灵活运用于实际问题中。
本文将会从深度和广度的角度,全面评估二次根式的相关概念及对应的公式,并给出一个有价值的文章。
二、二次根式的概念1. 二次根式的定义二次根式是形如$\sqrt{a}$(其中$a\geq 0$)的式子,其中$a$称为被开方数。
我们称$\sqrt{a}$为二次根式,通常可以将$\sqrt{a}$理解为一个数,这个数的平方等于$a$。
$\sqrt{4}$就是一个二次根式,它的值为2,因为$2^2=4$。
2. 二次根式的简化在进行数学运算时,我们经常需要对二次根式进行简化。
当被开方数$a$为某个整数的平方时,二次根式$\sqrt{a}$可以进行化简,即$\sqrt{a}=\pm\sqrt{b}$,其中$b$为$a$的正平方根。
$\sqrt{25}=5$。
3. 二次根式的运算二次根式可以进行加减乘除运算,其中需要特别注意的是,二次根式在进行加减运算时,要求根指数相同才能进行运算。
在进行乘法和除法运算时,我们可以利用二次根式的性质进行化简。
三、二次根式的公式1. 二次根式的乘法公式当两个二次根式相乘时,可以利用乘法分配律进行化简,即$(\sqrt{a}\cdot\sqrt{b}) = \sqrt{ab}$。
这个公式在化简乘法运算时非常有用。
2. 二次根式的除法公式当两个二次根式相除时,可以通过有理化的方法,将分母有理化为整数,从而进行化简。
$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}}\cdot\frac{\sqrt{ b}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}$。
3. 二次根式的加法和减法公式二次根式的加法和减法需要根指数相同才能进行运算。
次根式知识点一:二次根式的概念形如■ J (口工〔)的式子叫做二次根式。
在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须 注意:因为负数没有平方根,所以 “「一】是、・J 为二次根式的前提条件,如 , 1,■*' 1■■ ■''等是二次根式,而 J , 等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a ± 0时,■二 有意义,是二次根式。
所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件: 因负数没有算术平方根, 所以当a < 0时,■丿没有意义。
知识点三:二次根式(二二】)的非负性•“(:工〕)表示a 的算术平方根,也就是说, (山工'■)是一个非负数,即■■』 三0 ( * —)。
…三0「)这个性质和绝对值、偶次方类似。
这个性质在解答题目时应用较多, 如若 G ••八 ,则 a=0,b=0 ;若' I ' _ ,则 a=0,b=0 ;若,则a=0,b=0 。
1、不同点”与表示的意义是不同的,,'表示一个正数 a 的算术平方根的平方,而:表示一个实数a 的平方的算术平方根;在、… 中二--,而弋‘中a 可以 是正实数,0,负实数。
因而它的运算的结果是有差别的,if知识点四:二次根式(■')的性质(■—;)知识点五:二次根式的性质 知识点六:与「:一 即:一个非负数的算术平方根的平方等于这个非负数。
-a (YOj= |of| =的异同点2、相同点:都是非负数,即 — L 。
当被开方数都是非负数,即L . - L 时,知识点七:二次根式的运算(1) 因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的 算术平方根代替,从而移到根号外面; 如果被开方数是代数式和的形式,那么先分解因式,变形为积的形 式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2) 二次根式的加减法:先把二次根式化成最简二次根式,再合并同类二次根式. (3) 二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商) 仍作积(商)的被开方数并将运算结果化为最简二次根式.Vab = 4a •b ( a >0 b >0 ;(4) 有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及 多项式的乘法公式,都适用于二次根式的运算.本节中还要记住一些常见根式的约等数,常见的有.2 1.414; .3 1.732; ,5 2.236 ; 、7 2.646【主要题型】 二次根式有意义的条件:例:求下列各式有意义的所有 x 的取值范围。
《二次根式》讲义一、二次根式的定义形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。
其中,\(\sqrt{}\)称为二次根号,\(a\)叫做被开方数。
需要特别注意的是,二次根式有两个非常重要的限制条件:一是根指数为 2;二是被开方数必须是非负数。
例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)等都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。
二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a \geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。
例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。
2、\((\sqrt{a})^2 = a\)(\(a\geq 0\))例如,\((\sqrt{7})^2 = 7\)。
3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))例如,\(\sqrt{12} =\sqrt{4\times 3} =\sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}\)。
4、\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\sqrt{\dfrac{18}{2}}=\dfrac{\sqrt{18}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\sqrt{2}}= 3\)。
三、二次根式的化简化简二次根式是二次根式运算中的重要环节,其目的是将二次根式化为最简二次根式。
最简二次根式需要满足以下两个条件:1、被开方数不含分母;2、被开方数中不含能开得尽方的因数或因式。
初三数学二次根式一、学习目标1.二次根式的定义、最简二次根式、同类二次根式;2.二次根式的运算。
二、知识点讲解二次根式定义一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
注意被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的判断方法根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。
2. 零的平方根是零;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是±i。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示。
6. 当a≥0时,()22;()2与2中a取值范围是整个复平面。
7. ()2=a任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
有理化因式注意①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式;④一个二次根式可以与几个二次根式互为有理化因式。
分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
分母有理化即将分母从非有理数转化为有理数的过程最简二次根式①被开方数的因数是整数或字母,因式是整式;②被开方数中不含有可化为平方数或平方式的因数或因式。
专题01二次根式的概念和性质(知识点考点串编)【思维导图】例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是()个A .3个B .4个C .5个D .6个练习2.(2021·河北·结果相同的是( ).◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
A .321-+B .321+-C .321++D .321--练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a-C .32a-D .23a -例.(2021·n 的最小值是( )A .2B .4C .6D .8练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B.1C .7D .±1练习3.(2021·全国·n 的值是( )A .B .1C .2D .5例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C.x >2D .x ≠2练习1.(2022·全国·九年级专题练习)函数y =x 的取值范围是( )A .x ≥2B .x >﹣2C .x ≤2D .x <2练习2.(2022·全国·九年级专题练习)函数y 中自变量x 的取值范围是()◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式数学知识点(8篇)二次根式数学知识点1知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a)的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简. 【要点梳理】要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、; 2.;3..要点诠释: 1.二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2(0a a a =≥).2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值. 2).a ≥0时,2()a 2a a ;a <0时,2)a 2a a -.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似). 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式. 【典型例题】类型一、二次根式的概念1.(天津期末)已知y=+﹣4,计算x ﹣y 2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出y的值,然后代入x ﹣y 2求值即可. 【答案与解析】解:由题意得:,解得:x=, 把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x ﹣y 2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 举一反三【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (罗平县校级模拟)已知,1≤x≤3,化简:=_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【高清课堂:高清ID号: 381279关联的位置名称(播放点名称):经典例题4】4.已知c b a ,,为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=. 【答案】a b c ++. 【解析】c b a ,,为三角形的三边,0,0,0a b c b c a b c a ∴+->--<+->,即原式=a b c a c b b c a +-++-++-=a b c ++. 【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<a <b ,化简2232232a b b ab aa b a b a b+-+-+.【答案与解析】原式=222()()a b b a a b a b a b +--+=1()()()a b b a a b a b ab a b a b +-⨯+⨯-++=1a b ab-+. 【总结升华】2a a =成立的条件是a >0;若a <0,则2a a =-.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( ) A.a =2,b =1 B.a =1,b =2 C. a =1,b =-1 D. a =1,b =1【答案】 D. 【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a 、b 的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求a 、b 的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴a =1,b=1.二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1. (贵港)式子在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≤1C .x >1D .x ≥1 2.使式子有意义的未知数x 有( )个A .0B .1C .2D .无数 3. 把mm 1-根号外的因式移到根号内,得( ). A .m B .m -C .m --D .m -4.(蓬溪县校级模拟)下列四个等式:①2(4)4-=;②(﹣)2=16;③()2=4;④2(4)4-=-.正确的是( ) A.①② B.③④ C.②④ D.①③5. 若 ,则等于( ) A .B .C .D .6.将a a --中的a 移到根号内,结果是( ) A .3a -- B. 3a - C.3a - D.3a 二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第 n(n ≥1)个等式写出来________________.12. (乐山)在数轴上表示实数a 的点如图所示,化简+|a ﹣2|的结果为 .三. 综合题13. 已知x x y 211221-+-+=,求22y xy x ++的值. 14. 若时,试化简.15. (武昌区期中)已知a 、b 、c 满足+|a ﹣c+1|=+,求a+b+c 的平方根.【答案与解析】一、选择题 1.【答案】C.【解析】依题意得:x ﹣1>0,解得x >1.2.【答案】B. 3.【答案】C. 4.【答案】D. 【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确; ④==4≠﹣4,不正确.①③正确.故选:D .5.【答案】D. 【解析】 因为=22(4)a +,即222(4)4A a a =+=+.6.【答案】 A.【解析】因为a ≤0,所以a a --=23()()a a a a a ---=---=--.二、填空题 7.【答案】1;1. 【解析】12,1;2534a a a b a +=∴=+=+又,所以1b =. 8.【答案】52. 9.【答案】5.【解析】23100x x x -+=∴≠,13,x x ∴+=即21()9x x+=,2217x x ∴+=,即原式=725-=. 10.【答案】3.【解析】因为原式=21x x -++=213x x -++=.11.【答案】 11(1)22n n n n +=+++ . 12.【答案】 3.【解析】由数轴可得:a ﹣5<0,a ﹣2>0,则+|a ﹣2|=5﹣a +a ﹣2=3.三、解答题 13.【解析】因为1+21122y x x =--2x-1≥0,1-2x ≥0,即x=12,y=12则2234x xy y ++=. 14.【解析】 因为,所以原式==23523510x x x x x x x -+++-=-+++-=-. 15.【解析】解:由题意得,b ﹣c ≥0且c ﹣b ≥0,所以,b ≥c 且c ≥b , 所以,b=c ,所以,等式可变为+|a ﹣b+1|=0,由非负数的性质得,,解得,所以,c=2, a+b+c=1+2+2=5, 所以,a+b+c 的平方根是±.。
中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。
±错误!未找到引用源。
=错误!未找到引用源。
同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.要点诠释:分式运算的常用技巧(1)顺序可加法:有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很繁琐.如果先把两个分式相加减,把所得结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法:当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法:对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n=-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法:有些分式的分子、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)aa a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;5. 商的算术平方根的性质:(00)a a a b b b=≥>,. 6.若0a b >≥,则a b >.要点诠释:与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义, 而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;(3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算(1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化.4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式.【典型例题】类型一、分式的意义1.若分式211x x -+的值为0,则x 的值等于 . 【答案】1;【解析】由分式的值为零的条件得2x ﹣1=0,x +1≠0,由2x ﹣1=0,得x =﹣1或x =1,由x +1≠0,得x ≠﹣1,∴x =1,故答案为1.【总结升华】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.举一反三: 【变式1】如果分式23273x x --的值为0,则x 的值应为 . 【答案】由分式的值为零的条件得3x 2-27=0且x-3≠0,由3x 2-27=0,得3(x+3)(x-3)=0,∴x=-3或x=3,由x-3≠0,得x≠3. 综上,得x=-3,分式23273x x --的值为0.故答案为:-3. 【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例1】【变式2】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 . 【答案】若分式m x x +-212不论x 取何实数总有意义,则分母22x x m -+≠0, 设22y x x m =-+,当△<0即可,440,1m m -<>.答案m >1.类型二、分式的性质2.已知,b c c a a b a b c +++==求()()()abc a b b c c a +++的值. 【答案与解析】设b c c a a b k a b c+++===, 所以,,b c ak c a bk a b ck +=+=+=所以,b c c a a b ak bk ck +++++=++所以2()(),()(2)0,a b c k a b c a b c k ++=++++-=即2k =或()0,a b c ++=当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-. 即所求代数式等于18或1-. 【总结升华】当已知条件以此等式出现时,可用设k 法求解.举一反三:【变式】已知111111111,,,6915a b b c a c +=+=+=求abc ab bc ac++的值. 【答案】因为 111111111,,,6915a b b c a c +=+=+= 各式可加得1111112,6915a b c ⎛⎫++⨯=++⎪⎝⎭ 所以11131180a b c ++=, 所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b÷===++++÷++类型三、分式的运算3.已知1,x y z y z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 【答案与解析】因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++) 即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y+++++=+++++ 所以2220.x y z y z z x x y++=+++ 【总结升华】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.举一反三:【变式1】已知,,,x y z a b c y z x z x y ===+++且abc o ≠,求111a b c a b c +++++的值. 【答案】 由已知得1,y z a x+= 所以111,y z x y z a x x ++++=+=即1a x y z a x +++=,所以1a x a x y z=+++, 同理,,11b y c z b x y z c x y z==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z ++++=++==+++++++++++. 【高清课程名称:分式与二次根式 高清ID 号:399347关联的位置名称(播放点名称):例2】【变式2】已知x +y=-4,xy=-12,求+++11x y 11++y x 的值. 【答案】原式)1)(1()1()1(22+++++=y x x y =1121222++++++++y x xy x x y y 1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式, ∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2类型四、分式方程及应用4.a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 【答案与解析】方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x ++=-整理得(1)10a x -=-.当a = 1 时,方程无解.当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 . 所以当4a =-或a = 6原方程会产生增根.【总结升华】 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.5.甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【答案与解析】(1)设乙单独整理x 分钟完工,根据题意得:120204020=++x解得x =80,经检验x =80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y 分钟完工,根据题意,得1408030≥+y 解得:y ≥25答:甲至少整理25分钟完工.【总结升华】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y 分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.举一反三:【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+)B .00253010(180x x -=+)C .00302510(18060x x -=+)D .00302510(180x x -=+)【答案】设走路线一时的平均速度为x 千米/小时,00253010(18060x x -=+)故选A .类型五、二次根式的定义及性质6.要使式子aa 2+有意义,则a 的取值范围为 . 【答案】a≥-2且a≠0.【解析】根据题意得:a+2≥0且a≠0,解得:a≥-2且a≠0.故答案为:a≥-2且a≠0.【总结升华】本题考查的考点为:分式有意义,分母不为0;二次根式的被开方数是非负数.可以求出x的范围.类型六、二次根式的运算【高清课程名称:分式与二次根式高清ID号:399347关联的位置名称(播放点名称):例3】7.(2015春•泗阳县期末)已知m是的小数部分.(1)求m2+2m+1的值;(2)求的值.【答案与解析】解:依题意得21m=-,则121 m=+(1)原式=(m+1)2=2;(2)原式=|1mm-|=|﹣1﹣(21+)|=2.【总结升华】此题考查二次根式的化简求值,掌握完全平方公式和无理数的估算是解决问题的关键.举一反三:【变式】(2015•苏州模拟)计算:.【答案与解析】解:原式=﹣+2=4﹣+2=4+.。
二次根式(提高)知识讲解
【学习目标】
1、理解二次根式的概念,了解被开方数是非负数的理由.
2、理解并掌握下列结论:0,(a≥0),(a≥0),
(a≥0),并利用它们进行计算和化简.
【要点梳理】
要点一、二次根式及代数式的概念
1.二次根式:一般地,式子(a≥0)叫做二次根式,
二次根号,a叫做被开方数.
要点诠释:
二次根式的两个要素:①根指数为2;②被开方数为非负数.
2.代数式:形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.
要点二、二次根式的性质
0,(a≥0);
2. (a≥0);
3..
要点诠释:
1.二次根式(a≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,
即2(0
≥).
a a
2要注意区别与联系:
(1)a 的取值范围不同,2中a ≥0a 为任意值.
(2)a ≥0时,2a ;a <0时,2a -. 【典型例题】
类型一、二次根式的概念
1.(优质试题•启东)若x 、y 为实数,且y =
,
y x y -的值. 【答案与解析】∵y=
,
∴x 2﹣4=0,x+2≠0, 解得:x=2, ∴y=,
32
y x y -===
. 【总结升华】主要考查了二次根式有意义的条件,得出x ,y 的值是解题关键. 举一反三:
【变式】方程480x -+=,当0y >时,m 的取值范围是( ).
A .01m << B.m ≥2 C.2m < D.m ≤2
【答案】C
类型二、二次根式的性质
2.根据下列条件,求字母x 的取值范围:
(1)
; (2).
【答案与解析】
解:(1)
(2)
【总结升华】二次根式性质的运用. 举一反三:
【高清课堂:二次根式及其乘除法(上)例1(1)(2)】 【变式1】x 取何值时,下列函数在实数范围内有意义? (1)y=x --1
1
+x ,__________;(2)y=222+-x x ,
___________. 【答案】(1)
01001x x x x -+≠∴≠-≥,≤且
(2)
2222(1)10,x x x x -+=-+>∴为任意实数.
【变式2】问题探究: 因为,所以,
因为
,所以
请你根据以上规律,结合你的以验化简下列各式: (1);(2)
.
【答案】 解:(1) =
=;
(2)
=
=.
3.(优质试题春•濮阳期末)先阅读,后解答:
(1)由根式的性质计算下列式子得:
①=3,②=,③=,④=5,⑤=0.由上述计算,请写出的结果(a为任意实数).
(2)利用(1)中的结论,直接写出下列问题的结果:
①= ;
②化简:(x<2)= .
(3)应用:
若+=3,则x的取值范围
是.
【思路点拨】(1)将a分为正数、0、负数三种情况得出结果;(2)①当a=3,14﹣π<0时,根据(1)中的结论可知,得其相反数﹣a,即得π﹣3.14;
②先将被开方数化为完全平方式,再根据公式得结果;
(3)根据(1)式得:+=|x﹣5|+|x﹣8|,然后分三种情况讨论:①当x<5时,②当5≤x≤8时,③当x>8时,分别计算,哪一个结果为3,哪一个就是它的取值.
【答案与解析】
解:(1)=|a|=;
(2)①=|3.14﹣π|=π﹣3.14,
②(x<2),
=,
=|x﹣2|,
∵x<2,
∴x﹣2<0,
∴=2﹣x;
故答案为:①π﹣3.14,②2﹣x;
(3)∵+=|x﹣5|+|x﹣8|,
①当x<5时,x﹣5<0,x﹣8<0,
所以原式=5﹣x+8﹣x=13﹣2x.
②当5≤x≤8时,x﹣5≥0,x﹣8≤0.
所以原式=x﹣5+8﹣x=3,
③当x>8时,x﹣5>0,x﹣8>0,
所以原式=x﹣5+x﹣8=2x﹣13.
∵+=3,
所以x的取值范围是5≤x≤8,
故答案为:5≤x≤8.
【总结升华】本题考查了二次根式的性质和化简,明确二次根式的两个性质:①()2=a (a≥0)(任何一个非负数都可以写成一个数。