3.5 求解有限元方程的几个问题
- 格式:doc
- 大小:84.00 KB
- 文档页数:3
有限元分析基础教程前言有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。
在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。
一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。
在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。
本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。
有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
第二章有限单元法的基本原理作为一种比较成熟的数值计算方法,有限元的数学基础是变分原理。
经过半个过世纪的发展,它的数学基础已经比较完善。
从数学角度分析,有限元法是以变分原理和剖分插值为基础的数值计算方法。
它广泛的应用于解算各种类型的偏微分方程,特别对椭圆型方程,因为椭圆型方程的边值问题等价于适当的变分问题,即能量积分的级值问题。
通过变分,导出相应的泛涵,再把作用域从几何上剖分为足够小的单元,这样就能够用简单的图形去拟合复杂的边界,用简单的初等函数去模拟单元的性质。
在解算中先对每个单元进行分析,后在通过连接单元的节点对作用域的整体进行分析,就是对泛涵求极值,从而把一个复杂的偏微分方程求解问题,变成解线形代数方程组的问题。
尽管这样会出现大量的未知数,由于采用了矩阵分析的方法,总体上很有规律,适合编制程序用计算机完成。
通常的数学考虑包括这些:1)从古典变分方法原理去定义微分方程边值问题的广义解以及在古典变分方法的框架对有限元进行理论分析。
2)保证偏微分方程边值问题的提法正确,即要求解存在、唯一和稳定,即保证数值解法是可靠的。
3)有限元中重要的一点是采用了分块多项式插值函数,因此,有限元的误差估计转化为插值逼近的误差估计问题。
4)有限元的收敛性和误差估计。
由于本文是应用有限元的理论解决大地测量中的问题,因此,这里将不讨论上叙问题,而是从固体力学的基本方程出发,通过虚功原理建立起离散化的有限元方程。
另外,还以八节点六面体单元为例,简要叙述了实际中最常用的等参单元的概念及其数值变化的一些公式。
§2.1 弹性力学基本方程有限元法中经常要用到弹性力学的基本方程,这里写出这些方程的矩阵表达式。
2-1-1、平衡方程对任意一点的受力情况分析,沿坐标轴方向x, y ,z分解得到平衡方程0*00000000=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂z y xxz yz xy z y x F F F z yzz x y z y x τττσσσ 记为: 0=+F A σ其中A 是微分算子,F 是体积力向量。
有限元分析经典课件1. 简介有限元分析(Finite Element Analysis, FEA)是一种以数值模拟方法为基础,通过离散化处理求解结构力学问题的工程方法。
本课件将介绍有限元分析的基本原理和常用的应用领域。
2. 有限元分析的基本原理2.1 有限元方法概述有限元方法(Finite Element Method, FEM)是有限元分析的基础理论和计算方法。
本部分将介绍有限元方法的基本概念、基本步骤、离散化处理等内容。
2.2 有限元网格划分有限元网格划分是有限元分析的关键步骤,它将结构离散化为有限个小单元。
本部分将介绍有限元网格划分的方法、常用网格类型以及网格质量评价的方法。
2.3 有限元方程与加载有限元方程是描述结构力学问题的关键方程。
本部分将介绍有限元方程的推导过程,以及加载条件的处理方法。
2.4 有限元解与后处理有限元解是通过有限元分析得到的结构响应结果。
本部分将介绍有限元解的计算方法以及后处理方法,包括位移、应力、应变等结果的计算和可视化展示。
3. 有限元分析的应用案例3.1 结构力学分析结构力学分析是有限元分析的主要应用之一。
本部分将通过实例演示有限元分析在结构力学分析中的具体应用,包括静力学分析、动力学分析等。
3.2 热力学分析热力学分析是有限元分析的另一个重要应用领域。
本部分将通过实例演示有限元分析在热力学分析中的具体应用,包括热传导、热稳定性等问题的分析。
3.3 流体力学分析流体力学分析是有限元分析的扩展应用领域之一。
本部分将通过实例演示有限元分析在流体力学分析中的具体应用,包括流体流动、压力分布等问题的分析。
4. 有限元分析软件的介绍有限元分析软件是进行有限元分析的工具,市场上有多种成熟的有限元分析软件可供选择。
本部分将介绍一些常用的有限元分析软件,包括Ansys、Abacus等。
5. 总结有限元分析作为一种重要的数值模拟方法,已广泛应用于不同领域的工程问题。
本课件从理论原理到实际应用都进行了全面的介绍,相信对有限元分析的学习和应用都有很大帮助。
第二章有限元方程的求解方法有限元方法是一种用于求解微分方程的数值近似方法,它将求解域(问题的区域)分割成许多小的子域,通过在每个子域上建立适当的数学模型,将微分方程转化为代数问题进行求解。
在有限元方法中,关键的一步是建立数学模型,即选择合适的试验函数空间和相应的权函数。
常用的有限元方法有有限元法和有限差分法,这两种方法都是在数学模型的基础上进行离散化处理,然后用有限元方程求解方法求解代数问题。
有限元法是一种建立在小区域上近似表示的方法,它将整个求解域分割成许多小的子域,每个子域内选取适当的试验函数来近似表示原问题的解。
这样,原问题就可以表示为求解子域上的代数问题。
有限元法的关键是选择适当的试验函数和权函数。
试验函数是用来近似表示原问题的解,而权函数则是用来衡量试验函数与原问题解之间的误差。
通常,试验函数和权函数都是在每个子域上选取的多项式函数。
有限差分法是一种将原问题的微分方程转化为代数方程的方法。
在有限差分法中,求解域被分割成格点,并在这些格点上定义函数的值。
通过使用各个格点上的函数值及其邻域的函数值,可以近似表示微分方程中的导数项。
然后,将微分方程转化为代数方程进行求解。
有限差分法的关键是选择合适的差分格式,这决定了在每个格点上求解代数方程时所使用的邻域函数值。
无论是有限元法还是有限差分法,最后都需要用数值算法求解得到的代数方程。
常用的数值算法有直接法和迭代法。
直接法是一种直接求解代数方程的方法,例如高斯消元法和LU分解法等。
迭代法是一种通过迭代求解逼近原问题解的方法,常用的迭代法有雅可比迭代法和高斯-赛德尔迭代法等。
在使用有限元方法求解微分方程时,步骤通常包括:建立数学模型,选择合适的试验函数和权函数;将微分方程离散化处理,得到代数方程;选择适当的数值算法求解代数方程;对得到的数值解进行后处理,例如计算导数或积分等。
在实际应用中,有限元方法广泛应用于结构力学、流体力学、热传导等领域的求解。
1、有限元方法与传统力学方法的比较,有限元的一般概念及基本思路。
叙述有限元方法的基本步骤。
答:比较:运用有限元方法解决工程实际问题时,不管是简单结构或者是复杂的结构,其求解过程是完全相同的,由于每个步骤都具有标准化和规范性的特征,可以在计算机上进行编程而自行实现,这是常规解析方法无法实现的。
即技术核心所在就是采用分段离散的方式来组合出全场几何域上的试函数,而不是直接寻找全场上的试函数。
概念:有限元方法是求解各种复杂数学物理问题的重要方法,是处理各种复杂工程问题的重要分析手段,也是进行科学研究的重要工具。
该方法的应用和实施包括三个方面:计算原理、计算机软件、计算机硬件。
有限元方法的基本思路:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。
(在具备大规模计算能力的前提下,将复杂的几何物体等效离散为一系列的标准形状几何体,再在标准的几何体上研究规范化的试函数表达及其全场试函数的构建,然后利用最小势能原理建立起力学问题的线性方程组。
)有限单元法解题步骤:①结构的离散化,即单元网格划分;②选择位移模式;③分析单元的力学特征,利用几何方程导出结点位移表示的单元应变,利用本构方程建立单元内任意一点的应力与应变的关系,利用变分原理建立单元的平衡方程;④集合所有单元的平衡方程,建立整个结构的平衡方程(即总的平衡方程),包括将刚度集成总刚,以及将单元的等效结点力列阵集成总的荷载列阵;⑤求解结点位移和计算单元应力,包括边界条件修正;⑥解方程,得到未知问题的节点值;⑦后处理。
2、掌握位移函数和形函数的概念,掌握二者之间的关系。
答:位移函数:是单元内部位移变化的数学表达式,设为坐标的函数,由于有限元法采用能量原理进行单元分析,因而必须事先设定位移函数。
在弹性力学中,恰当选取位移函数不是一件容易的事情;但在有限元中,当单元划分得足够小时,把位移函数设定为简单的多项式就可以获得相当好的精确度。
1.简述有限元的求解步骤及各步要考虑的主要问题是什么?一、问题及求解域定义:根据实际问题近似求解物理性质和几何区域二、结构离散化:选择适当的参考系、选择单元类型、合理确定单元的尺寸和阶次(确定分析计算类型和计算工况、确定各工况的边界载荷和有效计算载荷)三、选择位移插值函数:通常选择多项式,多项式必须包含常应变状态和刚体位移,还要满足位移连续条件四、单元分析:利用最小势能原理建立单元刚度矩阵并推导出等效节点载荷向量五、整体分析:组集出总体刚度矩阵六、约束处理:引入位移边界条件,消除刚体位移,使方程具有唯一解.七、方程求解:获得未知节点位移八、计算单元应力2.简述有限元的基本思想?分片逼近即把连续的物体剖分成有限个单元,且使之相互连接在有限个节点上,承受等效的节点载荷;根据平衡条件进行分析,然后根据变形协调条件把这些单元组合起来,再综合求解。
3.能给出解析式的解就是精确解,只能以数值方式求得解都是近似解。
这种说法对不对?为什么?不对,能给出解析式的解不一定是精确解,材料力学中的力学公式都是在一些假定的基础上建立的,都是近似解;通过数值方式求的解不一定是近似解,结构力学中的矩阵位移法就是精确解。
4.解析解的精度一定高于数值解的说法对不对?为什么?不对,解析解可能是近似解,而数值解可能是精确解。
5.有限元方程求解前为什么要进行约束处理?消除刚体位移,使方程有唯一解;总刚矩阵是奇异矩阵,其物理意义是整个结构可在无约束或约束不足的情况下发生刚体运动。
为了求出结构的变形位移,就必须对模型施加足够的位移约束,以排除各种可能的刚体运动。
6. 单元节点处的位移连续性条件指的是什么?相邻单元的公共节点在两个单元上的位移必须相等。
7. 形函数有什么重要性质?一、相关节点处的值为1;二、不相关节点处的值为0;三、形函数之和为1。
8.什么是等参单元、超参单元和次参单元?坐标变换的阶数与位移插值函数的阶数相等的单元称为等参单元;坐标变换的阶数高于位移插值函数的阶数的单元称为超参单元;坐标变换的阶数低于位移插值函数的阶数的单元称为次参单元。
3.5 求解有限元方程的几个问题
与变分问题等价的有限元方程,表达式均为
⎪⎩⎪⎨⎧==Γo u u p u k 1
][]][[
剩下几个问题:(1) 第一类边界条件如何施加?
(2) 位的离散解求得之后,如何求解场矢量? (3) 有限元方程组如何求解? 1. 第一类边界条件如何强加 分析所建立的有限元方程:
⎥⎥
⎥
⎥⎥⎥
⎥
⎥⎦
⎤
⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢
⎢⎢⎢⎣⎡o o o o o o o o o o N m N m N N m
N N N mN mm m m N m N m p p p p u u u u k k k k k k k k k k k k
k k k k
21212
1212222211112
11
如果m 节点是场域中第一类边界上的节点,对应位值o m u u =,则m 点的位值无需计算: ① ][k 矩阵中第m 行元素1m k 、2m k 、…、1-mm k 、1+mm k 、…、o mN k 均可置零,mm k 处置1;
② 可用o m u u =直接代入,即m p 处置o u ;
③ 在其余1-o N 个方程里,它的第m 项都是已知项:),,2,1(o o im m im N i u k u k ==,可以移到等号右端][p 列矩阵之中相应的位置上
⎥⎥
⎥⎥⎥⎥⎥
⎥⎦
⎤
⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢
⎢⎢⎢⎣⎡o m N N o
o m o m N m N N N N N N u k p u u k p u k p u u u u k k k k k k
k k k o o o o o o o o o
2211212122221112
1100100
00
于是][k 矩阵第m 列除1=mm k 外,其余元素也全部置零。
由上可知:第一类边界条件的“强加”是该边界上的节点所对应代数方程中的直接处理方式,并影响到各个代数方程。
若有第一类边界节点l 个,就需要作l 次处理,才能得到与变分问题相对应的有限元方程:
][]][[p u k ''=''
式中以用处理后的系数矩阵][k ''和已知列阵][p ''来反映。
应注意:有限元方程是o N 阶方程组,强加边界条件的处理使][k 变成满秩矩阵][k ',方程有唯一解。
2. 求解场矢量
(1)三节点三角形单元是一阶单元,以线性插值来逼近原函数的解,以微分求解单元中的场矢量,如求电场:
e m j i e T e x b b b x N x x E ]][[21][~ϕϕϕϕ∆-=⎥⎦⎤
⎢⎣⎡∂∂-=∂∂-=∂∂-=
e m j i e T
e y c c c y N y y E ]][[21
][~ϕϕϕϕ∆-=⎥⎦
⎤⎢⎣⎡∂∂-=∂∂-=∂∂-= 显然解答中单元内是均匀电场,单元内的电场强度为一常矢量。
从总体上来说是以小单元中的均匀逼近原电场的分布,可知单元剖得细一些,逼近度就越好。
(2)若计算节点处的场量,需要综合考虑节点周围单元的场强值,比较好地确定该节点的场量。
常用的方法有:算术平均值法、加权平均值法等。
a .算术平均值法
以n 为该节为顶点的单元数
∑∑====n
i yi y n
i xi x n E E n E E 1
1
/,
/
b .加权平均值法 以面积为权数i ∆
∑∑==∆
∆=n
i i n
i i
xi x E E 1
1
,
∑∑==∆
∆=n
i i
n
i yi y i
E E 1
1
(3)同一单元中是均匀场,不同单元中场强值不同,显然在单元边界上场量不连续。
由此可见位函数作线性插值时虽然满足相容性条件,但同种媒质中的场量在单元边界上发生突变,也必然会出现在媒质分界面上场量因不属同一单元而不能满足应有的连续性条件,这说明通过一阶插值的有限元计算所得场量会出现不符合场分布规律的缺陷。
请考虑,若以单元二阶插值,上述的缺陷还存在与否? 3. 代数方程组的求解
一般可将代数方程组的解法分为直接法、迭代法和值化方法。
用计算机求解代数方程组,由于计算机“字长”的限制,计算中会有舍入误差的累积,所以不管用以上哪类方法,所得数值解是一种近似解。
有关代数方程组的解法,大家将在“数值分析”课程中要学习或已经学习,所以,在此我就不再多述。
习题:
4. 若以三角单元三条边中点也为节点,构造6节点的单元二阶插值,在媒质分界面上单元边或同一媒质中的单元边处场矢量能否满足应有的连续性条件?。